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Stereńczak

Received: 7 December 2022

Revised: 29 December 2022

Accepted: 4 January 2023

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Remote Sensing Monitoring of Pine Wilt Disease Based on
Time-Series Remote Sensing Index
Lin Long 1, Yuanyuan Chen 1, Shaojun Song 2, Xiaoli Zhang 1,* , Xiang Jia 1 , Yagang Lu 3 and Gao Liu 4

1 Beijing Key Laboratory of Precision Forestry, Forestry College, Beijing Forestry University,
Beijing 100083, China

2 School of Foreign Languages, Beijing Forestry University, Beijing 100083, China
3 East China Institute of Investigation and Planning, National Forestry and Grassland Administration,

Hangzhou 310019, China
4 Lu’an Forestry Bureau of Anhui Province, Lu’an 237000, China
* Correspondence: zhangxl@bjfu.edu.cn; Tel.: +86-010-6233-6227

Abstract: Under the strong influence of climate change and human activities, the frequency and
intensity of disturbance events in the forest ecosystem both show significant increasing trends. Pine
wood nematode (Bursapherenchus xylophilus, PWN) is one of the major alien invasive species in China,
which has rapidly infected the forest and spread. In recent years, its tendency has been to spread
from south to north, causing serious losses to Pinus and non-Pinus coniferous forests. It is urgent
to carry out remote sensing monitoring and prediction of pine wilt disease (PWD). Taking Anhui
Province as the study area, we applied ground survey, satellite-borne optical remote sensing imagery
and environmental factor statistics, relying on the Google Earth Engine (GEE) platform to build a new
vegetation index NDFI based on time-series Landsat images to extract coniferous forest information
and used a random forest classification algorithm to build a monitoring model of the PWD infection
stage. The results show that the proposed NDFI differentiation threshold classification method
can accurately extract the coniferous forest range, with the overall accuracy of 87.75%. The overall
accuracy of the PWD monitoring model based on random forest classification reaches 81.67%, and
the kappa coefficient is 0.622. High temperature and low humidity are conducive to the survival
of PWN, which aggravates the occurrence of PWD. Under the background of global warming, the
degree of PWD in Anhui Province has gradually increased, and has transferred from the southwest
and south to the middle and northeast. Our results show that PWD monitoring and prediction at
a regional scale can be realized by using long time-series multi-source remote sensing data, NDFI
index can accurately extract coniferous forest information and grasp disease information in a timely
manner, which is crucial for effective monitoring and control of PWD.

Keywords: pine wood nematode; Google Earth Engine; time-series; vegetation index; remote
sensing monitoring

1. Introduction

Pine wood nematode (Bursapherenchus xylophilus, PWN) is a kind of forest pest that
spreads through the insect vector Monochamus alternatus in a specific environment and
invades the Pinus Linn plant, which is one of the major alien invasive species in China [1],
causing rapid wilt and death of pine trees [2,3]. PWN was first found in North America. It
was introduced into Nagasaki, Japan, in 1905, and then gradually spread to Europe and
Asian countries. It was not until 1971 that PWN was confirmed as a pathogen. It is listed
as a quarantine pest in more than 40 countries around the world [4]. Pine wilt disease
(PWD) is a fatal disease caused by invasion and parasitism of PWN, known as the ‘cancer
of pine trees’ [5], also referred as the COVID-19 virus of pinewoods. It only takes about
40 days from the invasion of PWN to reducing the resin secretion to its death, and the forest
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will be destroyed in 3–5 years. The high spread-speed of PWD leads to great difficulty
controlling it.

Due to the suitable conditions for the survival of PWN in China, PWD was first found
in Nanjing in 1982. In the past four decades, the disease has spread to the middle temperate
zone, showing a rapid westward and northward spread. It has spread to 5479 township
administrative regions in 742 county-level administrative regions of 19 provinces in China,
covering an area of 1.81 million hectares [6], posing a huge threat to the balance of pine
forest resources and ecosystems in China. It has invaded many national scenic spots and
key ecological areas, which not only affects the development of the social economy, but
also seriously damages the natural landscape and ecological environment [7,8]. Accurate
prevention and control of this disease is of top priority in current forest protection.

Anhui Province belongs to the transitional area of warm temperate zone and sub-
tropical zone. Because of its monsoon climate and four distinct seasons, the precipitation
has obvious seasonal changes. It has diverse landforms including plains, platforms, hills,
mountains, etc. Anhui Province is an important constituent province of the Yangtze River
Delta Economic Circle, promoting the coordinated development pattern of ‘one circle and
five regions’. At the same time, as one of the provinces with rich pine forest resources
in China [9], PWD has caused serious losses to the forest resources of this province since
PWD was first found in 1988, so monitoring and prevention of PWD in Anhui Province
is particularly important, and has indicative and representative significance for PWD dis-
aster prevention and control in other regions with the similar forest structure, climate
characteristics and biogeographical environment.

Accurate and efficient monitoring is the premise of disease prevention and control.
Sexual attraction and field survey are two traditional pest monitoring methods [10]. How-
ever, field survey is limited by climate, terrain and other conditions, with poor real-time
performance, high cost, and low efficiency. It is unable to conduct macro dynamic mon-
itoring, and cannot essentially identify the mechanism that the ecosystem structure is
infected by PWD. Although the government has been making great efforts to coordinate
the prevention and control of the disease, the traditional field investigation and monitoring
methods often delays the best time for disease control, thus causing incalculable losses [11].

