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Abstract: The key elements that underpin food security require the adaptation of agricultural systems
to support productivity increases while minimizing inputs and the adverse effects of climate change.
The advances in precision agriculture over the past few years have substantially enhanced the
efficiency of applying spatially variable agronomic inputs for irrigation, such as fertilizers, pesticides,
seeds, and water, and we can attribute them to the increasing number of innovations that utilize new
technologies that are capable of monitoring field crops for varying spatial and temporal changes.
Remote sensing technology is the primary driver of success in precision agriculture, along with other
technologies, such as the Internet of Things (IoT), robotic systems, weather forecasting technology, and
global positioning systems (GPSs). More specifically, multispectral imaging (MSI) and hyperspectral
imaging (HSI) have made the monitoring of the field crop health to aid decision making and the
application of spatially and temporally variable agronomic inputs possible. Furthermore, the fusion
of remotely sensed multisource data—for instance, HSI and LiDAR (light detection and ranging) data
fusion—has even made it possible to monitor the changes in different parts of an individual plant.
To the best of our knowledge, in most reviews on this topic, the authors focus on specific methods
and/or technologies, with few or no comprehensive reviews that expose researchers, and especially
students, to the vast possible range of remote sensing technologies used in agriculture. In this article,
we describe/evaluate the remote sensing (RS) technologies for field crop monitoring using spectral
imaging, and we provide a thorough and discipline-specific starting point for researchers of different
levels by supplying sufficient details and references. We also high light strengths and drawbacks of
each technology, which will help readers select the most appropriate method for their intended uses.

Keywords: remote sensing; crop monitoring; precision agriculture; data fusion; artificial intelligence;
hyperspectral imaging; multi-spectral imaging

1. Introduction

The urgent need to adopt precision agriculture practices that are related to the ap-
plication of spatially variable inputs to improve the efficiency of agricultural production
requires the deployment of accurate and reliable crop monitoring techniques to provide
information on the spatial variation of key agronomic parameters. The world’s popu-
lation is growing at its fastest speed, and researchers have estimated that it will reach
over 9 billion people by 2050 [1]; however, all humankind still relies on agriculture to
provide its most basic needs of food and fiber [2]. As has been reported by the Natural
Environment Research Council [3], the adverse effects of climate change have also begun to
substantially deteriorate agricultural productivity. Therefore, following an earlier remark
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by the technology executive committee of the United Nations Framework Convention on
Climate Change (UNFCCC) (2014) [4], there is an urgent need to quickly embrace emerging
agricultural technologies that are capable of increasing productivity to meet the growing
food demand with minimum inputs while minimizing the adverse effects of climate change.
In response, there is an ongoing global campaign to implement precision agriculture, and
remote sensing technology is a vital element of its success [5]. According to Morisse [6], the
key elements that underpin food security require the adaptation of agricultural systems to
support increased productivity while minimizing the adverse effects of climate change.

The advent of remote sensing technology in agriculture offers a potentially effective
means of extracting “state of the field crop” information to monitor crop growth. One of
the most promising recent advancements in the field is hyperspectral imaging (HSI), which
is a technology that combines spectroscopy and imaging [7]. Whereas imaging provides
the intensity at every pixel of the image, spectroscopy provides a single spectrum, such
that a spectral image provides a three-dimensional (3D) dataset, which is typically called
a data cube. The other earlier technologies include multispectral imaging (MSI) and the
conventional RGB imaging technique. The advancement in spectral imaging technology
and optical sensing has enabled the development of more sophisticated MSI and HSI
devices, with vast applications in agriculture including field crop monitoring [8] and food
quality inspection [9]. The key advantage of spectral imaging in agriculture is that we
can use it to nondestructively extract accurate phenotypic information over a large spatial
range and within a given time frame [10,11]. We can then process this information and
use it for holistic data-driven analyses and for making technical decisions for improving
agricultural productivity [12].

In addition to field crop monitoring, spectral imaging has been extensively applied to
both harvest and postharvest management systems for the purposes of grading and quality
assurance, as well as for evaluating their overall acceptance [13]. Furthermore, researchers
have also shown that HSI has the potential to discriminatively identify grain contaminants,
and especially when they are physically (and sometimes visually) similar, which is a pro-
cess that is burdensome and expensive when using traditional methods [14,15]. As the
physical, chemical, and biological characteristics of food grains typically indicate their
quality and safety [14,16], spectral imaging offers accurate, rapid, real-time, nondestructive,
and nonchemical detection technologies to enhance safety and assure food quality. In
this regard, researchers have conducted numerous grain analysis studies using spectral
imaging, including the color classification of grain [17], virtuousness assessment of wheat
kernels, identification of sound or stained grains [18,19], classification of vitreous and
nonvitreous wheat kernels, and discrimination of wheat classes [18,20].

In this survey, we present a comprehensive review of the various remote sensing
technology applications in agriculture. We place a major emphasis on field crop monitoring
using spectral imaging to provide researchers with one-stop consolidated information on
the topic. We divide the remainder of this article as follows: in Section 2, we provide
an overview of the general theoretical background of spectral imaging for remote sensing
ap-plications in agriculture. In Section 3, we present the data processing approaches
and analyses methods, including the data fusion approaches that are applied in field
crop monitoring. Finally, we highlight the conclusions that we drew from this survey
in Section 4.

2. Theoretical Background

In this section, we present a detailed theoretical background on the topics related to
the application of remote sensing technology in agriculture, with a major focus on the
working principles of the sensors and radiation sources used and the commonly adopted
imaging technology. Additionally, we discuss the key spectral properties of crops that
facilitate the use of remote sensing technology in agriculture.

Remote sensing (RS) technology is the science of acquiring and measuring the infor-
mation of certain properties of phenomena, objects, or materials without coming into direct
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contact with the subject under surveillance [11]. The remote sensing information is carried
by electromagnetic radiation, which travels in space at the speed of light in the form of
harmonic wave patterns at different wavelengths [21]. Fundamentally, the properties of
these objects (or areas), in terms of their associated levels of electromagnetic energy, allow
for their detection, as well as for delineating and distinguishing between them [22]. The
most informative wavelengths in remote sensing cover the visible light (VIS), near-infrared
(NIR), shortwave-infrared (SWIR), far-infrared (FIR), and microwave bands [21]. Although
it is informative for scene analysis, not all this information is visible to the naked eye; there-
fore, researchers have developed dedicated sensors (which we describe in Section 2.1) and
improved them over time to aid in the retrieval of the reflectance radiation from different
scenes of interest.

2.1. Sensors Systems

Remote sensing sensors record data in either analog format, such as aerial photo-
graphs taken from an aircraft mounted with a film camera, or digital format, such as
a two-dimensional matrix (or image) composed of pixels that store electromagnetic radia-
tion (EMR) values recorded by digital cameras/sensors that are mounted on a satellite or
aircraft, which is more common at present [22]. These sensors come in two forms: passive
and active. Passive remote sensing sensors record radiation that is reflected by or emitted
from objects; consequently, they record naturally occurring EMR. Meanwhile, active sensors
emit their own radiation, which interacts with the target object of study and returns to
the measuring instrument [11]. For example, a radio detection and ranging (or RADAR)
system emits artificial EMR towards the target and then records how much of that EMR is
returned to the system by reflection [22].

In general, regardless of the type of sensor deployed, most agricultural remote sensing
sensors are designed to record a specific portion of the electromagnetic radiation (as
described in Section 2.2). Naturally, the sun emits radiation at all wavelengths (termed
solar radiation); however, only a less-harmful portion of this radiation reaches the Earth’s
surface. Radiation at shorter wavelengths is more energetic and thus has greater potential
for harm. The Earth’s surface receives radiation that ranges from a small portion of ultra-
violet (UV) radiation known as near-UV radiation, with wavelengths between 290 and
400 nm, to visible light, with wavelengths between 400 and 700 nm, and near-infrared
(NIR) radiation, with wavelengths between 700 and 1100 nm. In contrast, radiation such as
gamma rays (<0.1 nm), X-rays (0.01–10 nm), middle–extreme-ultraviolet rays (10–300 nm),
shortwave-infrared (SWIR) rays (1100–2500 nm), mid-infrared (MIR) rays (2.5–50 µm),
far-infrared (FIR) rays (FIR) (from 50 µm to 1 mm), microwave rays (from 1 mm to 1 m),
and radio waves (1–30,000 m) are typically filtered before they reach the Earth’s surface.

2.2. Electromagnetic Spectrum

Remote sensing technology depends on the measurement and interpretation of EMR
arrays. This radiation carries specific electrical and magnetic properties. We refer to the
wavelength range that corresponds to the electromagnetic radiation as the electromagnetic
spectrum. We can use the manner of the interaction between the electromagnetic spec-
trum with any material for the qualitative and quantitative analyses of various materials.
Researchers often use the electromagnetic spectrum to analyze the various chemical and
physical properties of food and agriculture materials [23]. The electromagnetic spectrum
ranges from shorter wavelengths (including gamma and X-rays) to longer wavelengths
(including microwaves and broadcast radio waves), as detailed in Table 1. The three basic
factors that define the electromagnetic spectrum are the frequency (f ), wavelength (λ),
and photon energy (E). The frequency refers to the number of cycles per unit time, which
are measured in hertz (Hz) (number of cycles per second). The wavelength refers to the
distance between two successive cycles, which is measured in meters (m), and which is
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inversely proportional to the frequency. The following equations describe the relationships
between the frequency, wavelength, and energy:

f =
c
λ

, (1)

f =
E
h

, (2)

E =
hc
λ

, (3)

where h is the Planck’s constant (6.6206957 × 10−34), and c is the speed of light in a vacuum
(299,792,458 m/s).

Table 1. Broad categorization of the electromagnetic spectrum.

