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Abstract: Debris-covered glaciers have contrasting melting mechanisms and climate response pat-
terns if compared with debris-free glaciers and thus show a unique influence on the hydrological
process. Based on high-resolution satellite images and unpiloted aerial vehicle surveys, this study
investigated the dynamic changes of Zhuxi Glacier, a thick debris-covered glacier in the southeastern
Tibetan Plateau. Our result shows that the whole glacier can be divided into the active regime and
stagnant regime along the elevation of 3400 m a.s.l. The mean surface velocity of the active regime
was 13.1 m yr−1, which was five times higher than that of the stagnant regime. The surface-lowing
rate of this debris-covered glacier reaches more than 1 m yr−1 and displays an accelerating trend. The
majority of ice loss concentrates around ice cliffs and supraglacial ponds, the ablation hotspots. These
hotspots can be roughly classified into three types, including persistent, expanding, and shrinking
patterns, at different dynamic regimes on the Zhuxi Glacier. With the evolution of these hotpots and
glacier dynamic changes, the supraglacial ponds showed significant change, with the total number
fluctuating from 15 to 38 and the total area increasing from 1128 m2 to 95790 m2 during the past
decade. The recent exponential expansion of the proglacial lake and the significant downwasting of
stagnant ice inside the dammed terminus moraine possibly trigger the glacial lake outburst flood and
thus threaten the security of livelihoods and infrastructure downstream.

Keywords: debris-covered glacier; unpiloted aerial vehicle; ablation hotspot; moraine-dammed lake

1. Introduction

Debris-covered glaciers, which have extensive large rock debris covering most of the
ablation area, are mainly distributed in Alaska, southwest Asia, and Greenland and are
commonly found in high mountains [1,2]. The debris on these glaciers is mainly from the
slope sliding on both sides of the glacier and the upwelling of inside moraine by ice flow [3].
Debris cover alters the glacier dynamics by changing surface albedo, thermal conductivity,
and surface roughness [4–6]. The thin debris cover can enhance the surface melting by
absorbing more energy. When the debris thickness is greater than a certain thickness
(~10–30 mm), the debris will block the conduction of surface heat, thereby inhibiting the
underlying melting [7,8]. Compared with debris-free glaciers, such debris-covered glaciers
have distinct characteristics, including ablation rates, surface topography, and response
mechanisms to climate change [9–11].

Due to the heterogeneous sub-debris ablation, supraglacial lakes and ice cliffs are,
therefore, popularly developed on debris-covered glaciers [12]. These landforms responded
rapidly to the ablation and terminus retreat [13–16]. The ice cliffs and supraglacial lakes gen-
erally have larger melt rate than those with thick debris, acting as ablation hotspots [17–19].
The ice cliff area of the debris-covered Ngozumpa glacier in the south slope of Mt Everest
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accounts for about only 5% of the total glacier area, but the mass loss contribution from
ice cliffs reaches to as high as 40% of the total [20]. Generally, the ice cliff and supraglacial
ponds spatially co-exist. Approximately 77% supraglacial lakes have adjacent ice cliff one
the debris-covered glaciers in Mt. Everest [21].

Ice cliffs and supraglacial ponds change dynamically on debris-covered glaciers. They
usually retreat a long distance or have significant volume change within a few weeks
or months [20,22]. The mass loss and lifespan of an ice cliff is largely depending on its
aspect. In the Northern Hemisphere, south-facing ice cliffs tend to rapidly melt to disappear
within a few weeks due to more solar shortwave radiation receipts, while less melt for the
north-facing ice cliffs and thus retreat persistently [23]. During the ablation season, the
supraglacial ponds are replenished by meltwater, thereby rapidly expanding in area [24].
These supraglacial lakes may also drain rapidly within a few weeks by connecting englacial
conduits [14]. The rapid retreat of debris-covered glaciers often results in the formation or
expanding of moraine-dammed proglacial lakes at its terminus [25] and thus pose the risk
of glacier lake outburst floods (GLOF).

High Mountain Asia (HMA) is the most concentrated area of debris-covered
glaciers [26,27], especially in the Himalayas and southeast Tibetan Plateau (TP). Previ-
ous research is mostly concentrated on the south slope of Mt. Everest region in the
Himalayas [1,12,14,20,28,29]. The southeastern TP is another concentration regime of
debris-covered glaciers in HMA [27,30], but few studies focus on the dynamic change of
debris-covered glaciers [31,32]. Due to the abundant precipitation from the Indian summer
monsoon and high mountain topography, the southeastern TP has a large number of tem-
perate glaciers with high accumulation and ablation, and 16.9% glacierized area is covered
by debris [27]. Temperate glaciers in this region are very sensitive to climate change and
have suffered from significant ice loss in the recent two decades [33–35]. The presence of
debris cover, ice cliffs, and supraglacial lakes complicated the climate response of temperate
glaciers in this region [19]. The variation of surface elevation and surface velocity affects the
development of ablation hotspots. Meanwhile, different kinds of ablation hotspots further
control the morphological changes of the debris-covered glacier. Some ablation hotspots
possibly turn into proglacial lakes with the potential risk of GLOF. The study on glacier
dynamic changes by using high-resolution data, especially for the evolution of ablation
hotspots and supraglacial lakes, is essential for understanding the distinct response of
debris-covered glaciers to climate change in the southeastern TP.