Remote sensing technology has incomparable advantages over conventional ground
survey methods in forest pest monitoring research [12]. When the host plant of PWN is
infected, the color of its needles will change from green to grayish green and yellow, until
the whole crown becomes reddish brown; the plant will die, but the needles of the plant
will not fall off [13]. This feature of needle discoloration of infected plants will produce a
spectral feature change response on satellite-borne optical remote sensing imagery. Satellite-
based remote sensing imagery has the advantage of a wide covering range and detectability
of fine features of ground surfaces, which can be monitored in a large range and in real time.
Therefore, remote sensing technology plays an incomparably important role in the study of
forestry pests and diseases with its advantages of wide monitoring range, detectability of
fine features of ground surfaces and so on. Because the vegetation has a special spectral
characteristic curve, the most significant change of the host plant after infection by PWN
is the variation of its external morphology and internal organizational structure of the
leaves, which makes trees respond to spectral changes in remote sensing imagery [14].
Qin Lin et al. [15] used Beijing-3 data to conduct remote sensing monitoring of PWD
through image fusion, index calculation and information extraction. The results showed
that the accuracy and recall rate of intelligent extraction of discolored pine trees based
on deep learning were high, which improved the solubility of quantitative monitoring of
individual discolored pine tree, and was conducive to accurate monitoring, prevention
and control of PWD. Qin Jun [16] used SCANet to obtain the spatial information of PWD,
in order to enhance the spatial and spectral detailed features of the disease and integrate
its shallow features. The results showed that the recall rate of PWD extracted by SCANet
was 0.9322, which realized the rapid, high-precision and automated intelligent monitoring
of PWD by unmanned aerial vehicle remote sensing. With the support of geostatistics,
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machine learning and other technologies, it is possible to use image processing, information
extraction, and parameter inversion for remote sensing monitoring of pests and diseases.

At present, satellite remote sensing monitoring also has many limitations, such as
low recognition rate due to the limitation of spatial spectrum resolution, the difference
between PWD-induced needle leaves discoloration and normal physiological discoloration
of broad leaves, etc. [17]. In view of this, this study takes Anhui Province as the study area,
and with the support of ground survey, satellite-borne optical remote sensing, geospatial
analysis technology and machine learning technology, integrates the biological and eco-
logical characteristics, living environment, human activities, spatial distribution of host
plants and other factors of PWN, and uses the vegetation index of time-series to build
disease degree monitoring model. Through the screening research on the influencing
factors of disease occurrence, the meteorological change of long time-series and the analysis
of disease occurrence and disease degree, reliable basis is provided for disease prevention
and control. The focus and innovations of this research are as follows:

a Proposing a new index for extracting the coniferous forest range based on time-series
Landsat images.

b Building a monitoring model of infection areas of PWD based on the time-series
Landsat images.

c Analyzing the spatio-temporal dynamics of PWD to strengthen the understanding of
disaster occurrence and spread.

2. Materials and Methods
2.1. Study Area

Anhui Province is located in East China, with geographical coordinates ranging from
29◦41′ to 34◦38′N, 114◦54′ to 119◦37′E. It borders Shandong Province in the north, Jiangsu
Province in the east, Jiangxi Province in the south, and Hubei Province in the west, with a
total area of 140.1 thousand km2. The landform of its territory includes mountains, hills,
plains, etc. The mountains are mostly distributed in the northeast and extends roughly
in an east–west direction. The mean annual precipitation is 773~1670 mm, and the mean
annual temperature is 14~17 ◦C. Anhui Province is a key province of the southern collective
forest area in China, with rich forest resources. According to the ninth national forest
resources inventory statistics, the area of coniferous forests in Anhui Province accounts for
27.29% of the total forest area [18]. Among the coniferous forests, the forest area dominated
by Pinus massoniana is the largest, followed by Cunninghamia lanceolata. According to
the survey announcement of Anhui Forestry Bureau, Anhui Province strictly enforced
quarantine and law enforcement on PWD, paid close attention to the source of infected
trees, practically eliminated the hidden danger of epidemic transmission, and prevented
external invasion and internal diffusion. The province has carried out a special campaign
to control the violations of laws and regulations against infected trees, actively applied
the refined supervision platform of the National Forestry and Grass Administration for
PWD epidemics, and targeted the epidemic monitoring and control to the pine forest
sub-compartments. At present, 14,599 sub-compartments of the PWD epidemic have been
recorded, accounting for 95.50% of the total sub-compartments, providing more accurate
data support for the prevention and control of the PWD epidemic.

We conducted a field survey in Huoshan County, Lu’an City, Anhui Province. Hu-
oshan County is located at the northern foot of Ta-pieh Mountains, with typical mountain
features. It is one of the key mountain counties in Anhui Province, with a mean annual tem-
perature of 15.2 ◦C, the highest temperature of nearly 40 ◦C, and the lowest temperature of
minus 10 ◦C. In 2014, sporadic dead pine trees suspected of PWD were found in Mozitan
Town for the first time. Later, they were also found in other towns, and were identified
as PWD at the end of the year [19]. In recent years, PWD has broken out seriously, and
Huoshan County is one of the worst hit PWD areas in Anhui Province. The location and
sample plot data of the study area are shown in Figure 1.
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Figure 1. Location of study area and sample plot. (a) Location of the study area. (b) True color
Landsat image and sample plot. (c1) Picture of healthy pine trees in the study area. (c2) Picture of
infected pine trees in the study area.