Broad Category Wavelength (m) (Low to High) Frequency (Hz) (High to Low)

Gamma radiation < 10−11 > 3 × 1019

X-ray radiation 10−9 − 10−11 3 × 1017 − 3 × 1019

Ultraviolet radiation 4 × 10−7 − 10−9 7.5 × 1014 − 3 × 1017

Visible radiation 7 × 10−7 − 4 × 10−7 4.3 × 1014 − 7.5 × 1014

Infrared radiation 1 × 10−5 − 7 × 10−7 3 × 1012 − 4.3 × 1014

Microwave radiation 0.01 − 10−5 3 × 109 − 3 × 1012

Radio waves > 0.01 < 3 × 109

Depending on the type of interaction with the object (Figure 1), we can use the elec-
tromagnetic spectrum in different types of spectroscopic techniques to study material
properties. The most applied interaction types for agricultural applications include re-
flectance, where the radiation is bounced back in either regular or irregular directions;
ab-sorption, where the electromagnetic radiation is absorbed by the object (e.g., in photo-
synthesis); transmission, where the object allows the passage of electromagnetic radiation;
emission, where the object emits the electromagnetic radiation that is the result of an energy
state transition (e.g., fluorescence).
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The different categories of electromagnetic spectra (Table 1) have several applications
in agricultural production chains. Although we focus on field crop monitoring in this paper,
we present a brief overview and summary of the general applications of electromagnetic
spectra with respect to the agricultural production value chain. In this article, the value
chain includes in-field operations, product processing, and consumption.
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2.2.1. Gamma-Ray Imaging and Spectroscopy

Gamma rays are quanta or photons of extremely high frequency, low wavelengths,
and high-energy electromagnetic radiation that are emitted from naturally occurring iso-
topes. This radiation is ionizing, and it has high energy and is capable of penetration for
effective irradiation. The radioactive isotopes of the elements that are capable of emitting
gamma radiation are called radionuclides. Most radionuclides naturally occur, except
for potassium (K) and the decay series of uranium (U) and thorium (Th), which produce
gamma rays with sufficient energy and intensity that we can measure them with gamma-ray
spectroscopy [24]. Researchers have found these radionuclides in soils and rocks in varying
amounts. For this reason, gamma-ray spectroscopy is applied in agricultural production
processes to characterize the soil properties for arable farming. Mahmood [25] adopted
proximal gamma-ray spectroscopy to predict several soil properties using windowed and
full-spectrum analysis methods under both managed soil conditions and a conventional
field. Their methods could be used to predict the clay, pH, and total nitrogen with good
precision (R2 ≥ 0.56) in managed soil, whereas they could only be used to predict the
total nitrogen with good accuracy in an organic field. Thus, they concluded that gamma-
ray spectroscopy can be used for soil characterization for which the seedbed condition is
important, although it cannot be used to determine small differences in the soil structure.
Strati [24] also proved the feasibility and reliability of proximal gamma-ray spectroscopy
in the modeling of the soil water content in agricultural fields, considering one case study
on a tomato field. Serafini [25] describes another application of proximal gamma-ray
spectroscopy in precision agriculture for the discernment of the rain water and irrigation
water in soil without any supporting meteorological information.

2.2.2. X-ray Imaging

X-ray radiation, which is similar to gamma radiation, has a high frequency and energy
and low wavelengths, and it is often used for irradiation and plant breeding applications,
as well as for soil property characterization [23]. An example application of X-ray imaging
is in the topographic study of agricultural soils using X-ray fluorescence and gamma-ray
spectroscopy. De Castilhos [26] used energy-dispersive X-ray fluorescence (EDXRF) and
gamma-ray spectrometry data, combined with principal component analysis (PCA), to
characterize the soil chemical properties and analyze the concentration variation within
the topographic sequence and depth in an agricultural field. Researchers have applied
portable X-ray fluorescence imaging to the evaluation of heavy metals in agricultural
soils, including the reported assessment of the heavy metals and soil organic carbon, in
agricultural landfills [27]. According to their results, the method can be used to predict the
soil organic carbon reasonably well (validation R2 = 0.7), without the depth as an auxiliary
predictor. The results of this study are similar to those of [28], except that, in the latter, the
authors integrated arc emission spectroscopy, but with the same aim of carrying out a rapid
risk assessment of the heavy metals in agricultural soils.

With regard to Gamma-ray and X-ray imaging, it is notable that both these remote
sensing applications are limited to only a short distance between the object of interest and
sensing device and for a short time. To avoid confusion with wide area remote sensing,
these methods of sensing are specifically referred to as proximal remote sensing. Although
these techniques are commonly adopted laboratory-based studies, some recent articles
project the future potential their application in the field for monitoring heavy metals in
leaves. For instance, Antenozio et al. [29] demonstrated the suitability of the micro-X-
ray fluorescence (µ-XRF) technique to monitor arsenic (a metalloid that is toxic to living
organisms) accumulation in plants. Moreover, the study performed a detailed analysis at
different stages of the development of the plant and at different plant organs. In addition,
other studies show that proximal sensing techniques are useful for monitoring macro and
micronutrients [30].
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2.2.3. Ultraviolet Imaging and Spectroscopy

The ultraviolet (UV) region of the electromagnetic spectrum is characterized by wave-
lengths that are lower than those of visible light (Table 1). Ultraviolet (UV) spectroscopy
has recently found increasing applications in different fields, such as food and agriculture,
forensic sciences, astronomy, and microscopy [31]. In UV imaging, the viewing of the
surface topology of a material without light penetration is possible, as UV light is absorbed
onto the surface of the material. One of the applications of UV light is for spectroscopic
imaging, for which it is used as an excitation source for the study of a given material
under controlled conditions. Zhao and Nakano [32] divide UV imaging into reflected UV
imaging, which is commonly applied in astronomy and forensic science, and fluorescence
UV imaging, which is commonly used in molecular biology. Although the application of
UV imaging and its mass adoption in agriculture is still a prominent research issue, in
several studies, researchers have demonstrated its vast potential in the areas of agriculture
and food products. Petal et al. [33] demonstrated the potential of a reflected UV imaging
technique for the detection of hidden defects/ruptured tissues on the surfaces of mangoes.

2.2.4. Mid-Infrared Imaging and Spectroscopy

The mid-infrared region has a unique property: it provides us with the ability to detect
biochemical compounds, such as the sugars and acids in leaves, as well as in other materials,
such as corn, jellies, and food supplements [34]. Furthermore, the development and
advancement of Fourier-transform infrared (FTIR) technology has substantially promoted
the use of the mid-infrared region in the agricultural and food industries. FTIR technology,
coupled with other advanced technologies, such as Raman and NIR spectroscopy, has vast
applications in quality, authenticity, and adulteration detection in the food industry [35].
Additionally, mid-infrared imaging has many agricultural applications, including in the
early detection of plant water stress [36], nondestructive qualitative testing of the lambda-
cyhalothrin residues on vegetables [37], and prediction of the daily methane emissions of
dairy cows [38], among other applications.

2.2.5. Thermal Infrared Imaging

Thermal imaging (or infrared thermography) is based on infrared thermal energy,
and it is used to carry out the noncontact detection of surface temperatures by acquiring
thermal variations and converting the thermal spectral reflectance into a visible image [39].
In agriculture, thermal imaging can be used for intelligent irrigation monitoring [40], aerial
monitoring and the quantification of crop abiotic stresses [41], early pest infestation detec-
tion in crop lands [42], and the aerial monitoring and estimation of the evapotranspiration
in agricultural fields [43], among other applications.

2.2.6. Microwave Imaging

Similar to other electromagnetic-spectrum-based imaging systems, microwave im-
aging also represents a series of noninvasive and nondestructive techniques that were
de-signed to sense materials or scenes to retrieve certain physical properties and/or infer
in-formation about the condition of the target under study. Researchers have proposed the
adoption of electromagnetic fields at microwave frequencies for inspecting unknown tar-
gets or scenes [44]. In agriculture, thermal heating based on microwaves can be effectively
used to disinfect food, as well as nonfood materials and soils, and (most importantly)
to kill pests and bacteria. Ghavami [45] used microwave imaging to nondestructively
discriminate between seeded and seedless samples of lemons and grapefruits. Some of the
most recent advancements in microwave imaging techniques in agriculture include the
nondestructive inspection of large-trunked trees (e.g., palms) for disease infection [46], and
nondestructive crop root phenotyping to inspect for possible infections [47]. This research
field has shown great potential in the estimation of the sizes of root tuber crops, such as
carrots, potatoes, and onions, among others; thus, it provides a means of facilitating root
tuber yield predictions.
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2.2.7. Radio Wave Imaging

Radio waves, and particularly in the range from 3 kHz to 300 GHz, are commonly
used in a variety of devices, including air conditioners, computer-related peripherals
(e.g., wireless routers, keyboards, mice), and so on. The design and implementation of
radio-based systems for food and agriculture applications has been advancing in recent
years. Researchers have developed devices that work at low frequencies (e.g., less than
200 KHz) for the inspection of food products as air-coupled ultrasonic systems [48]. They
have also developed technologies that utilize high frequencies (e.g., up to 210 GHz) for the
imaging/detection of the materials in food products. For example, in one case study, the
authors considered the imaging of crickets buried in flour [49]. In recent years, researchers
have taken radio wave imaging in agriculture in various directions, such as underground
soil sensing using subsurface radio wave propagation The present-day state-of-the-art tech-
nology the IoT was made possible through the ease of the networking and communication
using radio waves.

2.2.8. Color and Near-Infrared Imaging and Spectroscopy

To this point, in the various abovementioned applications, the focus has been on
ap-plications that use active-sensor-based systems. However, these technologies are not
frequently used due to the relatively high costs of the artificial generation of the radiation
and safely concerns, and especially in outdoor applications, as they are known to have
harmful effects. Nonetheless, almost all commonly used remote sensing systems in agri-
culture are passive in nature, as they rely on naturally occurring EMR (i.e., radiation that
survives atmospheric scattering and reaches the Earth’s surface), which thus lowers the
associated costs. We present the electromagnetic spectrum regions that are commonly used
in agricultural remote sensing for field crop monitoring in Figure 2. These regions range
from the visible to near-infrared bands (400–2500 nm wavelength range).
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The information associated with each region in the electromagnetic spectrum can
be helpful for a particular purpose for understanding field crops. The visible spectrum
(0.4–0.7 µm) is used for vision-based sensing (i.e., measures to quantify all valuable data ob-
servable by the naked eye), such as chlorophyll studies, green indices, and morphological
analyses of leaves and fruits [50]. Similarly, the infrared region (0.3–100 µm) is used to
extract data that are hidden from the naked eye, such as the plant water content and
stress-related indices [51]. However, the infrared (IR) spectrum that is used in remote
sensing comprises two subcategories, based on the radiation properties: (1) the reflected
IR spectrum (0.7–3.0 µm), which is used for remote sensing purposes in a similar manner
to the visible spectrum; (2) the emitted or thermal IR spectrum (3.0–100 µm), which is
radiation that is emitted from the Earth’s surface in the form of heat energy.