High-resolution unpiloted aerial vehicle (UAV) systems are being increasingly used
in glaciological studies worldwide, partly because they can overcome many of the short-
comings associated with both satellite remote sensing and in situ measurement. Compared
with conventional in situ field measurement, the UAV flying technique is more flexible
and low-cost. In addition, compared with satellite remote sensing, the images obtained by
UAV have the advantages of high-resolution, free acquisition time, and friendly weather
requirements [17,36,37]. Based on the images taken by UAV, the Structure from Motion
(SfM) technique is used to generate high-resolution digital orthophoto maps (DOMs) and
digital surface models (DSMs) [38]. This method has popularly been used in glaciological
research, particularly for debris-covered glaciers [22,23,28,39–41].

In this study, different datasets including satellite images and UAV surveys are used
to investigate the dynamic changes of Zhuxi Glacier, which is a thick debris-covered
glacier in the southeastern TP with an expanding proglacial lake and is closed to the dense
population and important infrastructure downstream (e.g., the Sichuan–Tibet road and
planned railway). The main goals of this research are (a) to clarify the spatial pattern
of glacier dynamics including surface elevation and surface velocity, (b) to quantify the
development of ablation hotspots, (c) to discuss the possible risk of the expanding proglacial
moraine-dammed lake in the Zhuxi Glacier.
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2. Study Site

The Zhuxi Glacier (29◦59′N, 95◦30′E) was located in the southeastern TP, where 8.3%
of glacierized area are covered by debris and the mean debris thickness is approximately
0.18 m [42]. Zhuxi Glacier is a thick debris-covered valley-type glacier with an area of about
15 km2. It flows northeast from 5236 m a.s.l. to 3133 m a.s.l. at its terminus (Figure 1). The
glacier tongue below 3800 m a.s.l. is covered by thick debris, accounting for about 37.5% of
total glacierized area. The debris-covered tongue has a gentle slope about 4.3 degrees. The
upper part above 3800 m a.s.l. is accumulation zone with the supply from frequent snow/ice
avalanches. The slope rises to about 30 degrees in upper part (>3800 m a.s.l.), and the
coverage of debris decrease to bare ice with altitude. Compared with other nearby debris-
covered glaciers, e.g., 24 K Glacier and Hailuogou Glacier [10,43,44], the debris on Zhuxi
Glacier is thicker with the mean value of more than 2 m (observed from the exposed debris
layer). Due to the thick debris cover, the surface of Zhuxi Glacier is rugged accompanied
by many ice cliffs and supraglacial ponds, which accounts for about 0.5% total area of
debris-covered region. Some shrubs are developed on thick debris-covered area. Compared
with other debris-covered glaciers in the south-slope Himalayas [1,12,14,20,28,29], Zhuxi
Glacier have much lower elevation, higher air temperature [32]. According to the automatic
weather station located in Zhuxi village (Figure 1), the mean annual temperature and
annual total precipitation were 8.4 °C and 768 mm, respectively.
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Figure 1. (a,b) The location of Zhuxi Glacier with the extent of the UAV survey in 2017 and 2020/2021,
the distribution of debris-covered and debris-free areas, and supraglacial ponds, as well as the rivers,
contours, watershed, and villages nearby. The background image in (a) is a Planet 4-band image
acquired in 2020. (c) The panorama photo taken in 2020.

3. Data and Method
3.1. Surface Elevation Changes Based on Satellite-Derived DEM Difference

In this study, the comparison between the Shuttle Radar Topography Mission (SRTM)
Digital Elevation Model (DEM) acquired in 2000 and the ZY-3 DEM in 2016 is used to
derive the surface elevation change of Zhuxi Glacier during the period of 2000–2016. The
SRTM DEM is a 30 × 30 m resolution global DEM dataset generated from the C-band
of SRTM. These data were acquired by the United States Geological Survey (USGS) and
the German Aerospace Center (DLR) in February 2000. The comparing DEM has been
generated from the ZiYuan-3 (ZY-3) three-line-array (TLA) stereo images. The ZY-3 TLA is
derived from the ZY-3 satellite launched by China in January 2012. Each ZY-3 TLA stereo
image includes Nadir, Backward and Forward images with a resolution of 2.5 m, 3.5 m,
and 3.5 m, respectively. Using the Imagine Photogrammetry tool of ERDAS IMAGINE
14 software, high-precision DEM with a resolution of up to 10 m in this area is generated
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based on the above TLA images [45]. To generate reliable DEM, tie points of N, B, and F
images, horizontal control points based on locations of features with Google Earth, and
vertical control points based on the altitude of features with SRTM need to be added. The
number and root mean square error (RMSE) of each tie point, horizontal control point, and
the vertical control point is shown in Table 1.

Table 1. The number of tie and control points with RMSE in DEM generation process of ZY-3 TLA.