2.2. Data
2.2.1. Field Survey Data

In order to obtain the damage characteristics of the different infection stages of the
forest by PWD for extracting the diagnostic spectrum band, vegetation index, and texture
information from the remotely sensed imagery, in October 2021, field research was con-
ducted in Huoshan County, Lu’an City, Anhui Province to determine the location of the
study area, and a field survey was conducted at the end of October of the same year. In
the study area, randomly distributed single trees with an interval of more than 30m were
selected to obtain the data of the infected single trees. RTK was used to obtain the location
of the single tree infected by PWD. We recorded the detailed information of infected trees,
and took photos of infected trees and the surrounding environment. A total of 614 single
trees were obtained, including 249 infected single trees and 365 healthy single trees, in
which the selection of healthy single trees met the requirements that the host plants within
30m around them were healthy.

2.2.2. Remote Sensing Imagery

The Landsat remote sensing data selected for this study was Landsat 8 OLI surface
reflectance data, and the image data ID was ‘LANDSAT/LC08/C01/T1_SR’. Considering
that the onset time of the infected host plants was from late August to early November and
the influence of cloud cover in the study area, as the single and cloudless Landsat images
could not cover the entire province, the mean value data of the monthly cloud removal
synthetic images from 2019 to 2020 was selected as the basic data source to extract the
coniferous forest range, and the mean data of the cloud removal synthetic images from
August to November of each year from 2018 to 2021 was selected as the basic data for
monitoring the occurrence of PWD.

2.2.3. Other Auxiliary Data

The forest screened from the GlobeLand30 Version 2020 land cover data was selected
as the basic data for extracting the coniferous forest in Anhui Province. With the spatial
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resolution of 30m, the overall classification accuracy of 85.72%, and the kappa coefficient
of 0.82.

Digital Elevation Model (DEM) data was from Shuttle Radar Topography Mission
(SRTM) products with a spatial resolution of 30m released by the data center of United
States Geological Survey (USGS, https://www.usgs.gov/products/data (accessed on
18 July 2021)).

All data were called on Google Earth Engine (GEE); GEE is a tool subordinate to Big
Google, it can quickly batch process a large number of ‘huge’ satellite images, quickly
calculate various vegetation indices, predict crop related yields, monitor drought growth,
and monitor global forest changes. Its interface is intuitive and friendly to new users.

In this study, the statistical data of sub-compartment dominated by pine tree species in
the Forest Management Inventory of Anhui Province in 2020 and the data of PWD epidemic
area in Anhui Province over the years were obtained, which were provided by the forestry
department of Anhui Province.

2.3. Method

This study takes Anhui Province as the study area, and with the support of ground
survey, satellite-borne optical remote sensing, geospatial analysis technology and ma-
chine learning technology, integrates the biological and ecological characteristics, living
environment, human activities, spatial distribution of host plants and other factors of
PWN, and uses the vegetation index of time-series to build a disease degree monitoring
model. Through the screening research on the influencing factors of disease occurrence,
the meteorological change of long time-series and the analysis of disease occurrence and
disease degree, a reliable basis is provided for disease prevention and control; its technical
route is shown in Figure 2.
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2.4. Coniferous Forest Extraction Based on Time-Series Landsat Images

With the increasing adaptability of PWN in China in recent years, the host plants
of PWN have gradually expanded from dozens of pine species such as Pinus massoniana
and Pinus densiflora to other non-Pinus coniferous species [20]. According to the statistical
data of the sub-compartment area in the forest resources inventory of Anhui Province, the
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sub-compartment area with pine forest as the dominant tree species accounts for 25.09% of
the forest area in Anhui Province. According to the ninth national forest resource inventory
statistics in China, the coniferous forest area in Anhui Province accounts for 27.29% of
the total forest area in the province. Therefore, this paper took the distribution area of
coniferous forest in the study area as the potential adaptive area for PWN to conduct PWD
monitoring and disease analysis.

2.4.1. Data Analysis and Selection

GlobeLand30 land cover data, as a product with high classification accuracy among
the global same-type data, has been cited by many organizations [21]. In this study, the
forests in the primary type of GlobeLand30 land cover data were used as the basis for
information coniferous forest extraction. The range of forests in Anhui Province in 2020 is
shown in Figure 3.
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Figure 3. GlobeLand30 woodland range map of Anhui Province in 2020.

Based on the forest range in the GlobeLand30 land cover data in 2020, the vegetation
sample points were selected on Google Earth Pro and uploaded to the GEE platform.
The monthly mean information of the changes in the time-series of vegetation indexes of
different forest types in 2020 was extracted based on Landsat 8 images, the forest types
in the study area were divided into coniferous forest and other forests. The selected
characteristics of sample points are shown in Table 1.
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Table 1. Interpretation characteristics of forest types from Google Earth Pro high-definition images.

Forest Types Example Description

Coniferous forest
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The commonly used vegetation index is mainly composed of the difference and ratio
of the reflectance of the red band and the near-infrared band, so as to excavate the important
information hidden in vegetation, which can more comprehensively reflect the condition of
vegetation coverage and growth. There have been many studies on forest type classification
through vegetation index. Considering the objective of this study is to extract coniferous
forest areas, and combined with the various characteristics of different vegetation indices,
this paper selected five indices, Normalized Difference Vegetation Index (NDVI), Difference
Vegetation Index (DVI), Ratio Vegetation Index (RVI), Soil-Adjusted Vegetation Index (SAVI)
and Land Surface Water Index (LSWI), to construct the coniferous forest extraction index.
See Table 2 for details.

Table 2. Vegetation indices for extracting coniferous forest.