2.3. Imaging Techniques

Spectral imaging combines the conventional imaging and spectroscopic techniques
into one system to produce both spatial and spectral information of a given scene. Accord-
ing to Xu and Mishra [52], this simplifies the simultaneous measurement of the multiple
physical (e.g., size, shape, and color) and chemical (e.g., water, fat, sugar content) charac-
teristics of the target scene(s). Spectral information reveals the spectral signature of the
analyte of interest, which can be spatially visualized in the form of distribution maps.
Spectral imaging data (x,y,λ) (Figure 3), which are also referred to as hypercubes, are
three-dimensional (3D) data, including two spatial dimensions (x rows and y columns) and
one spectral dimension (λ wavelengths). Although the field of spectral imaging has many
inconsistent terminologies, such as spectral imaging and imaging spectroscopy (or imaging
spectrometry), in this article, we use all three of these terms to refer to the same concept.
The two major imaging techniques are multispectral imaging (MSI) and hyperspectral
imaging (HSI).
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2.3.1. Multi-Spectral Imaging

Multispectral imagery is composed of a few image layers of a given scene, with each
layer acquired at a particular section (also called band) of the electromagnetic spectrum [53].
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The most common multispectral sensors have 3–10 spectral band measurements at each
pixel of the produced image. For example, Landsat 8 Operational Land Imager (OLI)
and thermal infrared sensor (TIRS) images consist of nine spectral bands, with a spatial
resolution of 30 m for Bands 1–7 and 9. Sentinel, Landsat, Quickbird, and Spot are well-
known satellites that use multispectral sensors to produce images that are composed of
bands in the wavelength range of 443–2190 nm (that is, from the ultra-blue band (coastal
and aerosol studies) to the shortwave-infrared (SWIR) band) acquired at different spatial
resolutions [54].

In most of the studies in the literature, the authors demonstrate the vast range of MSI
applications in field crop monitoring, including the phenotyping of crop biomasses [55–57],
influence of the reproductive organ (RO) on the crop bidirectional reflectance distribu-
tion function (BRDF) and NDVI [58], estimation of the photosynthetic pigment [58], and
assessment of the nitrogen variability [59], among other applications.

Additionally, multispectral imaging has also been widely adopted in agriculture for
other applications, including seed phenotyping for the purposes of seed variety/species
segregation and/or quality grading [60], soil nutrient estimations in agricultural soils [61],
and the monitoring of the chlorophyll contents in crops [62]. Furthermore, the use of
multispectral imaging has improved the agricultural sector and the utilization of various
cutting-edge technologies, such as machine-learning and big data analyses.

Despite the many MSI applications, there are some shortcomings to MSI technology,
which the authors of [63] examine. One such shortcoming is the low number of discrete
spectral bands that are retrieved to aid studies that extend beyond the plant indices.
Researchers have also had color restoration problems (i.e., RGB representation) when
using MSI due to the overlap of the visible and near-infrared spectral bands [64], among
others. However, MSI remains the most applied technique in remote sensing for field crop
monitoring, compared with HSI, which is because the HSI processing techniques are still
largely under development.

2.3.2. Hyperspectral Imaging

Unlike MSI, which collects a few image layers of the same scene, when spectral images
are captured for narrow spectral bands rather than discrete bands, the system is referred
to as hyperspectral imaging (HSI). These systems include sensors that collect dozens
or hundreds of spectral bands with a wide range of spectral coverages [65]. Moreover,
in several studies, researchers have proven that HSI technology can outperform MSI
in different agricultural-based applications due to its ability to detect and discriminate
between the specific features of objects with several narrow contiguous spectral channels.
For example, in digital soil mapping (DSM) [66–68], HSI yielded more promising results
due to its ability to retrieve extensive spectral signatures. Moriya et al. [69] also report
a better performance for the detection of citrus gummosis with hyperspectral images than
with three-band multispectral images.

Additionally, because HSI acquires an entire spectrum at each point, there is no need to
have prior knowledge of the scene because all the available information in the dataset can
be extracted during the postprocessing and analysis [70]. Furthermore, the latter authors
point out that HIS analyses also take advantage of the structural relationships among the
different spectra in a neighborhood, allowing for more elaborate spectral structural models
for the more accurate analysis and classification of images.

One other problem that is associated with HSI is referred to as “smile” or “frown”.
Spectral smile curves are the spectral distortion to an across-stack wavelength shift from
the central wavelength owing to the change in the dispersion angle with the field position.
This problem is primarily associated with push broom sensors [71], and it is visualized as
a wave shape. Nevertheless, HSI has found comprehensive applications not only in remote
sensing field crop monitoring and other agricultural applications, but also in other fields of
research, such as medical diagnosis [72] and facial recognition [73].
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2.3.3. Approaches to Spectral Imaging
Scanning Systems

Researchers use three main spectral scanning technologies to obtain spatial and spec-
tral information: point scanning, line scanning, and band sequential scanning [74]. Spectral
scanning combines the dispersive spectrometer with raster scanning. As depicted in
Figure 4, point scanning captures one spectral data point at a time, while line scanning
captures a slit of spatial information [75]. However, these two scanning approaches require
a longer period of time to collect the data cubes [74]. Similar to the point and line scan
approaches, band sequential scanning can acquire a high-resolution 2D image one wave-
length at a time. While it allows for the measurement of continuous spectra, the major
limitation of scanning is the high losses at the entrance slit of the spectrometer, which leads
to long acquisition times.
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Snapshot Systems

The snapshot approaches use a matrix of bandpass filters on the detector surface
and spectral systems, which employ a tunable spectral filter in front of a monochrome
imaging camera. The approaches are straightforward and can obtain both the spatial and
spectral information of a scene with one exposure, which makes them superior to the
former methods, as no scanning is required. However, there are three major disadvantages
to snapshot technology: (1) the induced image blurring due to motion artifacts; (2) low
spectral resolution; and (3) a limited number of wavelengths. For this reason, scanning
devices are the most widely used instruments for collecting spectral images [76].

Fourier Transform Spectroscopy

Fourier-transform (FT) spectroscopy is an alternative approach to measuring continu-
ous spectra. It combines a monochrome imaging sensor with an interferometer [77]. The
principle behind FT spectroscopy is that light is split into two collinear delayed replicas, and
a detector is used to measure their interference pattern as a function of their relative delay.
The FT of the resulting interferogram produces the continuous-intensity light spectrum [78].
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FT spectroscopy has many advantages over the dispersive techniques of measuring
continuous spectra, which include the simultaneous measurement of all the wavelengths,
and the increase in the number of photons that reach the sensor, which produces a higher
signal-to-noise ratio. Another powerful advantage is the variable spectral resolution,
which is adjustable, depending on the interests of the individual end user, by varying the
maximum scan delay of the interferometer via software, without affecting the throughput
of the device. FT spectroscopy also has a higher throughput because there are no slits, as
well as a high wavelength accuracy due to the laser beam calibration of the device. Finally,
it allows the user to adjust the spatial resolution independent of the spectral resolution [77].
There are many FT-based spectroscopy devices commonly in use, including the Raman
spectrometer [79] and Hadamard spectrometer [80], and most of them are best suited to
indoor applications (i.e., laboratory and industrial process lines) due to their designs.

Recently, there have been advancements in FT spectroscopy for outdoor applications.
One of the well-known devices is the “Hera Iperspettrale” developed by NIREOS [81]. The
Hera Iperspettrale utilizes a patented common-path birefringent interferometer (CPI) [82]
in combination with a bidimensional CMOS sensor. The CPI is known for overcoming
the limitations of the Wollaston and Savart prism-based imagers, providing negligible
chromatic dispersion and the small geometrical separation between the interfering replicas,
which lead to a high degree of coherence at each pixel and strong interference modulation.
The data cube is measured in the time domain by step-scanning a compact ultra-stable
interferometer in front of the CMOS sensor. The FT at each and every pixel of the image
is then automatically computed with software, which provides the final hyperspectral
data cube. The spectrum at each pixel is a continuous curve; thus, the number of bands
is virtually unlimited and is not defined by the hardware but rather by the software [81].
Its capability of generating a virtually unlimited number of bands makes it superior and
more powerful than most well-known hyperspectral devices, and it is thus more suitable
for increasing the depth of field crop monitoring.

3. Data Processing and Analysis Techniques

In this section, our intention is to expose the reader to the vastly different processing
and analysis algorithms. In this context, data processing refers to the transformation of
raw datasets into valuable and usable information, whereas data analysis refers to the
derivation of the intelligence from the preprocessed data itself (i.e., creating insight and
new information).

3.1. Preprocessing Methods

Every raw remotely sensed data point contains a number of artifacts and errors
due to the working condition of the devices, the effect of the research environment, and
other factors. Correcting such anomalies and/or noises (e.g., abnormal pixels, uneven
bright-ness, unwanted regions, redundant data, etc.) is called preprocessing. These noises,
if un-corrected, introduce incorrect and/or unrelated signals and affect the subsequent
processing. Preprocessing refers to all the actions that are taken prior to the actual data
analysis process. According to Famili et al. [83], a generic way of understanding data
pre-processing is as the transformation T of the raw data vectors Xik to a set of new data
vectors Yij; (i.e., Yij = T(Xik)). In particular, Yij preserves the valuable information in
Xik, eliminates at least one of the anomalies in Xik, and is more useful than Xik. The
valuable information comprises the components of knowledge that exist in the data, such
as meaningful patterns, and the goal of the data analysis is to explore and present this
information in a meaningful manner.

The preprocessing of remotely sensed images prior to image analysis is essential due
to its direct and important influence on the quality of the further analysis, improving the
sub-sequent data-processing efficiency. We introduce the most common preprocessing
methods for solving the abnormalities associated with the spectral images in agriculture in
the following subsections. We also highlight the strengths and weaknesses of each method.
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3.1.1. White and Dark Calibration

White and dark calibration, which is also known as pixel-level image calibration, is
performed to convert the acquired light intensity into standard reflectance/transmittance
values. In laboratory setups, it is also performed to eliminate random noise signals, which
are sometimes referred to as the “dark current” [84]. A standard diffuse reflectance surface
with a specific reflectance and completely blocked camera lens are the most common
techniques used to take white and dark reference images, respectively [85]. To convert the
measured absolute reference values of each pixel to relative reference values after acquiring
the white reference and dark images, we apply the following equation:

R =
Im − Id
Iw − Id

× Rw , (4)

where Im, Id, and Ir are the measured raw, dark, and white reflectance values, respectively.
R and Rr are the calibrated relative reflectance value and reflectance factor of the white
panel, respectively.