Points Number
RMSE/m

x y z

Tie points 35 0.18 0.21

Horizontal control points 17 0.45 0.57

Vertical control points 641 1.90

The generated DEM has a large vertical error in steep slope area. The reason is mainly
due to the shadows and snow coverage on mountains, which makes the tie points and
horizontal control points mostly located in plains of valleys where have no disturbance of
shadows and snow instead of steep slope mountain area. To further improve the accuracy
in steep slope area, this research filters out the areas where the height deviation between
the ZY-3 DEM and SRTM DEM exceeds 100 m and perform co-registration where the error
is less than 100 m. This co-registration utilizes the cosine relationship between the elevation
difference and the terrain slope and aspect caused by the horizontal coordinate offsets [46]
and corrects these offsets according to the distribution of the elevation difference by using
the demcoreg tool [47].

3.2. Surface Elevation Changes based on UAV-Derived DEM Difference

To extract the high-spatial-resolution DOMs and DEMs, UAV surveys were performed
three times in December 2017, September 2020, and October 2021, respectively. The eBee
Plus fixed-wing UAV system was used in the 2017 flight. This UAV has a built-in Real-Time
Kinematic (RTK) technique, with a manufacturer-stated horizontal accuracy of 3 cm and
vertical accuracy of 5 cm. The flight time of this survey is selected as 10:00–11:00 when
the sky is clear and there is no fresh snow and obvious shadows on the glacier surface.
The 2017 UAV survey took 476 photos for the area covering approximately 1.5 km2 below
3400 m a.s.l. This high-resolution survey is mainly used for investigating the dynamic
change of ice cliffs and supraglacial ponds in stagnant regimes.

On September 2020 and October 2021, DJI Phantom 4 RTK was chosen to conduct the
UAV survey. This UAV also has built-in RTK with higher manufacturer-stated accuracy
than eBee Plus (horizontal accuracy of 1 cm and vertical accuracy of 1.5 cm). The flight
time in 2020 was 15:00–18:00, and total of 343 photos were taken, while the flight time in
2021 was from 11:00 to 15:00, and a total of 380 photos was taken. Due to the larger survey
area and rich vegetation nearby, the signal transferring quality was poor when the drone
was far from the launch site. To solve this issue, two fixed launch sites are set up to cover
the upper and lower part of survey area during these two flights (Figure 1).

The images obtained by UAV surveys were used as inputs for the SfM reconstruction
using the pix4Dmapper software (v. 4.3.31) (Prilly, Switzerland). This method switches
hundreds of images into high-precision optical DOMs, then calculates high-precision point
cloud data and DEM [38]. Due to the different UAV systems and flight altitudes, the spatial
resolutions of DOMs and DEMs are different. The resolution of DOM and DEM derived
from eBee Plus in 2017 is 0.06 m, while the 2020 and 2021 flights derived a spatial resolution
of about 0.15 m.

Due to the shift of RTK base station, the upper part and lower part of DOMs and
UAV-derived DEMs of 2020 and 2021 flight need to process individually. The overlapping
area between the upper and lower areas ware used as the co-registration area. By aligning
the selected ground control points (GCPs) on the DOMs, the horizontal errors of DOMs and
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UAV-derived DEMs in the upper and lower areas were eliminated. After the horizontal cor-
rection, the vertical difference of the upper and lower DEMs were eliminated by minimizing
the elevation difference between the upper and lower overlapping co-registration area.

The co-registration process of DOMs and UAV-derived DEMs in different years is
similar to the above-mentioned co-registration of upper and lower parts of the flights in
2020 and 2021. The differences are the selection of GCPs and co-registration area. All the
GCPs are boulders or bedrock located in off-glacier area. A total of 14 selected virtual
GCPs was used to minimum the different horizontal and vertical errors between three UAV
surveys. The calibration processes are implemented by using ArcGIS 10.5 software. The
flat rubble beach on the north of the glacier terminus and the grassland on both sides of
the glacier (Figure 1) were chosen as off-glacier co-registration areas, these areas show no
change in surface features between 2017 and 2021.

3.3. The Calculation of Surface Velocity

The surface velocity of Zhuxi Glacier was calculated from the PlanetScope One Satellite
4-band images during the period of 2016–2020 and UAV-derived DOMs during the period
of 2020–2021 by using the Co-registration of Optically Sensed Images and Correlation
(COSI-Corr) tool [48]. The COSI-Corr is a software package in Environment for Visualizing
Images (ENVI) software, which can calculate the displacement on remote-sensing images
or UAV-derived DOMs by feature tracking. The COSI-Corr tool has been used widely on
glacier surface velocity calculation [17,49–51]. The COSI-Corr tool generated three images,
which include the north–south displacement, east–west displacement, and signal–noise
ratio. The area where the signal-to-noise ratio is less than 0.9 and outliers were removed.
The blank area was filled by interpolation. The annual surface velocity results during
2016–2021 were obtained by the combination of several annual displacement images of
north-south and east-west.