Index Formula Reference

NDVI NDVI = NIR−RED
NIR+RED Rouse et al. [22]

DVI DVI = NIR− RED Demetriades et al. [23]

RVI RVI = NIR
RED Pearson et al. [24]

SAVI SAVI =
(

1.1− SWIR2
2.0

)
∗ SWIR1−RED

SWIR1+RED+0.1
Huete et al. [25]

LSWI LSWI = NIR−SWIR1
NIR+SWIR2 Maki et al. [26]

Note: NIR, RED, SWIR1 and SWIR2 represent the reflectivity of near-infrared band, red band, shortwave infrared
band 1 and shortwave infrared band 2, respectively.

2.4.2. Extraction of Vegetation Index Time-Series Data

Different forest types will show different characteristics as time changes, so the time-
series data of vegetation index can be used to identify forest types [27]. On the basis of forest
range, the GEE cloud platform was used to calculate the monthly values of NDVI, DVI,
RVI, SAVI and LSWI in 2020 for 2000 samples points of two forest types in Anhui Province
using expression function.Ee.Reduce.mean( ) function was used to process the mean value
of the same vegetation index of the samples in each month, to obtain the monthly mean
time-series spectral curves of NDVI, DVI, RVI, SAVI and LSWI of the two forest types
in 2020, and to find the best time point for coniferous forest information extraction, so as to
build the coniferous forest extraction index and complete the coniferous forest extraction.
The index time-series change curves of different forest types are shown in Figure 4.

As shown in Figure 4, the changes curves of each index of coniferous forest and other
forests were basically consistent. All the vegetation index values showed a trend of first
increasing and then declining. Furthermore, each vegetation index value of coniferous
forest was slightly higher than that of other forests. Anhui Province belongs to the transi-
tional region between warm temperate zone and subtropical zone, and is one of the regions
with a distinct monsoon climate. From north to south, Anhui Province is divided into four
regions: warm temperate zone humid region, north subtropical sub-humid region, north
subtropical humid region and middle tropical humid region [28]. With abundant natural
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resources, the vegetation in this region is growing well. It can be seen from Figure 4 that
each vegetation index shows an overall upward trend from January to April, and the trends
of coniferous forest and other forests are basically consistent. From May to August, there is
no obvious fluctuation in each vegetation index of coniferous forest, while the vegetation
index of other forests witnesses obvious change, forming a trend of first rising and then
falling. It can be seen from the analysis of the change curve of vegetation indices that
the vegetation indices of coniferous forest and other forests are quite different from May
to August. This time-series feature provides a good indicator to distinguish coniferous
forest and other forests, which can be used to construct a new vegetation index extracting
coniferous forest information.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 4. Comparison of five vegetation indices time-series change curves of coniferous forest and 
other forest types. 

As shown in Figure 4, the changes curves of each index of coniferous forest and other 
forests were basically consistent. All the vegetation index values showed a trend of first 
increasing and then declining. Furthermore, each vegetation index value of coniferous 
forest was slightly higher than that of other forests. Anhui Province belongs to the transi-
tional region between warm temperate zone and subtropical zone, and is one of the re-
gions with a distinct monsoon climate. From north to south, Anhui Province is divided 
into four regions: warm temperate zone humid region, north subtropical sub-humid re-
gion, north subtropical humid region and middle tropical humid region [28]. With abun-
dant natural resources, the vegetation in this region is growing well. It can be seen from 
Figure 4 that each vegetation index shows an overall upward trend from January to April, 
and the trends of coniferous forest and other forests are basically consistent. From May to 
August, there is no obvious fluctuation in each vegetation index of coniferous forest, while 
the vegetation index of other forests witnesses obvious change, forming a trend of first 
rising and then falling. It can be seen from the analysis of the change curve of vegetation 
indices that the vegetation indices of coniferous forest and other forests are quite different 
from May to August. This time-series feature provides a good indicator to distinguish 
coniferous forest and other forests, which can be used to construct a new vegetation index 
extracting coniferous forest information. 

2.4.3. Construction of Normalized Difference Forest Index (NDFI) 
According to the results of annual change analysis of different vegetation indices, 

this study combined different vegetation indices at different times to build a new vegeta-
tion index to extract the distribution information of coniferous forests by analyzing the 
best distinction time of each vegetation index of coniferous forest and other forests. It can 
be seen from the annual change curve of vegetation index that although the change trend 
of each vegetation index of coniferous forest and other forest types is nearly the same, 
there are still some differences, mainly due to the differences in leaf structure characteris-
tics and phenological changes of different forest types [29]. Since NDVI can highlight veg-
etation information, and facilitate the differentiation of vegetation, this paper used NDVI 
to participate in construction of the new forest index. At the same time, according to the 

Figure 4. Comparison of five vegetation indices time-series change curves of coniferous forest and
other forest types.