3.1.2. Compression of Data Size

As a way of improving the spectral resolution and removing redundant signals,
re-searchers primarily utilize data size compression (i.e., increasing or reducing the di-
mensionality of the data) based on some predefined conditions. Spectral imaging often
results in large-data-dimensional spaces, such as hyperspectral images, with up to several
hundred (or even several thousand or millions in some cases) of pixels. These massive
data cubes call for computationally powerful hardware machines, such as GPU-powered
computers. According to the authors of [86], leaving this large dimensionality unchecked
results in a phenomenon known as the curse of dimensionality (also called the Hughes
effect). As a criterion, when the number of spectral channels is greater than one-third of the
difference in the sample number and classes, then overfitting issues are likely to occur [87].
As a result, spectral data size compression, and particularly spectral dimensionality reduc-
tion, is essential to reducing the overfitting risk, saving storage space, and accelerating
the computation. Many methods are used to achieve the size reduction goal, including
cropping out rows and columns that do not contain useful information, pixel binning, and
feature selection and extraction.

Pixel Binning

Binning is the process used to combine multiple pixel charges collected by several
adjacent CCD pixels in the horizontal, vertical, or both directions into a single larger charge,
which is known as the binned pixel (or superpixel) [88]. For example, take n and m to
be the numbers of pixels that form superpixels in the vertical and horizontal directions,
respectively; the binning process returns a single binned pixel, which increases the signal-to-
noise ratio (SNR) and reduces the computational load [89]. However, pixel binning causes
a loss of the image resolution that is equal to the binning level; thus, there is a tradeoff
between increasing the SNR and losing resolution, for which a decision must be made [90].

Feature Selection and Extraction

To remove the redundant or irrelevant information from the original data, the isolation
of several representative variables or features is essential. In the case of spectral images,
feature selection (FS) is the process of identifying a subset of informative wavebands in
an attempt to reduce the dimensionality and improve the accuracy in the subsequent image
analysis, such as classification or regression, which requires the band selection, which is
a challenging task, and which requires prior knowledge of the data at hand. To avoid
a subjective selection, researchers have developed several mathematically proven methods
to aid in the decision making, which include forward feature selection, Fisher scores, and
ranking. Ranking is the commonly applied technique in spectral FS, as it al-lows for the
sorting of all the wavebands according to certain criteria and the selection of those with
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large weight coefficients. According to the authors of [90], the obtained weight coefficients
can be treated as the loadings for the principal component analysis (PCA) regression
coefficients of calibration models [91], and correlation coefficients between new variables
and targets [92], among others.

In contrast to FS that is aimed at isolating only the representative variables, feature ex-
traction (FE) methods can be used to transform the original data into a new low-dimensional
coordinate system using the original features/variables. Despite the fact that FE methods
require all the original data in the analysis process, unlike FS methods, they still achieve
higher classification accuracy [93]. The transformation of the original data into a new
feature space is performed through projections, such as orthogonal centroid algorithms
(OCAs), projection pursuit (PP), PCAs, minimum noise fraction (MNF), and independent
component analyses (ICAs) [94]. Among these methods, the PCA algorithm is the most
common method for both FS and FE in the preprocessing of spectral images (especially
HSI). In PCA, a multivariate data matrix (X) is transformed into a new coordinate sys-
tem to produce new uncorrelated orthogonal variables, which are referred to as principal
components (PCs) or loadings (W). The PCs are automatically arranged in a descending
order of dominance based on the associated eigenvalues such that the first PC contains the
greatest variance, followed by the second, third, and so on [95]. To calculate the new PC
score matrix (T), we use a mathematical expression: T = WX.

Because most of the useful information is contained in the first few PCs, the removal of
PCs with small variances can eliminate redundant and unnecessary information. However,
useful information and noise cannot be completely separated using PCs; thus, decreasing
the number of PCs can cause the loss of useful information, whereas retaining too many
PCs will retain the noise as well [93]. In the 1960s, researchers proposed solutions, such
as using the eigenvalues according to the Kaiser criterion [96], or the scree test [97] to
determine the number of PCs to retain for further analysis. Kaiser proposed keeping the
eigenvalues equal to or greater than one in order to retain as much useful information as
possible, whereas Cattell proposed the scree test to identify the point at which the smooth
decrease in the eigenvalues appears to the right.

Another commonly used method to minimize noise before size compression is the
spectral derivative categorized under the spectrum pretreatment approaches. The most
commonly applied spectral derivative method is the Savitzky–Golay (SG) derivation al-
gorithm [98], which is a method that uses a polynomial p(x) to approximate the original
spectral curve while minimizing the noise:

p(x) = ∑d
i=0 aixi, (5)

The method uses the concept of a rolling window; thus, the increase in the order of
the polynomial must be accompanied by an appropriate increase in the window width or
else the produced polynomial will simply follow the noise oscillation. One other spectral
derivative algorithm in the literature that minimizes the noise in spectral data is the
Norris–Williams (NW) derivation [99]. Other spectrum pretreatment methods include
multiplicative scatter (MSC) and standard normal variate (SNV), which are generally
categorized as scatter correction approaches [100].

In addition to the abovementioned image calibration, size compression, and spectrum
pretreatment approaches, another preprocessing technique is spectral unmixing (SU). SU
is the procedure by which the measured spectrum of a mixed pixel is decom-posed into
a cluster of constituent spectra (or endmembers) and a set of corresponding fractions or
abundances that indicate the proportion of each endmember present in the pixel [101].
Unlike the abovementioned preprocessing methods, studies in which researchers apply SU
to the analysis of spectral data in agriculture are few.

One other powerful preprocessing method for field crop monitoring is tasseled cap
transformation [102], which was designed to analyze and map the vegetation and urban
development changes detected by various satellite sensor systems. The transformation has
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several advantages, including a reduction in the amount of data from several multispectral
bands to three primary components: brightness, greenness, and wetness (or yellow stuff for
Landsat MSS), as well as a reduction in the atmospheric influences and noise components
in the imagery, which enables a more accurate analysis. A unique characteristic of PCA
is that it can be used to transform the image data into a new coordinate system with
a new set of orthogonal axes. The brightness axis (primary axis), which is statistically
derived, is calculated as the weighted sum of the reflectance of all the spectral bands, and it
accounts for most of the variability in the image. The brightness is influenced by bare or
partially covered soil and other manmade and natural features. The second axis orthogonal
to the first axis is the greenness axis, which is associated with green vegetation, while
the third axis, wetness, is orthogonal to the first two axes and is associated with the soil
moisture, water, and other moist features.

Finally, in addition to the abovementioned classical approaches, image cleaning is
a conventional approach to spectral data preprocessing. Generally, measured images of all
the objects within the rectangular camera’s field of view are retrieved and not just the tar-get
object(s), which means that the image contains other redundant and irrelevant regions.
These irrelevant regions include, among others, the background and labels. Other artifacts
are induced by specular reflection and the environmental and device conditions. There-fore,
dealing with these unwanted pixels and regions is essential, as they can cause incorrect or
unrelated signals and consequently affect the subsequent analysis. The methods that are
used to deal with these artifacts include manual selection, thresholding, image filtering,
and interactive selection [103].

3.2. Analysis Methods

For decades, there have been developments and advancements in the remote collection
of information on and images of the Earth’s surface and the atmosphere using aircraft and
satellites. The collection of this information enables the characterization of the natural
features or physical objects on the ground, the observation of surface areas and objects
on a systematic basis and the monitoring of their changes over time, and the ability to
integrate these data with other information as a decision-making aid. Analyses of remote
sensing data can enhance our understanding of the terrestrial surface or particular areas
of interest in terms of the composition, form, and function. Over the years, the need for
computer-based analyses of remotely sensed image data has been increasing, along with the
increasing volumes and types of digital image data that are available from various platforms
and sensors. Therefore, according to Tüshaus et al. [104], the effective utilization of remote
sensing image data necessitates the construction of an accurate means of extracting the
information that they contain in forms that are relevant to particular applications. In
this section, we survey the most common analysis methods that are relevant to field-
crop-monitoring applications, which include vegetation indices and machine-learning and
deep-learning approaches.

3.2.1. Vegetation Indices

The remote sensing of vegetation using passive sensors provides information on
the electromagnetic wave reflectance from canopies in the form of spectral reflectance
signatures [105]. These signatures carry information about the state, biogeochemical
composition, and structure of a leaf area and/or canopy [106]. Consequently, we normally
calculate vegetation indices (VIs) as the ratio of two wavebands to differentiate an absorbing
feature from a nonadsorbing reference feature. For example, VIs may provide a measure of
the canopy greenness, which is influenced by several biophysical quantities related to the
chlorophyll content and leaf area of the canopy [106].

Multispectral Vegetation Indices

The first vegetation index proposed in the literature was the ratio vegetation index
(RVI) [107]. Vegetation indices are based on the principle that leaves absorb relatively
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more red than infrared light. The major RVI application is for biomass estimations and
monitoring, and usually for those with high-density coverages, as this index is sensitive to
vegetation and can be easily correlated with the plant biomass. According to this study, the
RVI is sensitive to the atmospheric effect when the vegetation cover is scarce (less than 50%
cover), which weakens its representation of the biomass.

Later, the authors of [108] proposed the difference vegetation index (DVI) to determine
the changes in the soil background. Researchers developed several vegetation indices in
the 1970s for different applications, including the normalized difference vegetation index
(NDVI), which is a typical parameter for analyzing ground differences and crop develop-
ment processes. The NDVI quantifies the crop reflectance characteristics by measuring
the difference between the near-infrared and red bands. However, factors such as the soil
brightness, canopy coverage, and shadow affect the NDVI results, so sensor calibration is
required [105]. The NDVI is the most common index, and we mathematically calculate it
as follows:

NDVI =
R + NIR
R − NIR

. (6)

Up to this point, vegetation indices could not account for the atmospheric effects on
the output of the scene analysis. Vegetation indices in which the atmospheric effects are
considered started to emerge in the early 1990s. The first vegetation index in which the
atmospheric effects were considered was the atmospherically resistant vegetation index
(ARVI), proposed by the authors of [109]. This index is effective at reducing the dependence
of the vegetation indices on the atmospheric effects, as quoted in the study. However, with
the advent of UAVs, the effect of the atmospheric influence on the vegetation indices was
substantially minimized, which then led to the emergence of several modified vegetation
indices [105]. Researchers widely apply vegetation indices that are based on UAV remote
sensing in agriculture due to their ability to intensify the visible light and NIR spectral
reflectance differences for improved crop monitoring (Table 2).

Table 2. Spectral vegetation indices for field crop monitoring (three indices considered under each
category and/or sub-category).