3.4. The Extraction Process of Supraglacial Lakes

The Rapideye images in 2009–2015 and the PlanetScope One Satellite 4-band images
in 2016–2020 were used to extract the glacial lake area from 2009 to 2020 (Table 2). The
images are collected in October or November, with a cloud fraction of less than 5% and
less snow cover on the glacier surface. The normalized difference water index (NDWI) [52]
uses the ratio of the near-infrared band to the green band on remote-sensing images, which
can significantly distinguish water and non-water bodies. This index has been used in
supraglacial lakes area extraction in the south-slope Himalayas [53–55]. In this study, the
boundary of the supraglacial lakes was extracted by adjusting the threshold of the NDWI
index. Due to the different atmospheric radiation conditions of remote sensing images
at different times, the NDWI extraction threshold of each image is different, generally
ranging between 0.1 and 0.25. Manual inspection was performed to modify inaccurate lake
boundary. The supraglacial lakes with an area of less than 9 m2 were removed.

Table 2. Datasets and the relevant information used for the Zhuxi Glacier.

Purpose Product Type Acquisition Date Resolution

Surface elevation change

C-band Digital Elevation
Model of SRTM February 2000 30 m

ZY-3 TLA stereo images October 2016
Nadir: 2.5 m

Forward: 3.5 m
Backward: 3.5 m



Remote Sens. 2023, 15, 357 6 of 18

Table 2. Cont.

Purpose Product Type Acquisition Date Resolution

Lake area extraction PlanetScope Rapideye

November 2009
November 2010
November 2011
November 2012

October 2013
November 2015

5 m

Lake area extraction
Surface velocity

PlanetScope One Satellite
4-band

November 2016
November 2017
November 2018
November 2019
November 2020

3 m

Surface elevation change
Lake and ice cliff change

eBee Plus survey December 2017 0.06 m

DJI RTK surveys September 2020
October 2021 0.15 m

3.5. Uncertainty

The accuracy of glacier surface elevation change was estimated by calculating the
elevation difference in stable off-glacier areas. Figure 2 shows the histograms of vertical
errors of surface elevation change in 2000–2016 and 2020–2021 with their mean value and
RMSE. The vertical uncertainties of surface elevation change during 2000–2016 mostly
originate from the DEM extraction process from ZY-3 TLA. The uncertainty of surface
elevation change during 2020–2021 is mainly from outliers originating from the vegetation
SfM calculation. The mean value of elevation difference in the stable off-glacier area with
normal distribution by UAV survey is 0.02 m, lower than the elevation difference in the
off-glacier area by satellite images for ~0.05 m.
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The off-glacier area of 2020–2021 surface elevation difference result has higher RMSE
(~0.25 m) than that of the 2000–2016 result (~0.13 m). The much higher resolution of UAV
image (0.06 m, 0.15 m) enlarged the effect of outliers, which exist on the edge of trees and
shrubs. These outliers were filtered in 2000–2016 result under the spatial resolution of 30 m.
Though having larger RMSE, 94.6% vertical errors of elevation change in 2020–2021 lie
within the range of −0.5~0.5 m yr−1, which is accurate enough for the results below.

The uncertainties in lake area extraction mainly comes from the relatively low resolu-
tion of Planet 4-bands images (3 m) and the selection of NDWI threshold, which significantly
affects the extracted lake area. The weather and atmospheric radiation states vary from
image to image, resulting in different NDWI thresholds for extracting lake boundaries in
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each image. The accurate NDWI values corresponding to the lake boundaries needs to
be distinguished with the help of optical images. Meanwhile, the NDWI values of the ice
cliffs next to the glacial lake sometimes fall within the threshold and are mixed with the
shallower water bodies on the lake shore. It is necessary to separate the cliff and lake with
the help of true-color images and clip them manually. Similar to the previous study [55],
the uncertainty is determined by selecting 0.5 pixels boundary of the extracted lake area.

4. Results
4.1. Spatial Patterns of Surface Elevation Change

Figure 3a shows the spatial pattern of mean annual surface elevation changes of Zhuxi
Glacier and their mean altitudinal variation during the period from 2000 to 2016. The
surface elevation change is characterized by a heterogeneous spatial pattern, with several
ablation hotspots (the mean elevation decreases of more than 3 m yr−1) in the middle
section of Zhuxi Glacier. The limited change mainly occurs at the glacier terminus where
was covered by thicker debris, and the mass loss gradually became larger in the middle
zone of ablation area, and then shift to slight mass gain in upper part above the elevation of
3800 m where were supplied by frequent snow avalanches. The average surface elevation
change was −0.93 ± 0.13 m yr−1 during the period from 2000 to 2016.