2.4.3. Construction of Normalized Difference Forest Index (NDFI)

According to the results of annual change analysis of different vegetation indices, this
study combined different vegetation indices at different times to build a new vegetation
index to extract the distribution information of coniferous forests by analyzing the best
distinction time of each vegetation index of coniferous forest and other forests. It can be
seen from the annual change curve of vegetation index that although the change trend of
each vegetation index of coniferous forest and other forest types is nearly the same, there
are still some differences, mainly due to the differences in leaf structure characteristics and
phenological changes of different forest types [29]. Since NDVI can highlight vegetation
information, and facilitate the differentiation of vegetation, this paper used NDVI to
participate in construction of the new forest index. At the same time, according to the
vegetation index annual change figure (Figure 4) of different forest types, the reflectivity
of DVI from May to June, NDVI and SAVI from June to July, RVI from June to August
and LSWI from July to August can provide a good differentiation between coniferous
forest and other forests. Therefore, the Normalized Difference Forest Index (NDFI) that
distinguishes coniferous forest from other forests was constructed by using the time-series
change characteristics of each vegetation index. The formula is as follows (Formula (1)):

NDFI =
1
5

[
(NDVI7 −NDVI6)

(NDVI7 + NDVI6)
+

(DVI5 −DVI6)

(DVI5 + DVI6)
+

(RVI8 − RVI6)

(RVI8 + RVI6)
+

(SAVI7 − SAVI6)

(SAVI7 + SAVI6)
+

(LSWI8 − LSWI7)

(LSWI8 + LSWI7)

]
(1)

Among them, NDFI represents the constructed Normalized Difference Forest Index,
and NDVI6, NDVI7, DVI5, DVI6, RVI6, RVI8, SAVI6, SAVI7, LSWI7 and LSWI8 represent
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the monthly mean value of NDVI, DVI, RVI, SAVI and LSWI, in May, June, July and
August, respectively.

In order to better extract the information of coniferous forest, the probability density
curve analysis was conducted on NDFI corresponding to different forest types, which
was the distribution of all sample points of each forest type in NDFI. The frequency of
occurrences of the index values of 2000 samples of two forest types on the NDFI image were
analyzed. The horizontal axis represents the change of the NDFI values, and the vertical
axis represents the frequency of the sample points (as shown in Figure 5). According to the
probability density curve of different forest types, the intersection value of coniferous forest
and other forests curve was calculated as the threshold of coniferous forest information
extraction. The calculation formula is as follows (Formula (2)):

X = (σ1µ1 + σ2µ2)/(σ1 + σ2) (2)

among which X is the discrimination threshold for extracting coniferous forest information,
µ1, µ2 and σ1, σ2 represent the mean value and standard deviation of NDFI of the two types
of samples, respectively.
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As shown in Figure 5, in the NDFI density curve, the best separation threshold value
of coniferous forest and other forests can be calculated by using the intersection value
calculation Formula (2), where the differentiation point of coniferous forest and other forests
is 0.28. So far, the differentiation threshold for extracting coniferous forest information has
been determined and can be used for coniferous forest information extraction.

2.4.4. Coniferous Forest Information Extraction Based on Time-Series Index
Change Analysis

In order to extract coniferous forest information, the forest range in the study area was
first extracted using GlobeLand30’s land cover data. Then, the forest range was divided into
coniferous forest and other forests. After that, the annual change curves of five vegetation
indexes were obtained through the GEE platform, so as to obtain the time-series charac-
teristics of vegetation indices to build a new vegetation index NDFI. Then, classification
thresholds were extracted by establishing probability density curves of different forest
types, from which the extraction of coniferous forest information was completed. The
specific steps were as follows: (1) Uploaded the vector data of GlobeLand30’s land cover
forest range to the GEE cloud platform, and took the forest vector range as the boundary to
obtain the Landsat image of Anhui Province in 2020; (2) The GEE cloud platform was used
to build a cloud removal algorithm to remove cloud and synthesize the Landsat images



Remote Sens. 2023, 15, 360 10 of 19

in the forest area of Anhui Province in 2020 on a monthly basis to obtain the monthly
cloud removal and synthesis images in 2020. According to the vegetation index formula,
monthly images of five vegetation indexes, NDVI, DVI, RVI, SAVI and LSWI, were obtained;
(3) Uploaded two forest type sample points to the GEE cloud platform to extract the sam-
ples corresponding to different vegetation index values and obtain the annual change
curves of five vegetation indexes; (4) NDFI was calculated based on the GEE platform, and
NDFI.gt (0.28) was set according to NDFI threshold to complete the extraction of coniferous
forest information.

2.5. Monitoring Model of PWD Based on Landsat Imagery
2.5.1. Feature Extraction and Selection

Considering the influence of cloud cover on the optical images in the study area and
the onset time of the infected host plants (from late August to early November), this paper
obtained the cloud removal synthetic image of Anhui Province from August to November
in 2021, based on the GEE platform, and extracted the original spectrum of the feature band,
vegetation indices, texture information and topographic features from 614 sample points
obtained from the field survey in Huoshan County, Anhui Province at the end of October
2021. The characteristic parameters were selected by means of analysis of variance (F test)
and importance feature selection, including seven original spectra B1~B7; six vegetation
indexes, including Red-Green Index (RGI) [30], Normalized Difference Vegetation Index
(NDVI) [31], Normalized Difference Moisture Index (NDMI) [32], Moisture Stress Index
(MSI) [33], Normalized Burn Ratio (NBR) [34] and Tasseled Cap Transformation Wetness
(TCW) [35]; eight common texture feature metrics, including Mean (MEA), Variance (VAR),
Correlation (COR), Contrast (CON), Dissimilarity (DIS), Homogeneity (HOM), Second
Moment (SM) and Entropy (ENT); and three topographic features, including Elevation,
Slope and Aspect.