Category Type Vegetation Index Name Formula Property Measured References

Basic
vegetation

index

Ratio
Vegetation

index
Ratio vegetation index (RVI) RVI = NIR

R Chlorophyll content [110]

Green Ratio Vegetation Index (GRVI) GRVI = NIR
G Nitrogen content [105]

Chlorophyll index with red edge
(CIrededge) CIrededge = NIR

REG + 1
Chlorophyll content

& Leaf area index [111]

Difference vegetation
index Difference vegetation index (DVI) DVI = NIR − R Chlorophyll content [110]

Green difference vegetation index
(DVIGRE) DVIGRE = NIR − G Chlorophyll content [110]

Red edge difference vegetation index
(DVIRED) DVIGRE = NIR − REG Chlorophyll content [110]

Functional
vegetation

index

Atmospherically adjusted
vegetation

index

Atmospherically resistant vegetation index
(ARVI)

AVRI = NIR−RRB
NIR+RRB

RRB = R − γ(R − B)
- [112]

Green Atmospherically Resistant Index
(GARI) GARI = NIR−G+1.75(B−R)

NIR+G−1.75(B−R)
Chlorophyll [112]

Visible Atmospherically Resistant Index
(VARI) VARI = G−R

G+R−B Biomass [113]

Soil-adjusted vegetation
index Soil-adjusted vegetation index (SAVI) SAVI = 1.5(NIR−R)

NIR+R+0.5
Nitrogen [114]

Optimized soil-adjusted vegetation index
(OSAVI) OSAVI = 1.16(NIR−R)

NIR+R+0.16
Chlorophyll [112]

Modified Soil-Adjusted Vegetation Index
(MSAVI) MSAVI = 1.5(NIR−R)

NIR+R + 0.5 Chlorophyll [112]

Modified
vegetation

index

Normalized difference vegetation index
(NDVI) NDVI = NIR−R

NIR+R Chlorophyll content [115]

Modified simple ratio (MSR) MSR =
NIR
R−1(

NIR
R+1

)0.5
Chlorophyll content [115]

Normalized difference red edge (NDRE) NDRE = NIR−REG
NIR+REG Nitrogen [116]

Note: NIR, Near-infrared; R, Red; G, Green; REG, red-edge; and B, blue are the reflectance bands with wavelengths
of 800–2500 nm, 620–50 nm, 495–570 nm, 700–800 nm, and 450–495 nm, respectively.
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Hyperspectral Vegetation Indices

The abovementioned VIs are mainly suited to MSI, which provides low-resolution
spectral information for fine-scale field crop monitoring. HSI is now available and is
be-coming more popular because it provides hundreds of fine contiguous spectral bands
that range from visible to infrared light. The first proposed HSI-based VIs were the red-
edge-position (REP) VI [117], normalized pigment chlorophyll ratio index (NPCI) [118],
and modified chlorophyll absorption in reflectance index (MCARI) [119], among others.
These VIs have the same working concepts as multispectral-based VIs. However, in recent
years, researchers have made advancements in the newly developed hyperspectral indices
that are based on spectra curve areas and transformed spectra, such as the first-derivative,
reciprocal, and logarithmic transformations.

For example, in order to effectively monitor the LAI of rice, the authors of [120] con-
ducted multiple spectral transformations and vegetation index calculations using hyperspec-
tral data, filtered the characteristic bands associated with the LAI using different processing
methods, established three different models for comparison, and came up with the optimal
monitoring model. According to their results, the correlation between the canopy spectrum
and LAI was substantially improved after the first-derivative transformation.

The authors of [121] estimated the chlorophyll contents of crops from hyperspectral
data using a normalized area over reflectance curve (NAOC). The index is based on the
calculation of the area over the reflectance curve obtained by high-spectral-resolution re-
flectance measurements derived from the integral of the red–near-infrared interval divided
by the maximum reflectance in that spectral region. According to their results, there was
a linear correlation between the NAOC and leaf chlorophyll content. The method offers
a simple way of estimating the leaf chlorophyll from a remote sensing hyperspectral image
in a heterogeneous scene that is characterized by different crop and soil types, without the
need for additional ground measurements. Thus, a single hyperspectral image is enough
to establish a map of the leaf chlorophyll. Other VIs that are suited to hyperspectral images
include those found in [122–125].

3.2.2. Machine Learning

Machine learning is a subset of artificial intelligence that involves the use and/or
development of algorithms and statistical models that can learn from data and improve
their performance over time on a specific task without being explicitly programmed. There
are several different classes of machine learning algorithms, which can be broadly cate-
gorized based on the type of learning they perform: (1) Supervised learning algorithms,
(2) Unsupervised learning algorithms, (3) Semi-supervised learning algorithms, and (4) Re-
inforcement learning algorithms. Furthermore, within these broad categories, machine
learning can be subcategorized (based on the transformation approach used) into linear
and nonlinear transformation regression algorithms (see Table 3).

Linear transformation regression algorithms are a type of machine learning algorithm
that models the relationship between a dependent variable (also known as the response
variable) and one or more independent variables (also known as the predictor variables)
using a linear function. Thus, the model assumes that the relationship between the variables
is linear, which means that the change in the dependent variable is directly proportional to
the change in the independent variable(s).

There are several different types of linear regression algorithms that have been devel-
oped and used in the literature, including:

i. Simple linear regression: This is the most basic type of linear regression, in which
there is only one independent variable. It involves finding the values of the param-
eters that minimize the sum of the squared residuals (the difference between the
observed value and the predicted value) for all observations in the data. It is used
to model the relationship between two continuous variables, such as the prediction
of crop yield based on the different amounts of fertilizer application.
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ii. Multiple linear regression: This is a more general form of linear regression that
allows for multiple independent variables. It is used to model the relationship
between a dependent variable and several independent variables, for instance,
assessing various factors that impact crop yield, such as soil nutrient levels, temper-
ature, and precipitation.

iii. Ridge regression: This is a regularized form of linear regression that introduces
a penalty term for large values of the regression coefficients. It is used to prevent
overfitting and improve the generalizability of the model. Ridge regression is often
used in situations where there are a large number of independent variables, and the
risk of overfitting is high.

iv. Lasso regression: This is another regularized form of linear regression that intro-
duces a penalty term for large values of the regression coefficients. Unlike ridge
regression, which penalizes all large coefficients equally, lasso regression performs
“feature selection” by setting some coefficients to zero, effectively eliminating them
from the model. Lasso regression is often used in situations where there are many
independent variables and some of them are not important for predicting the de-
pendent variable.

On the other hand, nonlinear transformation regression algorithms comprise a ma-
chine learning algorithm that models the relationship between the dependent and inde-
pendent variables using a nonlinear function. This means that the model does not assume
a linear relationship between the variables, and the change in the dependent variable
may not be directly proportional to the change in the independent variable(s). Nonlin-
ear transformation regression algorithms can be more flexible and accurate than linear
transformation algorithms when the relationship between the variables is more complex.

There are also several different types of nonlinear regression algorithms that have
been developed and used in the literature, including:

i. Polynomial regression: This is a type of nonlinear regression in which the relation-
ship between the dependent variable and the independent variables is modeled
using a polynomial function. Examples include quadratic regression (a second-
order polynomial), cubic regression (a third-order polynomial), and higher-order
polynomial regression.

ii. Exponential regression: This is a type of nonlinear regression in which the relation-
ship between the dependent variable and the independent variables is modeled
using an exponential function. Examples include linear exponential regression,
logarithmic exponential regression, and power exponential regression.

iii. Logistic regression: This is a type of nonlinear regression that is used for binary
classification, where the dependent variable can take on only two values (e.g., 0 or
1). It is used to model the probability regarding whether a given phenomenon is
true (e.g., the probability that an image pixel belongs to a certain class).

iv. Neural networks: These are a type of nonlinear regression algorithm that are
based on the structure and function of the human brain. They consist of multiple
interconnected “neurons” that can learn complex relationships between the input
variables and the output variable.

v. Kernel regression: This is a type of nonlinear regression that uses a kernel function
to model the relationship between the dependent variable and the independent
variables. It is often used in situations where the data are not linearly separable.

vi. Gaussian process regression: This type of nonlinear regression uses a Gaussian pro-
cess to model the relationship between the dependent variable and the independent
variables. It is a Bayesian approach that can be used to model complex, nonlinear
relationships and make probabilistic predictions about the output variable.
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There are many applications of machine learning in various agricultural disciplines.
For example, in the field of crop monitoring, machine learning algorithms can be used
to analyze data from remote sensing technologies, such as satellite imagery and spectral
imaging, to predict and monitor various crop characteristics, including yield, quality, and
pests and diseases. Machine learning algorithms can also be used to optimize irrigation
and fertilization strategies, or to improve the efficiency of precision farming techniques.

Remotely sensed data processing and analysis have been greatly enhanced with the
development of machine-learning (ML) approaches due to their ability to handle both linear
and nonlinear problems [126]. In general, their main areas of application are classification,
clustering, regression, and dimension reduction [127]. Specifically, agriculture has substan-
tially benefited from the intrinsic capabilities of ML to enhance on-farm activities, such as
field crop monitoring [128,129]. Machine learning comprises algorithms that are capable
of learning from data without being explicitly programmed. In this section, we present
a detailed discussion on the three broad categories of machine learning: unsupervised,
supervised, and reinforcement learning.

Table 3. Most common machine learning approaches to hyperspectral image analysis for field
crop monitoring.

Algorithm
Name Learning Transformation

Approach Sample Studies Performance References

Support
vector

machine
Supervised Nonlinear

Support Vector Machines for crop/weed identification in
maize fields 93.1% [130]

Quantification of Nitrogen Status in Rice by Least Squares
Support Vector

Machines and Reflectance Spectroscopy
94.2% [131]

Detection of scab in wheat ears using in situ hyperspectral
data and support vector machine optimized by

genetic algorithm
75.0% [132]

Decision
tree

Supervised Nonlinear

Mapping Cynodon Dactylon Infesting Cover Crops with
an Automatic Decision Tree-OBIA Procedure and UAV

Imagery for Precision Viticulture
89.8% [133]

Automation and integration of growth monitoring in
plants (with disease

prediction) and crop prediction
>95.0% [134]

Greenness identification based on HSV decision tree − [135]

Random
forest

Supervised Nonlinear

Predicting Biomass and Yield in a Tomato Phenotyping
Experiment Using UAV

Imagery and Random Forest
− [136]

An Automatic Random Forest-OBIA
Algorithm for Early Weed Mapping

between and within Crop Rows Using UAV Imagery
87.9% [133]

Predicting Canopy Nitrogen Content in Citrus-Trees Using
Random Forest

Algorithm Associated to Spectral
Vegetation Indices from UAV-Imagery

R2 = 0.9 [137]

K-nearest
neighbors Supervised Nonlinear

Estimation of nitrogen nutrition index in rice from UAV
RGB images coupled with machine learning algorithms R2 > 0.5 [138]

Performance Analysis of k-Nearest
Neighbor Method for the Weed Detection >93.0% [139]

Early Weed Detection Using Image
Processing and Machine Learning

Techniques in an Australian Chili Farm
63.0% [140]
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Table 3. Cont.