Figure 3b shows the surface elevation change of Zhuxi Glacier during 2020–2021
based on UAV-derived DEMs comparisons. In contrast to the satellite-derived results
(Figure 3a), the UAV-derived DEM difference provided the high-resolution result for
investigating the detailed surface process. For the region above than 3400 m a.s.l., there
showed alternating pattern of positive and negative surface elevation change with large
standard deviation values (Figure 3b). For the region below 3400 m a.s.l., the thick debris
inhibit the underneath ice melting and substantial surface elevation change mainly occurred
in ablation hotspots characterized by the cliff-pond systems. The area with an surface
elevation change exceeding−3 m yr−1(ablation hotspot regions) only account for about 14%
of the area below 3400 m a.s.l., but the mass loss of which account for about 92.4% of total.
The average surface elevation change of ablation hotspot regions was up to −6.7 m yr−1,
which is 6.6 times higher of −1.01 ± 0.38 m yr−1 for the total area below 3400 m a.s.l. Two
representative area (Area 1 for thick debris-covered area, Area 2 for significant surface
elevation change area) were selected to show their differences on surface elevation change
(Figure 3d). The average surface elevation change of Area 1 was −0.20 m yr−1 whereas
Area 2 was −3.07 m yr−1 in 2020–2021. The largest surface elevation change can reach to
−20 m yr−1 in Area 2. The averaged value in UAV survey area was −1.47 ± 0.25 m yr−1,
which was higher than that of −0.99 ± 0.13 m yr−1 of satellited-derived DEM difference
for the corresponding area during the period of 2000–2016. Apparently, it showed an
accelerated mass loss trend even for this thick debris-covered glacier in the southeastern TP.

4.2. Spatial Distribution of Surface Velocity

The satellite-derived surface velocity of Zhuxi Glacier showed significant spatial
heterogeneity (Figure 4). According to the isopleth with a surface velocity of 7 m yr−1, the
glacier can be divided into an active regime in the upper part and a stagnant regime in the
lower part along the elevation of ~3400 m a.s.l. During 2016–2020, the active regime was
characterized by the dynamic flow with a surface velocity ranging from 7 to 20 m yr−1. In
contrast, the surface velocity in the stagnant regime decreased to the values of 0.6 to 7 m
yr−1, which indicates the stagnant condition in this thick debris-covered zone (Figure 4a).
The mean surface velocity in the active regime (13.1 m yr−1) was about five times higher
than that of the stagnant regime (2.5 m yr−1). The altitudinal pattern of surface velocity
shows an increasing trend, and the maximum surface velocity (19.6 m yr−1) is concentrated
in the elevation of approximately 3450 m a.s.l., which is 2.8 km from the glacier terminus.
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The surface velocity derived from UAV-derived DOMs during 2020–2021 shows a
similar spatial pattern to the satellite-derived velocity (Figure 4b). The active regime
extended more down to the altitude of ~3350 m a.s.l. from ~3400 m a.s.l. in 2016–2020.
The maximum surface velocity (17.8 m yr−1) is located at the elevation of ~3420 m and
2.4 km from the glacier terminus. The mean (7.7 m yr−1) and the maximum (17.8 m yr−1) in
the UAV surveying region were slightly reduced if comparing the corresponding satellite-
derived velocity (mean and maximum of 7.8 and 19.6 m yr−1).
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Figure 4. Spatial pattern of surface velocity of Zhuxi Glacier in 2016–2020 (a) and in 2020–2021 (b),
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standard deviation (blue horizontal bars) in each inset panel. The red beelines indicate the position of
an average surface velocity of 7 m yr−1 and the corresponding altitude. The dividing line showed in
red is the isopleth with a surface velocity of 7 m yr−1.

4.3. The Evolution of Water Bodies

The water bodies of Zhuxi Glacier consist of several small supraglacial ponds and a
large moraine-dammed lake at the glacier terminus (Figure 5a). The supraglacial ponds
are widely distributed in the debris-covered region, ranging from 3800 m a.s.l. to the
terminus. During 2009–2020, the number of supraglacial ponds displayed a large inter-
annual fluctuation, with a minimum number of 15 in 2015 and a maximum of 38 in
2018 (Figure 5b), partly due to the dynamic influence of pond formation and drainage
in the active regimes. The water bodies underwent a significant exponential growth at
an average rate of 13.4% yr−1, with a total area of ~3 × 104 m2 in 2009 but ~9 × 104 m2

in 2020 (Figure 5b). In active regimes (above 3400 m a.s.l.), both the number and area of
supraglacial ponds show less change in the past decade. In contrast, due to the significant
area expansion of the moraine-dammed lake, the total water bodies in the stagnant regime
(below 3400 m a.s.l.) experienced a notably increasing (Figure 5c).

The moraine-dammed lake at the terminus was initially a small supraglacial pond
with a total area of 1128 m2 in 2009, then expanded rapidly to 20,309 m2 in 2016 and to
95,790 m2 in 2021 (Figure 6), which was 85 times the area in 2009 with an exponential
growth rate of 44.8% yr−1. It should be noted that the meltwater stream channel migrated
from the east side of the terminus to the west side in 2017 due to the glacier retreat, which
caused the meltwater to flow into the moraine-dammed lake and significantly enlarged
the lake area since 2018. The accelerated expansion was also contributed by the upstream
retreat of the ice cliff and the downward meltdown of stagnant ice. The detailed process of
lake expansion and its influence will be investigated in the Discussion section.
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Figure 6. (a) The evolution of the moraine-dammed lake at the terminus in 2013, 2017, and 2021,
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acquired in 2021. (b) The annual lake area and its exponential increasing trend (red line) during the
period between 2009 and 2021.