Analysis of variance (ANOVA) was usually used to test the significance of differences
between the mean values of multiple samples, which can be divided into one-factor analysis
of variance (one-way ANOVA) and multi-factor analysis of variance (MANOVA) [36]. This
paper use MANOVA as the first step of feature selection. When the significance of the
variable is less than 0.05, it means that at the 0.05 significance level, the variable has a
significant difference on the occurrence of the dependent variable PWD. This study took
the variables with significance less than 0.05 as the next-step monitoring features. Through
MANOVA, we obtained 47 features in total, including B2~B4, B6 and B7 in the original
spectrum, MSI, NBR, NDMI, NDVI, RGI and TCW8 in the vegetation index, CON65, CON75,
COR65, DIS65, ENT15, ENT75, HOM15, HOM65, HOM75, WEA15, WEA35, WEA45, WEA65,
WEA75, SM15, SM75, VAR15, VAR35, VAR65, VAR75, CON69, CON79, COR29, DIS69, DIS79,
ENT79, HOM69, HOM79, MEA69, MEA79, SM69, SM79, VAR69 and VAR79 in the texture
information, and Elevation and Aspect in the topographic features.

Through the importance metrics of the random forest method, the classification fea-
tures with complex relationships can be ranked, and the relative importance of each feature
to prediction can be obtained [37]. Generally speaking, for the dataset with relatively large
dimension, this method can be used to eliminate the features with relatively small impact in
the dataset, and ensure the training speed as well as the accuracy of the data. The two most
commonly used methods in ranking important features of random forests are permutation
importance and Gini importance. In this paper, based on the results of the variables selected
from the analysis of variance, we used R language to process ranking of Gini importance
features, and further selected the feature variables. In this study, we set the number of
optimal trees (ntree) to 1900, and the number of pre-selected characteristic variables at
the optimal tree node (mtry) to 29. The results of the first 10 important characteristics are
shown in Table 3.
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Table 3. Ranking results of Gini importance features.

Feature Mean Decrease Accuracy Mean Decrease Gini

Elevation 88.20875 38.609919
MSI 38.38783 16.877994
NBR 36.80615 15.824209
B2 47.7794 14.303737

RGI 41.53761 13.566015
NDMI 28.44070 12.623385
Aspect 38.16040 11.632085
COR29 30.11671 9.689533
COR65 25.90826 9.26472
TCW8 29.65953 8.234906

Based on the ranking results of the above important features, this paper selected the
features with an average decreasing Gini value of more than 10, which were the first seven
features, Elevation, MSI, NBR, B2, RGI, NDMI and Aspect to construct the classification
model of PWD. The infected and non-infected sample points in the field survey were
divided into 430 training samples and 184 test samples according to the ratio of 7:3. Based
on the GEE cloud platform, the random forest classification method was used to monitor
the occurrence of PWD in the epidemic areas of Anhui Province.

2.5.2. Construction of Monitoring Model

The key of constructing the pest monitoring model is to find out the indicators that
are sensitive to the infection symptoms of their host plants. At present, there are three
types of forest pest monitoring models, namely, various index model, combined model of
various channel bands, and mixed model of various channels and ecological factors [38]. In
this study, the monitoring model of PWD in the study area was constructed by using the
selected characteristic variables and the random forest classification method based on the
GEE cloud platform, and the monitoring results were analyzed.

Random forest (RF) is a classifier composed of voting mechanisms of different decision
trees. Samples are trained and predicted through multiple decision trees to obtain the
final classification results [39]. The random forest classification algorithm is suitable for
high-dimensional data processing, and because of the use of random sampling in the
classification process, it can reduce the occurrence of the over-fitting phenomenon. At
present, this algorithm has been widely used in remote sensing imagery classification,
artificial intelligence and other fields. Based on Landsat remote sensing imagery combined
with random forest and decision tree algorithms, Huang Fangfang et al. [40] carried out
remote sensing monitoring on PWD of Pinus massoniana in Yiling District, Yichang City,
Hubei Province. The results showed that the random forest classification algorithm with
original spectrum and vegetation index had the best classification results, and the classifica-
tion accuracy reached 80.5%. This research was based on the GEE cloud platform, using
ee.Classifier.randomForest( ) function in the random forest classification algorithm, through
repeated experiments, selected and set the number of decision trees numberOfTrees in the
classifier to 20 at which the classification result was the most stable and the best.

3. Results
3.1. Evaluation of Extraction Accuracy of Coniferous Forest in Anhui Province

This paper used the method of constructing a confusion matrix to evaluate forest
resources classification results in Anhui Province. Using Google Earth Pro software,
1000 coniferous forest sample points and other forests’ 1000 sample points were selected
within the range of forest resources in Anhui Province as verification samples of classifi-
cation results. General classification accuracy and kappa coefficient were analyzed and
calculated (see Table 4).
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Table 4. Accuracy evaluation of classification results.

Forest Type Coniferous Forest Other Forests Total
General

Classification
Accuracy (%)

Kappa
Coefficient

Coniferous Forest 870 130 1000
87.75 0.755Other Forests 115 885 1000

Total 985 1015 2000

As shown in Table 4, the total accuracy of the classification results based on the
constructed vegetation index NDFI in Anhui Province in 2020 reaches 87.75%, and the
kappa coefficient is 0.755. This shows that the classification results have a high accuracy,
and can be used for the extraction of coniferous forest information in this area.

Table 5 shows the coniferous forest area extracted in this paper and the statistical area
of sub-compartments taking pine trees as the dominant tree species, as well as the relative
error between the two. Figure 6 compares the coniferous forest area extracted in this paper
and the distribution area from the sub-compartment survey where the pine trees are the
dominant tree species.

Table 5. Classification area accuracy evaluation.

Year
Area of Coniferous Forest Compartment in

the Forest Management
Inventory (ha)

Area of Coniferous Forest
Extracted in This Paper (ha) Relative Error (%)

2020 1,046,586 963,495 7.93
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Figure 6. Comparison of the extracted coniferous forest area and the distribution area of pine forest
sub-compartments. (a) Area of coniferous forest extracted in this paper. (b) Area of coniferous forest
in Forest Management Inventory.