Algorithm
Name Learning Transformation

Approach Sample Studies Performance References

Naïve
Bayes Supervised Linear

AI Crop Predictor and Weed Detector
Using Wireless Technologies: A Smart Application

for Farmers
89.3% [141]

Identification of Soybean Foliar Diseases Using Unmanned
Aerial Vehicle Images 95.0% [142]

Naïve Bayes Classification of
High-Resolution Aerial Imagery 94.0% [143]

Logistic
regression Supervised Nonlinear

Biomass Estimation Using 3D Data from Unmanned Aerial
Vehicle Imagery in a Tropical Woodland R2 = 0.65 [144]

The Predictive Power of Regression
Models to Determine Grass Weed

Infestations in Cereals Based on Drone
Imagery—Statistical and Practical Aspects

83.0% [145]

Automation solutions for the evaluation of plant health in
corn fields 79.2% [146]

Linear
discriminant

analysis
Supervised Linear

Weed detection with Unmanned Aerial Vehicles in
agricultural systems 87.0% [147]

Using continuous wavelet analysis for monitoring wheat
yellow rust in different infestation stages based

on unmanned
aerial vehicle hyperspectral images

− [148]

K-means
clustering Unsupervised Linear

Rice yield estimation based on k-means clustering with
graph-cut segmentation using low-altitude UAV images 67.0% [149]

Wheat ear counting using k-means
clustering segmentation and

convolutional neural network
>98.0% [150]

Detection of tomatoes using
spectral-spatial methods in remotely sensed RGB images

captured by UAV
88.2% [151]

Principal
component

analysis
Unsupervised Linear

Use of principal components of
UAV-acquired narrow-band

multispectral imagery to map the diverse low stature
vegetation fraction of

absorbed photosynthetically active
radiation (fAPAR)

77.0% [152]

The Extraction of Wheat Lodging Area in UAV’s Image
Used Spectral and Texture Features 87.0% [153]

Monitoring Agronomic Parameters of Winter Wheat Crops
with Low-Cost UAV Imagery

0.7 < R2

< 0.97
[154]

Independent
component

analysis
Unsupervised Linear Field heterogeneity detection based on the modified Fast

ICA RGB-image processing 78.0–89.0% [155]

Gaussian
Process

Regression
Supervised Nonlinear

Biomass estimation in batch
biotechnological processes by Bayesian Gaussian

process regression
− [156]

Spectral band selection for vegetation properties retrieval
using Gaussian

processes regression
79.0–95.0 [157]

Supervised Machine Learning

Supervised machine learning involves training a model using labeled data, which
then helps in the classification and/or prediction of future data. According to the authors
of [158], the labeled data guide the machine to search for a specific pattern in the data; thus,
supervised learning implies the use of a sample set in which the output is known. Classifi-
cation and regression are the major subdomains of supervised learning. The tools that are
commonly applied to achieve the tasks in this subdomain include support vector machines,
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decision trees, random forests, logistic regression, naïve Bayes, linear discriminant analyses,
and artificial neural networks.

Support Vector Machine

The support vector machine is one of the most common tools in machine learning.
SVMs can be used to ascertain the optimal hyperplanes that separate the points of one class
from those of others due to their ability to select the planes that pass through the largest
possible gaps between the points of distinct classes. The classification of the new points is
then performed depending on which side of the plane they reside on. This capability of
creating optimal hyperplanes also has the advantage of reducing generalization errors, and
thus the chance of overfitting. However, in most studies, researchers have demonstrated
that support vector machines are effective for high-dimensional spaces that require learning
from several features, and the authors of [159] also found that SVMs perform equally well
on relatively small datasets with few data points. Furthermore, they require less memory
storage, as only a subset of points is required to represent the boundary surface. However,
it should be noted that SVMs require intensive computation during the model training,
and they do not return the confidence level of a prediction, which we can calculate using
k-fold cross-validation [160].

In recent years, studies on field crop monitoring using support vector machines have
yielded promising results, indicating their potential to improve agricultural productivity.
Among these studies, the authors of [161] focused on developing a systematic model based
on SVM for the monitoring of sugarcane crops. The model considers the temperature,
humidity, and moisture as the monitoring parameters responsible for the healthy growth
of crops, and it can also be used to detect any trace of disease infection (if any) through the
aerial images acquired at regular intervals. A validation accuracy of 96% was achieved;
thus, this method is reliable for the monitoring of growing crops. In another study on
field crop monitoring based on SVM, the authors intended to automate the detection of
crop leaf diseases from remotely sensed images [162]. The constructed algorithm achieved
a good validation accuracy (87.6%), outperforming the other tested auxiliary models. Other
relevant recent studies include autumn crop yield prediction using SVM [163], the detection
of scab in wheat ears using HSI and SVM [132], and the identification of irrigated crop
types using datasets derived from the Sentinel-2 satellite [164], among others.

Decision Trees

Decision trees are methods used for data discrimination, and they have tree-like
structures with internal nodes that represent the test feature targets, of which each branch
represents the result of a test, and each leaf node represents the class label. Therefore,
a decision tree comprises three types of nodes: root nodes, internal nodes, and leaf nodes,
and it follows a classification rule that represents the pathway from root to leaf. The
decision taken at each node is based on Boolean tests. The authors of [158] describe it
as a greedy algorithm, as it has a top-down iterative divide-and-rule structure. Initially,
the root nodes take the entire training dataset, which is iteratively split, depending on
the selected features. This process is repeated at each node, at which the test features are
split based on certain decision tree functions, such as entropy and the Gini index. Entropy
provides the amount of disorder in each set, and it returns zero if all the points in the target
classes are the same, whereas the Gini index measures the criteria required to reduce the
probability of misclassification. The algorithm result can be enhanced through a technique
known as ensemble learning. Researchers widely use decision trees, as they do not require
the creation of auxiliary dummy variables. However, according to the authors of [165],
one major issue with decision trees is the large growth of the trees, which results in one
observation per leaf. Researchers have used different spectral preprocessing techniques that
employ decision tree algorithms, such as Savitzky–Golay derivatives [98], multiplicative
signal correction (MSC) [166], and normalization [167], to improve the spectral features.
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In the field of agricultural crop monitoring, researchers have employed decision
trees in different studies, including one in which the authors focused on the greenness
identification from images captured over field crops for growth monitoring [135]. A recent
application of the decision tree algorithm in crop monitoring was the development of
a monitoring system for the grain loss of paddy rice by the authors of [168]. Their system
performed well, with an average test accuracy of 99.3% at a moisture content of 30% and
a grain:impurity ratio of 1:2.5. However, as the moisture content and grain:impurity ratio
increased, the accuracy of the system decreased, which implies that the optimal conditions
need to be ascertained for the best possible results.

Random Forest

A random forest is a modified form of the decision tree algorithm in which a decision
tree is created with a subset of training samples that are selected on a random basis with
replacements. Similarly, a random number of features is also taken from each set of features.
Random forests follow this process of decision tree construction many times, which results
in a set of classifiers. As with decision trees, each grown tree in the random forest algorithm
predicts its target class at the time of the prediction for every instance. Therefore, the class
that is the most predicted by the trees becomes the suggested class of the final classifier.
However, the choice of the number of parameters requires more attention. Che [169]
argued that, generally, the higher the number of trees, the better the performance of the
obtained classifier; however, this comes with a high computational cost. The performances
of random forests are more prone to overfitting because they involve the multiple averaging
of the decision trees [170]. Randal and Olson [171] suggested that a reduction in the size of
the bootstrap sample, which may also increase the randomness of the algorithm, reduces
the overfitting effect; however, they also mentioned that reducing the size of the bootstraps
somewhat affects the overall performance of the classifier. In this regard, in most practical
applications, the bootstrap size is equal to the size of the initial training set to provide a fair
tradeoff between the variance and bias [133].

Researchers have employed random forests for HSI analysis in several ways, including
in the detection of plant diseases, fungal infection, and bruises in fruits and vegetables,
the classification of different agricultural products, and quality analyses of processed fish
products [172]. In a recent study in which the authors deployed the random forest algorithm
for field crop monitoring, they focused on predicting the biomasses and yields of individual
tomato plants from UAV imagery [136], as the biomass and yield are fundamental variables
for assessing the production and performance of agricultural crops and/or systems [136].

k-Nearest Neighbors

k-nearest neighbors (k-NN) is a machine-learning algorithm in which the classification
of new cases is based on the classification of their nearest neighbors. For example, the
authors of [173] state that “If it walks like a duck, quacks like a duck, and looks like a duck,
then it’s probably a duck”, which means that the classification of a given pixel is based on
how similar it is to its neighboring pixels. The principle that underlies k-NN classification is
the k-NN rule: a test data point is assigned to the class that is most repeatedly represented
among the k-nearest training data points. For cases in which two or more such classes
exist, then the test data point is assigned to the class with the minimum average distance to
it. The most common distance calculated in k-NN is the Euclidian distance (Frobenius);
however, we can also use other distance metrics to calculate the distance points, such as the
Manhattan distance (city block) and P-norm distance (Minkowsky) [174]. According to the
latter study, it is important to ascertain the optimal k value to find a good balance between
under- and overfitting. A small k value will render the model prone to noisy points, and if
the k value is too large, then the neighborhood may encompass points from other classes.
Nevertheless, the main advantages of k-NN are that the cost of the learning process is low,
with no required optimization, and it is easy to program with high accuracy.
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The simplicity, ease of programming, and high accuracy recorded in the literature
regarding the k-NN method have greatly encouraged its adoption in different spectral anal-
yses for field crop monitoring, such as crop canopy classification, crop disease monitoring,
and crop nutrient content analyses [139]. Additionally, the k-NN method is a fast and reli-
able way of finding the best wavelet disintegration layer and for the effective wavelength
selection of HSI data via the fusion of the wavelet basis functions and k-nearest neighbors.

Naïve Bayes

The naïve Bayes (NB) model is a probabilistic model that assumes conditional inde-
pendence (i.e., Bayes’ theorem) among the predictor variables to describe the outcome
probabilities of related events. At first, for each data point associated with a class, we calcu-
late a posterior probability with the aid of the prior class probabilities and class conditional
probabilities of the variables once we know the class level. We follow this by the assign-
ment of the observation to the class with the highest posterior probability [175]. The main
weakness of this algorithm is its assumption of conditional independence, which means
that it is unable to learn the interactions between two predictor variables/features [158].