5. Discussion
5.1. The Dynamic Change of Different Type Cliff-Pond Systems

The ablation hotspots in Zhuxi Glacier mainly consists of ice cliffs and supraglacial
ponds, called the cliff-pond systems [14,56]. According to their dynamic evolution and
geographical locations, three representative types of cliff-pond/lake systems were roughly
classified on the whole glacier. These types were the persistent cliff-lake system at glacier
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terminus (named as hotspot A), the expanding cliff-pond system at stagnant regime (named
as hotspot B), and the shrinking cliff-pond system at active regime (named as hotspot C),
respectively (Figure 7). The locations of these three representative types are shown in
Figure 4a.
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Figure 7. (a,b) The photos of hotspot A and hotspot B, taken in October 2021. (c) The point cloud
model of hotspot C originate from UAV flight in December 2017. (d–f) Dynamic change of three
different hotspot system showing the surface elevation change during 2020–2021, the evolution of ice
cliff, the surface flow vectors, together with the selected topographic profiles during 2017, 2020 and
2021 along hotspot A (g), hotspot B (h) and hotspot C (i). The background image is from the DOM
in 2020.

The hotspot A was a persistent cliff-lake system at the glacier terminus characterized
by a north-facing steep ice cliff and an adjacent large moraine-dammed lake (Figure 7a).
The hotspot A was similar to those hotspots defined as the calving termini in the Himalayas,
which play an important role in the rapid expansion of proglacial lakes [57–59]. Under the
calving effect of such proglacial lakes, the ice cliffs retreated significantly [60]. As shown
in Figure 7g, the ice cliff had retreated ~84 m during the past four years, with a total of
~64 m retreat in 2017–2020 and ~20 m in 2020–2021. The long-distance retreating caused
considerable surface elevation change for about ~−15 m yr−1. The corresponding retreated
area was occupied by the lake and therefore expanded the proglacial lake southward. The
calving process consistently changed the geometry of the ice cliff. In 2017, the north part of a
separate ice cliff was split from one complete ice cliff (Figure 7d). When the submerged part
of the ice cliff was carved by the lake, the unsupported ice cliff above therefore collapsed
by expanding the crevasses on the complete ice cliff [60]. This event increased the slope of
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the ice cliff but shrunk the ice cliff area. The collapsed ice cliff is converted to floating ice,
and the rest of the ice cliff will gradually flatten until it collapses again. In 2020–2021, the
ice cliff flattened gradually from a slope of 42.5◦ in 2020 to 39◦ in 2021. In contrast, the cliff
area increased gradually from 3661 m2 in 2020 to 4483 m2 in 2021. The sudden collapse
of a 30 m high ice cliff at the Zhuxi Glacier may create a seiche or displacement wave on
the proglacial lake, which may destabilize or overtop the ice-cored dam. Such a proglacial
cliff-lake system acts as an important potential trigger for GLOF [61,62].

The hotspot B is an expanding circular cliff-pond system located at a stagnant regime
(Figure 7b), characterized by low surface velocity for 2–3 m yr−1. A similar circular cliff-
pond system is commonly found in debris-covered glaciers in the Himalayas [56,63]. The
total exposed area of the ice cliff in hotspot B increased rapidly from 1258 m2 in 2017 to
1705 m2 in 2020, then 3320 m2 in 2021 (Figure 7e), while the slope decreased slightly from
35.2◦ in 2017 to 32.8◦ in 2020 and 2021. The pond area expanded from ~2470 m2 in 2017 to
~5118 m2 in 2021 with the retreating of ice cliffs. The ice cliff retreated in all directions, with
the most rapid retreat in the south-facing part for a total of about 52 m retreat in 2017–2021
but the less ice cliff retreat in the north-facing part with a total retreat of 14 m (Figure 7h).
The cliff retreat caused the corresponding negative surface elevation change of ~15 m in
the south-facing part and ~3 m in the north-facing part. This contrasting change is partly
related to the different aspects of ice cliffs receiving solar shortwave radiation and partly
related to the redistribution of debris cover. In Northern Hemisphere, the south-facing
ice cliffs have enhanced solar radiation receipt, which promoted the backwasting and
flattening process [23,56]. Moreover, under the effect of relatively low slopes and frequent
rockfall, the redistribution of debris-covered ice cliff areas also substantially influenced the
backwasting of ice cliffs [20,28]. In 2020–2021, the south-facing ice cliff was largely exposed,
accompanied by the remarkable backwasting of 30 m. The exposed area in east-facing
and north-facing was reburied; hence, little backwasting and negative surface elevation
change occurred in 2020–2021. The evolution of such kind of cliff-pond system is possibly
controlled by the cliff aspects and their slope change.