According to the statistical table and the comparison of distribution areas, the ex-
traction results of coniferous forests are basically consistent with the statistical results of
sub-compartments of pine forests. The statistical area of the sub-compartments is relatively
larger than that of the classification results, and the distribution range is different in some
regions, with a relative error of 7.93%. Considering that the sub-compartment area is the
forest area with pine trees as the dominant tree species, which is generally larger than the
actual pine forest area, this paper believes that the extraction range of the coniferous forest
meets the accuracy requirements, and can be used as the monitoring range of the potential
PWD occurrence area.
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3.2. Monitoring of PWD Based on Random Forest

The results show that the overall classification accuracy of random forest is 81.67%,
and the kappa coefficient is 0.622. On this basis, we continued to complete the monitoring
of PWN epidemic areas in the study area from 2018 to 2021. After the monitoring was
completed on the GEE platform, the results were exported to ArcGIS, and the raster data
was converted into vector data to calculate the annual disease occurrence area and compare
it to the statistical data of the disease occurrence area over the four years. The relative error
evaluation index was used to complete the precision evaluation of the disease monitoring
results over the years. See Table 6 for accuracy evaluation of the monitoring area over the
years and Figure 7 for classification of monitoring results.

Table 6. Accuracy evaluation of monitoring area over the years.

Year Statistical Area (ha) Monitoring Area (ha) Relative Error (%)

2018 20,820 26,871 29.06
2019 110,000 137,772 25.24
2020 101,333 128,142 26.45
2021 92,700 115,274 24.35
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As shown in Table 6, the relative errors in 2018, 2019, 2020 and 2021 are 29.06%, 25.24%,
26.45% and 24.35%, respectively, and the precision is higher than 70%, which can be used as
the basis for focal monitoring of PWD epidemic areas. The monitoring areas are larger than
the statistical areas over the four years, which may be due to the fact that the monitoring
data source of this paper uses Landsat images which have a lower spatial resolution of
30m. In addition, during the monitoring process, this study sticks to the rule that if there is
infected wood in the pixel, the entire pixel is the infected area, so the monitoring results are
larger than the statistical results.

In 2017, China began to implement the forest leader system reform. Anhui Province
gradually established a complete forest leader system, ensuring the optimal allocation of
resources in terms of manpower, technology and equipment, which plays a crucial role in
the prevention and control of PWD. According to the monitoring results of PWD in Anhui
Province as shown in Figure 7, from 2018 to 2021, the disease occurrence areas showed a
downward trend as a whole, and the distribution of epidemic areas gradually changed from
local aggregation to discrete type. In September 2018, the Anhui Provincial Government
launched a special campaign to control PWD, fully implementing the prevention and
control idea of taking clearing and cutting infected trees as the core and managing the
source of infected trees as the root. Due to the timeliness of the achievements of the special
campaign to kill PWN, the area and range of the disease in 2018 were the smallest, mainly
in the middle and southeast of Anhui Province. However, because the host plant infected
by PWN first changes its internal physiological parameters, with the external symptoms
having the feature of time delaying, it will not be thorough to only rely on human visual
identification and cleaning of infected trees in a short period of time. In 2019, the disease
was still relatively serious, and the disease occurrence areas expanded from the middle
to the west and south, respectively, with local aggregation distribution. With the gradual
improvement of PWD prevention and control measures, although the range of disease
occurrence areas expanded in 2020, the characteristics of disease occurrence areas changed
from clustered distribution to discrete points distribution. In 2021, the disease occurrence
areas continued to show a decreasing trend.

3.3. Disease Degree Analysis

In order to study the degree of disease, this paper, based on the monitoring results,
classified the degree of disease according to the infected area of PWN in the grid and
the infection rate obtained from the total area of coniferous forest. Before disease degree
division, the grids were constructed in ArcGIS based on coniferous forest. Considering the
size of the study area and other factors, the grid size was set to 10 km × 10 km. Then, the
vectorized classification results of each year were imported into ArcGIS for classification
post-processing. We calculated the infected area of each spot and removed the small spots
caused by the salt-and-pepper phenomenon based on pixel classification, then merged
the adjacent spots. Then we overlaid the grids and the classified spots of each year, and
counted the ratio of the area of infected spots to the area of coniferous forests in each grid,
then completed the disease degree division according to the ratio (as shown in Figure 8).