There have been successful applications of the NB model in HSI field crop monitor-
ing, including in crop prediction [176] and remote sensing imagery classification [177],
among others. Although in most of these studies, the authors achieved high classification
accuracies (over 85%) with naïve Bayes, the authors of [158] argue that the reported classifi-
cation accuracy of the NB classifier has also been lower than 75%, which indicates a weak
classification model.

Logistic Regression

Researchers commonly use logistic regression (LR) to evaluate the relationship be-
tween independent variables (features) and a dependent variable (label, to be predicted) by
calculating the probabilities using the logistic function [178]. LR belongs to a class of dis-
criminative models classified as supervised machine learning. Researchers primarily use it
for land-cover classification in remote sensing, and particularly for pixel-wise classification;
however, it also serves as a building component for more complex algorithms that use
ensemble and deep learning [179]. The working principle of LR is that it models the proba-
bility distribution of a given class as the logistic function of the weighted sum of the input
features. In other words, researchers employ LR for the binary classification of materials,
as it returns discrete binary outcomes between 0 and 1. Logistic regression is widely used
due to its accurate performance, simplicity, and ease of interpretation. However, the main
disadvantage of logistic regression is that it cannot be used to model nonlinear problems
for which the data are not linearly separable, and it is also prone to overfitting [145].

Linear Discriminant Analysis

Linear discriminant analysis (LDA) involves ascertaining the projection hyperplane
that minimizes the interclass variance and maximizes the distance between the projected
means of the classes. LDA is based on the principle of defining a lower-dimensional
feature subspace in which the data point separability is optimized [180]. One advantage of
using linear discriminant analysis is that a generalized eigenvalue system can be solved
to obtain a solution to a given problem, which allows for the fast and massive processing
of data samples. Researchers commonly use LDA in feature extraction, as it improves the
computational efficiency and minimizes the level of overfitting that arises from the Hughes
phenomenon in nonregularized models [181]. Although researchers commonly use LDA for
binary class problems, they have also proposed its use for multiclass generalization [180].

Due to its robustness, LDA is widely used in field crop monitoring based on hyper-
spectral data [180,182–184]. In a recent study, Alajas et al. [185] used a hybrid LDA and
decision tree approach to extract useful features for the classification of healthy and diseased
grape leaves and to predict the percentage of the damaged area, for which they achieved
a high accuracy (over 97%).
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Partial Least-Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA) is one of the most common
incorporated supervised ML methods in the present day chemometric analysis and soft-
ware packages. Barker et al. [186] describe the well-established theoretical background of
PLS-DA, which is derived from the two concepts of partial least squares (PLS) and LDA. Re-
searchers developed the PLS algorithm to linearize models with nonlinear parameters used
for overdetermined regression problems [187]. The algorithm was initially implemented
through the nonlinear iterative partial least squares (NIPALS) algorithm [188]. However,
currently, advancements in classical multivariate statistical theories have enabled the im-
plementation of PLS in solving well-posed eigenstructure problems that clearly exhibit the
PLS strike relationships between the variance summary and score correlation. Combining
the advantages of PLS and LDA (i.e., the maximization of the intergroup variability relative
to the measure of the shared intragroup variability), PLS-DA is one of the most powerful
tools in chemometrics.

In the field of agricultural remote sensing, Stellacci et al. [189] compared the PLS-DA
model performance in the selection of the optimal hyperspectral bands to discriminate
the nitrogen status in durum wheat with other statistical methods. They performed the
quantification of the leaf-nitrogen concentrations on samples collected at the same locations
and on the same dates, and they used them as the response variables in regressive methods.
The authors demonstrated that PLS-DA is best suited for response variables. They also
applied PLS-DA to map the damage from rice diseases. According to their results, the
PLS-DA could classify the rice diseases at the subfield scale, with an overall accuracy of
75.62%. The authors also report that the approach was later successfully applied during
a typical ecoepidemic outbreak of rice dwarf, rice blast, and glume blight in China. Other
applications of PLS-DA in crop monitoring are the monitoring and characterization of crops
and plants [190], the qualitative and quantitative diagnoses of the nitrogen nutrition of
tea plants under field conditions [191], pest and disease detection in horticulture crops by
a field robot [192], and commercial tree species discrimination from airborne hyperspectral
imagery [193] among other applications.

Gaussian Process Regression (GPR)

Gaussian processes (GPs) are a type of probabilistic model that can be used for both
regression and classification tasks in machine learning. They are based on the idea of
using a Gaussian distribution to represent the joint distribution of the function and its
inputs. GPR have a number of attractive properties, including the ability to handle input
uncertainty and the ability to provide uncertainty estimates for predictions.

One of the key advantages of GPR is that they can be used to make predictions even
when there is limited or noisy data available. This is because GPR takes into account the
correlations between the input variables and the output variable, rather than just relying on
the mean of the output variable [194]. This allows GPR to make more informed predictions,
even when there is a small amount of data available, whereas the main challenges with
using GPR is that they can be computationally intensive, especially when working with
large datasets. However, there are a number of techniques that can be used to reduce the
computational complexity of GPR, such as using approximations [194,195] or restricting
the model to a subset of the data [196].

The authors of [197] discuss the various advances in the field of GPR that have been
made in recent years, including new algorithms that take into account the characteristics of
the signal and noise in the data, as well as techniques that use automatic relevance kernels
to extract knowledge and rank features automatically.

For purposes of field crop monitoring, GPR has been applied to field crop spectral
analysis in many ways; for instance, GPR was applied in the retrieval of chlorophyl content
from hyperspectral reflectance data collected using an airborne system [198] and wheat
leaf rust disease detection [199]. Several research surveys confirm that GPR outperforms
most machine learning algorithms [199,200].
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Ridge Regression

Ridge regression is one of the methods for estimating the parameters of a linear
regression model, commonly used to deal with collinearity, a problem that often occurs
in multiple linear regression. Ridge regression is similar to least squares regression, but it
adds a penalty term to the cost function that helps to reduce the magnitude of the model
coefficients. This helps to prevent overfitting and improve the generalization of the model
to new data.

The key advantage of ridge regression is that it can be used to perform feature se-
lection, since the penalty term encourages the model to give smaller coefficients to less
important variables. This can be useful in situations where there are a large number of
predictor variables, as it can help to reduce the complexity of the model and improve its
interpretability. One of its main drawbacks is that it can be sensitive to the scale of the
predictor variables, which can make it difficult to compare the importance of different
variables. Additionally, ridge regression may not perform well when there are a large
number of irrelevant predictor variables, as the penalty term may not be sufficient to
reduce the impact of these variables on the model. At the same time, better versions of
ridge regression continue to be developed within the machine learning community. For
instance, the authors of [201] refined the ridge regression method by proposing new ridge
parameters to improve the model performance.

In the field of crop monitoring, ridge regression has been applied in various studies
including some recent studies, such as the study authored by Ahmed et al. [202], to estimate
wheat yield by integrating the kernel ridge regression (KRR) method coupled with complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and the grey
wolf optimization (GWO), and that of Ji et al. [120], to quantitatively monitor leaf area
index (LAI) in rice based on hyperspectral feature bands and ridge regression algorithm.
Also with an airborne multispectral scanner, the authors of [203] applied Ridge Regression
method to estimate the leaf chlorophyll concentration using high-resolution (2 cm) images
for crop health monitoring.

Lasso Regression

Least absolute shrinkage and selection operator (LASSO) is one other type of linear
regression that is used to perform variable selection (a process of selecting the most impor-
tant predictor variables to include in the model). It does this by adding a penalty term to
the cost function that constrains the model to give smaller coefficients to less important
variables. Unlike ridge regression, which penalizes all large coefficients equally, LASSO
regression performs “feature selection” by setting some coefficients to zero, effectively
eliminating them from the model. The penalty term is typically a function of the L1 norm,
which is the sum of the absolute values of the model coefficients [204]. The main aim of
LASSO regression is to find the model coefficients that minimize the sum of the squared
errors between the predicted values and the observed values, subject to the constraint
that the sum of the absolute values of the coefficients is less than a certain threshold. This
constraint helps to reduce the complexity of the model and improve its interpretability,
particularly when there are a large number of predictor variables.

Several studies relating to field crop monitoring have investigated the applicability of
LASSO in this field. For example, the authors of [205] applied LASSO regression to model
crop yield prediction, and also Haumont et al. [206] adopted LASSO regression to model
Leek dry-biomass and nitrogen uptake across multiple sites and growing seasons based on
multispectral UAV imagery.

There are some limitations to lasso regression as well. Similar to ridge regression,
LASSO regression can also be sensitive to the scale of the predictor variables [204]. Further-
more, the authors of [205] highlighted that LASSO regression may also not be effective if
there are a lot of predictor variables that are not relevant to the model, as the penalty term
may not be strong enough to minimize the influence of these variables on the model.
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Unsupervised Machine Learning

Unsupervised machine learning encompasses all the ML techniques that do not re-
quire the user to supervise the model but allow the model to work by itself to discover the
patterns and information in a given dataset. Therefore, researchers primarily use them to
deal with unlabeled data. Unsupervised learning models enable the performance of more
complex processing tasks compared with supervised learning [207]; however, they can
be more unpredictable than supervised ML methods [208]. In this section, we discuss the
three most common unsupervised learning algorithms for agricultural purposes.

k-Means Clustering

k-means clustering is a partitioning-based technique for grouping based on the itera-
tive rearrangement of the data points between clusters. Its principle of operation is that
it divides the dataset variables into nonoverlapping clusters or groups based on the un-
covered features to produce clusters of variables with a high level of intracluster similarity
and a low level of intercluster similarity [209]. The algorithm begins by randomly selecting
any centroids (i.e., average locations or arithmetic means of all the points), denoted by the
symbol k. The nearest points to each centroid point are assigned to that specific cluster.
This is followed by re-calculation of the new centroid by averaging the position coordinates
of all the points present in that cluster. The process is iterated until convergence of the
clusters occurs [210].