The hotspot C was located in the active regime of Zhuxi Glacier, which showed a
shrinking and flattening pattern (Figure 7f). In 2017, this cliff-pond system consisted
of a large and steep south-facing ice cliff and an adjacent supraglacial pond (Figure 7c).
However, the cliff has experienced significant flattening accompanied by the reburying and
backwasting process since 2017. The slope of the ice cliff decreased significantly from 44.5◦

in 2017 to 30◦ in 2021 (Figure 7i). The slope of 30◦ is generally assumed to be a threshold
of an ice cliff that be reburied with debris [64]. The flattening of the ice cliff in hotspot C
favored the debris reburying process, and the total area of exposed ice cliff area was only
2140 m2 in 2021, which was 74.3% smaller than the area of 8318 m2 in 2017 (Figure 7f). The
area of the adjacent pond shrunk sharply from 2890 m2 in 2017 to 1483 m2 in 2021. The
water level of this pond also showed a substantial decrease of about 20 m in 2017–2021
(Figure 7i). The high ice flux was the main controller of the dynamic change of hotspot C.
Unlike hotspots A and B, the region of hotspot C was relatively active with higher surface
flow velocity (8 m yr−1 in upstream and 5.5 m yr−1 downstream). For the upper part of
hotspot C, the more ice flux input and inclined slope led to the positive surface elevation
change for about 2~10 m yr−1. For the lower part, the ice cliff retreated and flattened under
the squeeze of high ice flux input from the upper part, which led to the negative surface
elevation change for about −5~−13 m yr−1 (Figure 7f). The evolution of such a cliff-pond
system is critically linked to the glacier dynamic process of Zhuxi Glacier.

5.2. Comparison with other Glaciers in HMA

The mean surface elevation change of Zhuxi Glacier between 2000 and 2016 was
−0.93 ± 0.13 m yr−1, which is similar to the mass loss of the debris-covered glaciers nearby
(−0.83 ± 0.57 m yr−1 during 2000–2014) [32]. Moreover, our results agree with previous
geodetic results of −0.76 ± 0.19 m yr−1 [35] and −0.96 ± 0.38 m yr−1 [65]. Compared with
the debris-covered glaciers in the south-slope Himalayas [63,66–69], the mass loss of Zhuxi
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Glacier also shows a similar heterogeneous pattern due to the popular existence of the
cliff-pond systems. However, the low density of ablation hotspots leads to relatively less
mass loss contribution than those representative glaciers in the south-slope Himalayas. The
supraglacial ponds and ice cliffs of Zhuxi Glacier only covered ~0.5% total area of the glacier
tongue. For the debris-covered glaciers, e.g., Shalbachun Glacier (10.2 km2) and Lirung
Glacier (6.5 km2) in Langtang catchment, the thinning rates were −1.30 ± 0.20 m yr−1 and
−1.67± 0.59 m yr−1 in 2006–2015, respectively [63]. The supraglacial ponds and ice cliffs of
the two glaciers covered about 1.5% to 3.7% area of the glacier tongue [56]. However, similar
to other debris-covered glaciers in the Himalayas, Zhuxi Glacier also shows an accelerating
trend of mass loss in recent decades due to the anthropogenic warming trend [53,67], which
increased from −0.99 ± 0.13 m yr−1 during 2000–2016 to −1.47 ± 0.25 m yr−1 during
2020–2021 in our UAV survey area.

According to significantly different patterns of surface velocity and surface elevation
change, the area below 3400 m a.s.l. for Zhuxi Glacier was classified as a stagnant regime.
The stagnant glacier tongue is very common in the Himalayas. Among the 20 debris-
covered glaciers in the south-slope Himalayas, 12 glaciers have a stagnant regime of
3~6 km long and have notable surface velocity changes at the upper border of the stagnant
regime [70]. The surface velocity of the stagnant regime is commonly under 5 m yr−1,
whereas the active regime reaches more than 10 m yr−1 [71]. In an active regime above
3400 m a.s.l., the high surface velocity greatly influenced the surface elevation change
pattern. The area above 3400 m a.s.l. shows an alternating pattern of positive and nega-
tive surface elevation change while the average surface elevation change is still negative
(Figure 3b). Due to the undulating topography and high surface velocity, this feature is
commonly found in many UAV studies on debris-covered glaciers [40,50].

5.3. Rapid Expansion of Moraine-Dammed Lake and Possible Outburst Risk

The rapid expansion of the moraine-dammed lake at the terminus is most distinct from
the Zhuxi Glacier in the past decade, which is sometimes found on other debris-covered
glaciers in the Himalayas [24,25,72,73]. The exponential expansion of the proglacial lake
of Zhuxi Glacier experienced two stages (Figure 6). The first stage is the evolution of a
supraglacial pond into a proglacial moraine-dammed lake before 2017. When the bottom
of the supraglacial pond reached the base of the glacier, it received the meltwater from
upstream and became a base-level lake [25,74] instead of pond drainage with the connection
of a subglacial conduit [14,75]. The base-level lake of Zhuxi Glacier continued expanding
by coalescing other supraglacial ponds and then becoming a proglacial moraine-dammed
lake. Moreover, the second stage is the rapid proglacial lake expansion due to the stream
channel migration. The proglacial stream channel shifted from the east side to the west
side in 2018–2019 (Figure 6a). The input of meltwater contributes to the rapid supraglacial
lake expansion and thus contributes to the rapid ice cliff melting and calving [76]. The
proglacial lake expanded 6.5 times that in 2017, from 14,841 m2 to 95,790 m2 from 2017 to
2021 (Figure 6b).