According to statistics, the range of infection rates of PWD in 2018, 2019, 2020 and
2021 were 0~67%, 0~59%, 0~47% and 0~35%, respectively. In this paper, they were divided
into four categories: healthy/asymptomatic, light, moderate and severe. According to the
grading map of PWD degree, in 2018, there were a small number of diseases with severe
degree in the middle of Anhui Province, while healthy/asymptomatic and light degree
accounted for the majority. In 2019, except for a small number of moderate diseases in the
southwest and south part of Anhui Province, other regions showed healthy/asymptomatic
and light distribution. In 2020, the disease grade was healthy/asymptomatic and mild,
mainly distributed in the southwest of Anhui Province. In 2021, the health/asymptomatic
degree was the main level, indicating that with the provincial government’s efforts to
prevent and control PWD, great achievements have been made.
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PWN is a destructive disease of pine trees, and its rapid propagation is an important
cause of death of pine trees [41]. With the increasing potential adaptability of PWN in
China in recent years, the host plants of PWN have gradually expanded from dozens of
pine forest trees such as Pinus massoniana and Pinus densiflora to other non-Pinus coniferous
trees [42]. In this study, the forest types in the GlobeLand30 land cover were taken as the
forest range of the study area. Based on the GEE cloud platform, through the study of the
time-series characteristics of the annual change curve of five vegetation indexes, NDVI,
DVI, RVI, SAVI and LSWI, we found that the reflectance values of different vegetation
indexes of coniferous forests and other forests were significantly different from May to
August. Using this feature, a new vegetation index NDFI was constructed based on different
vegetation indexes. By means of probability density curve analysis, the differentiation
threshold of NDFI is 0.28, which is used for information extraction of the host plant range.
The results show that the overall accuracy of coniferous forest information extraction
results reaches 88.75%, kappa coefficient is 0.755, showing the extraction method is quite
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effective. The method of constructing a new vegetation index has a certain portability.
Liu et al. [43] established hyperspectral vegetation index and differentiation equation of
wheat dry-hot wind damage level index according to the spectral range of EOS/MODIS
visible light channel by constructing RVI, NDVI, PVI, DVI and other vegetation indexes.
The results showed that the reflectance spectra of spring wheat with different degrees
of dry-hot wind damage were significantly different, which provided a basis for remote
sensing monitoring and assessment of spring wheat dry-hot wind damage. Zhang et al. [44]
combined the mechanism of nitrogen movement between different functional leaves of
rice, and built a red edge curve shoulder angle vegetation index (RSAVI) based on the
red edge position and the red edge slope to monitor the nitrogen nutrition status of rice.
He analyzed the correlation between nitrogen content and RSAVI at different growth
stages. The results showed that RSAVI was significantly correlated with leaf nitrogen
content, and the correlation coefficient was between 0.867 and 0.938, the models all passed
the 0.01 level test. The study shows that it is feasible to use RSAVI to estimate rice nitrogen
nutrition. According to the information extraction results of the coniferous forest and the
statistical data of the area and distribution range of the pine forest, the extraction results of
the coniferous forest are basically consistent with the statistical distribution range of the
sub-compartments of the pine forest, and the relative error of the area is 7.93%, which is
completely available in PWD monitoring practice at province level.

4.2. Practicability and Popularization of Periodic Monitoring of PWD

Global climate change has a tremendous impact on all aspects of society and na-
ture [45], PWD has caused great damage to the pine forest resources in China, so timely
and effective control of the spread of PWD has become the working focus of governments
at all levels. With the development and application of remote sensing technology and
artificial intelligence, intelligent remote sensing monitoring with remote sensing technology
as the platform and artificial intelligence technology as the core has become a feasible and
high-precision automatic monitoring method for PWD. In view of the widespread range
of PWN and the high requirements for monitoring accuracy, the multi-platform remote
sensing monitoring method of PWD with satellite wide area survey, UAV regional detailed
survey and artificial ground verification as the main line has become one of the impor-
tant research methods of PWD control [46]. In this study, various classification features
were extracted through GEE cloud platform, and seven classification features including
Elevation, MSI, NBR, B2, RGI, NDMI and Aspect were selected after feature evaluation
by using MANOVA and importance feature ranking. The monitoring model of PWD was
established using random forest classification algorithm based on the extracted coniferous
forest range. The overall classification accuracy is 81.67%, and the kappa coefficient is 0.622.
Analyzing the temporal and spatial variation characteristics of PWD degree in the study
area by grid division, the study found that from 2018 to 2021, the occurrence area range
of PWD gradually changed from aggregated distribution to discrete distribution. The
overall disease degree gradually decreased, while the proportion of healthy/asymptomatic
and mildly infected areas gradually increased, showing that the government has made
great achievements in coordinating the prevention and control of PWD. The value and
significance of this study is that medium resolution satellite remote sensing can achieve
regional monitoring periodically at low cost. Although it cannot achieve the high accuracy
of UAV monitoring, it can find suspected disease areas in a large range through repeated
observation data in a short period, providing a basis for airborne fine monitoring, which is
practical and promotional.

5. Conclusions

This paper took Anhui Province as the study area, a large area of which was suffering
from PWD. We used Landsat continuous multi-year vegetation index data to establish a
new vegetation index NDFI to extract coniferous forest information in Anhui Province
for its disease prevention and control. With the support of a big data processing platform
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and long time-series vegetation index remote sensing data in field investigation, spatial
analysis technology and machine learning technology, we realized the identification of
PWN host plants and the construction of disease monitoring model, and analyzed the
characteristics of spatial and temporal changes of PWD level in the study area. It provides
a feasible application scheme for the monitoring, prevention and control of PWD using
satellite-borne remote sensing technology.

In recent years, many scholars have conducted a lot of research on the characteristics,
mechanism and dynamic spread of PWN, and made great progress in theory and practice,
which has played an important role in providing decision-making support for government
departments. There is no denying that the spread of PWD is a complex problem of
interaction between human beings and the environment, and its scientific research still
faces many difficulties and challenges. For example, for a long time, early recognition
of PWD from remote sensing images, ‘early’ definition and real-time dynamic spread
monitoring of PWD have been the expected goals of scholars, but the effect of remote
sensing information recognition is not very ideal at present. The realization of fine early
identification of PWD and real-time dynamic spread monitoring can greatly improve the
accuracy and efficiency of monitoring PWD, and will provide more powerful support for
national economic construction. Therefore, comprehensive research based on multi-scale
and high-precision remote sensing big data will be an essential direction in the study of
spatial patterns of PWN in the future.
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