Such rapid expansion of proglacial lakes poses the risk of dam failure and may trigger
GLOFs [29,77–79]. The dam failures are mainly triggered by some key factors such as the
rock/ice avalanche [80,81], the melt of buried ice in the dam [62], and the increased hydrostatic
pressure [58]. Catastrophic glacier disasters are an important geomorphic process that may
pose a significant threat to communities and infrastructure in high mountains and downstream
regions [81]. The ice cliff in hotspot A was the highest ice cliff among adjacent ice cliffs, which
was about 30 m high (Figure 7a). This ice cliff calved continuously during the period from
2017 to 2021. Under the calving of the subaqueous ice ramp, the unsupported part of the ice
cliff collapses and falls into the lake. The falling part of the ice cliff entering into the lake could
generate displacement wave/seiche, which is capable of overtopping the terminal moraine
when the impulse wave height is higher than the ~21 m moraine dam (Figure 8d) [62,82].
In addition, the instability of the moraine dam also contributes to the likelihood of GLOF.
The proglacial lake of Zhuxi Glacier is dammed by an ice-cored moraine covered with
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vegetation. The surface elevation of ice-core moraine has decreased by 15–27 m from 2020
to 2021 (Figure 8a,d). As the ice-cored dam was eroded, the surface topography greatly
changed during the past five years, and the proglacial lake significantly expanded northwest
downward (Figure 8a,b). Another factor that may trigger the GLOF is the unusual rapid
expansion of proglacial lakes or extreme heavy rainfall, which may increase the hydrostatic
pressure on the moraine-dammed lake. The expansion of the proglacial lake may merge with
other supraglacial ponds, which will suddenly expand the lake area and greatly increase the
possibility of dam failure. For exploring the future development of ice cliffs and glacial lakes
in hotspots A and B, this study made a topographical transection between these two hotspots
(Figure 8c). The south-facing ice cliff in hotspot B retreated ~58 m in 2017–2021, and the ice cliff
in hotspot A has retreated ~84 m. The distance between the two hotspots was only ~337 m
in 2021. If two ice cliffs continue retreating as the mean rate in 2017–2021, the proglacial
moraine-dammed lake of Zhuxi Glacier will coalesce the pond in hotspot B and forms a larger
lake favoring potential GLOF within a decade. The outburst of this expanding proglacial lake
will greatly threaten the local downstream residents in this valley (149 permanent residents in
2021) and the planned Sichuan–Tibet railway, which is constructed about 8 km down away
from the Zhuxi basin.
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Figure 8. The 3-D textured model and surface elevation change of Zhuxi Glacier terminus between
2020 and 2021 (a) and 2017–2020 (b). The DEM profile along the transection of hotspot A and hotspot
B in 2017, 2020, and 2021 (c). The DEM profile along the transection from moraine dam to the valley
bottom in 2020 and 2021 (d).
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6. Conclusions

In this study, the dynamic change of Zhuxi Glacier, a typical thick debris-covered
glacier located in the southeast TP was analyzed in the aspect of surface elevation change,
surface velocity, ice cliff, and water bodies by satellite images and high-resolution UAV
survey from 2000 to 2021.

Our results showed that the Zhuxi Glacier displayed an accelerating trend of surface
lowering in the past 20 years, which increased from −0.99 ± 0.13 m yr−1 in 2000–2016
to −1.47 ± 0.25 m yr−1 in 2020–2021 within the survey region. The mass loss of this
glacier shows high spatial heterogeneity: most of the mass loss occurred on the ablation
hotspots, while thick debris-covered areas showed little surface lowering. According to the
significantly different spatial patterns of surface elevation change and surface velocity, this
glacier was divided into the active regime and stagnant regime along the elevation of 3400
m a.s.l. The mean surface velocity of the active regime was 13.1 m yr−1 from 2016 to 2020,
which was five times higher than that of the stagnant regime. In addition, the contrasting
dynamic condition favors the different hotspots on the Zhuxi Glacier. Three types of
hotspots were roughly classified in this study, which represent the persistent cliff-lake
system controlled by the proglacial moraine-dammed lake, the expanding cliff-pond system
controlled by the aspect of an ice cliff in the stagnant regime, and the shrinking cliff-pond
system controlled by glacier dynamic process such as large ice flux in the active regime.

This study also found the rapid expansion of water bodies of Zhuxi Glacier, especially
the proglacial moraine-dammed lake, during the past decade. This lake exponentially
expanded from 1128 m2 in 2009 to 95,790 m2 in 2021. The expanding lake calved the nearby
stagnant ice, destabilized the ice-cored dam, and brought the possibility of sudden ice cliff
collapse and lake coalescing, which may bring the risk of dam failure and GLOF, then
threaten the residents and infrastructure downstream. A monitoring and early warning
system is therefore recommended to be established in the Zhuxi Glacier. Our continuous
high-resolution satellite observations (synthetic aperture radar, optical images) and UAV
repeated survey will benefit monitoring the dynamic change of cliffs and proglacial lake.
The planned in situ and real-time monitoring system (dGPS, water level monitoring, pho-
tographs, meteorological and seismic observation) will capture the precursors of ice collapse
and glacial lake outburst and raises alarms in advance for downstream communities.
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