Its ease of implementation, efficiency of computation, and low memory requirements
have made k-means clustering one of the most widely applied unsupervised machine-
learning methods in the exploratory data analyses and data mining in any field of research,
including hyperspectral image analyses. Additionally, k-means clustering has also been
adopted as an initial step for more computationally demanding algorithms, such as Gaus-
sian mixtures, providing an approximate separation of the data as a starting point, and
minimizing the noise that is present in the dataset [209]. Some recent applications of
k-means clustering in field crop monitoring include the detection and classification of
the pests in crops based on proximal images. In particular, Faithpraise et al. [211] used
k-means clustering for the classification of 10 pest species from images captured in the
field. Wang et al. [212] applied k-means clustering to segment pests (white flies) from crop
leaves as a prerequisite step for intelligent pest diagnosis. Concerning the latter study, the
authors specifically applied k-means clustering to the classification of each pixel after the
preliminary step of image gridding, and they used the RGB color space to preselect the
potential cluster centers. Researchers have also used k-means clustering to enhance the
results produced by deep-learning models [213].

Principal Component Analysis

Principle component analysis is a dimensionality reduction algorithm through which
multidimensional data are reduced to a lower-dimensional space while retaining most
of the useful information. The method inputs a set of possibly correlated variables to
create a new set of linearly uncorrelated variables. The 1st, 2nd, . . . , nth coordinates of the
projected data represent the highest variance, followed by the second-highest variance, and
so on. Every newly retrieved coordinate is termed a principal component (PC). Of the total
number of PCs obtained (which is equal to the number of original dimensions in the data),
those with higher variances are chosen [214].

The key advantages of PCA are its low sensitivity to noise, low computational capacity
and memory requirement, and increased efficiency, as the process takes place in a smaller
dimension. However, in earlier studies, researchers found that its major disadvantage is
that it makes it difficult to accurately evaluate the covariance matrix [215]. According to
the latter study, Li et al. [216] reported this disadvantage in a study in which even the
simplest invariance could not be captured by the PCA unless availed with such information.
Nonetheless, PCAs have been widely used for field crop monitoring, both in earlier and
recent years. Villez et al. [217] assessed the application of unfold PCA for online plant



Remote Sens. 2023, 15, 354 26 of 46

stress monitoring and sensor failure detection in two truss tomato plants and young apple
plants grown in a greenhouse. Among the recent studies, Skotadis et al. [218] used PCA to
analyze the unique response patterns generated after the exposure of the sensing array to
two gas analytes to automate the real-time detection of pesticides within the scope of smart
farming. Additionally, Danner et al. [219] also applied PCA to reduce the amount of input
data from >200 bands to 15 components.

Independent Component Analysis

Independent component analysis (ICA) is a probability-based method that is also cate-
gorized under the dimensionality reduction machine-learning algorithms. Its main goal is
to retrieve the essential maximally independent and non-Gaussian component signals from
the observed mixed data signals [220]. In other words, according to Pati et al. [221], ICA is
an extended PCA designed to optimize the non-Gaussian nature (or minimize the Gaussian
nature) of the dataset(s). While PCA is based on the principle of the optimization of the
covariance matrix of the second-order statistical data, ICA is based on the optimization of
higher-order statistics, such as kurtosis; thus, it yields independent components (unlike
PCA, which yields uncorrelated components). However, according to Saha [221], there are
only a limited number of studies in which the researchers have applied ICA in spectral data
exploration and analysis. However, from a general perspective, we can use ICA transfor-
mation to transform hyperspectral data into independent components to better complete
the detection and separation of the hidden noise in the image and perform dimensionality
reduction, noise minimization, anomaly detection, classification and spectral endmember
extraction, and data fusion [222]. In the latter study, the authors compared the perfor-
mances of different feature transforms, including the PCA, minimum noise fraction (MNF),
and ICA transform, and according to their results, PCA outperformed ICA and MNF.

Reinforcement Machine Learning

Reinforcement learning is among the three elementary machine-learning categories,
together with supervised and unsupervised learning. It imitates how humans and animals
learn without a mentor, and it is concerned with how the software agents in a given environ-
ment are rewarded when they complete an assigned task by themselves [223]. According to
Monakhova [220], reinforcement-learning tasks are commonly modeled as Markov decision
processes (MDPs), which involve a 5-tuple (S,A,P,R,
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represents the discount factor. Due to its robust-
ness, reinforcement learning has the potential to transform the essence of automation in
agriculture, as it can be used to teach robots to modify their behaviors according to the
relationship between them and the surrounding environment [224]. Zhang [225] conducted
a case study of such an application on fully automating the UAV aerial scouting of whole
crop fields based on reinforcement learning and convolutional neural networks (CNNs) to
enhance precision agriculture. The researchers designed a fully autonomous aerial survey-
ing approach that preserves the battery life by sampling field sections to sense and predict
the crop health of the whole field. When compared with the conventional nonautomated
UAS scouting approach, their autonomous scouting approach sampled 40% of the field
and predicted the crop health with 89.8% accuracy, substantially reducing the labor costs
and increasing the agricultural profits. Other applications of reinforcement learning in
the literature include autonomous greenhouse control for crop growth monitoring [225],
among others.

3.2.3. Deep Learning

Deep learning is an extended (“deeper”) form of the machine-learning algorithm that
researchers use to explicitly extract features from raw data for classification, clustering,
regression, and detection. While there are several deep-learning networks in use, the
most commonly applied network for image analysis is the convolutional neural network
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(CNN) [226]. Typically, the structure of a deep-learning algorithm for image analysis
consists of three basic layers: convolutional layers, pooling layers, and fully connected
layers. The convolutional layers are made up of kernels (filters) that are responsible for
the extraction of distinct features, such as edges, from the input image. The pooling layer
reduces the spatial size of the input image data and thereby reduces the computational
requirements in the subsequent processes. The most common technique employed in the
pooling process is max-pooling [227]. Finally, in the fully connected layer, all the nodes in
the first layer of the network system are interconnected with all the nodes in the second
layer. Depending on the employed network architecture (e.g., unsupervised pretrained
network, CNN, recurrent neural net-work, or recursive neural network), other layers, such
as gates, memory cells, activation functions, encoding/decoding schemes, and so on, can
be appended to the three basic layers detailed above [228].

The use of deep-learning algorithms has substantially benefited hyperspectral imaging
(Table 4). Some of the major applications in hyperspectral crop growth monitoring include
the assessment of the crop water stress, crop canopy classification, crop pest detection,
and the detection of disease symptoms in leaves. Deep-learning models may be either
pixel-based (usually for clustering purposes) or object-based (usually for object detection
(e.g., pest detection)). In terms of the pixel-based models, Der Yang [229] employed
UAV images with the aid of deep-learning image processing to estimate the rice lodging
over a large area of paddies. They established an image semantic segmentation model
that uses two neural network architectures—FCN-AlexNet and SegNet—due to their
good performances in the interpretation of objects of various sizes and their computation
efficiencies. For the identification of the rice lodging from the images, they achieved
F1 scores of 0.80 for the FCN-AlexNet and 0.79 for the SegNet. Similarly, researchers
have applied object-based deep-learning models in field crop monitoring. In a case study,
Wang [230] developed a custom triple-branch HSI–LiDAR convolutional-neural-network
backbone to simultaneously extract the spatial, spectral, and elevation features of land-
cover objects, including those on agricultural lands. They particularly used the single-shot-
detector (SSD) architecture based on the VGG-16 backbone, and they attained a performance
accu-racy of 83.2%.

Table 4. Deep learning approaches for hyperspectral image analysis in field crop monitoring.

Category Network Architecture Backbone Performance References

Pixel-based

SegNet VGG-16 89.8% [229]
FCN AlexNet 86.7% [231]

DeepLabv3+ ResNet-18 97.0% [229]
LeNet LeNet 92.2% [232]

Mask R-CNN 91.8% [233]
FDN-92 [234]

Object-based

Faster R-CNN Inception-v2, VGG, ZF,
ResNet-50 87.2% [235,236]

RetinaNet ResNet 93.0% [237,238]
YOLOv3 DarkNet-53 94.0% [236,237]
YOLOv2 DarkNet-19 96.6% [236,239]

SSD VGG-16 83.2% [239]

3.3. Data Fusion

Remote sensing primarily provides data in four dimensions: the spatial (2D), spectral
(1D), temporal (1D), and radiometric (referring to numerical precision) dimensions [240].
Recent advancements in sensors have made it possible to retrieve a wide variety of infor-
mation from different materials within a given area of interest. This information ranges
from spectral information obtained from passive sensors (i.e., MSI and HSI data) to height
and shape information obtained from LiDAR sensors, as well as to texture, amplitude, and
phase information via a synthetic aperture radar (SAR). The availability of these different
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forms of data from different sensors requires the integration of the diverse information that
they contain to enhance the scene classification and object detection capabilities. However,
according to the authors of [241], we require more efforts to automate the interpretation
of remote sensing data, and especially considering the recent attempts in remote sensing
data fusion.

Nonetheless, all these datasets provide different representations of the same physical
scene. To handle these different representations, data fusion offers potential solutions
and has been widely explored over the last decade, as researchers have attempted to
determine the best possible combination of these remotely sensed datasets. Generally, all
tasks that require any kind of parameter estimation derived from multisource data can
benefit from the use of data fusion methods [242]. For instance, researchers commonly
apply the spectral information from HSI to discriminate various materials based on their
reflectance values in agricultural monitoring [243]. Likewise, we can use LiDAR image
point clouds (e.g., sorghum plant phenotyping (Figure 5)) to analyze the depth, height, and
volumetric information, which is useful for distinguishing objects within the same scene
or different parts of the same object. Furthermore, LiDAR systems have been adopted
even in marking agricultural land boundaries for the purpose of control in the system of
direct payments for agriculture (Integrated Administration Control System—IACS) [244].
Therefore, the integration of all these multisource information into a single analysis pipeline
to describe a particular scene can greatly improve the output of such analysis. For this
reason, data fusion has received enormous attention from researchers across the globe for
a wide variety of applications.
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Most researchers in the literature have defined data fusion as a technique that com-
bines data from multiple sensors and the related information from associated databases
to achieve improved accuracy and more specific inferences than those achieved when
using a single sensor. Similarly, in a concise manner, we refer to data fusion as a means
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of combining multisource data to achieve the improved accuracy of the data analysis, as
op-posed to single-source data processing, with the major aim of harnessing remote sensing
for field crop monitoring.

In this subsection, we bring together the advances in multisource and multitemporal
data fusion approaches with respect to field crop monitoring by providing an overview and
discipline-specific starting point, supplying the necessary details and references, for new
researchers at different levels (i.e., students, and researchers) who are eager to con-duct
novel investigations on this challenging topic. More specifically, we dedicate this section to
the topics of point cloud data fusion, spatiotemporal fusion, and spatiospectral fusion.

3.3.1. Point Cloud Data Fusion

As we discuss in the previous sections of this article, researchers have proposed
and/or deployed many methodologies to perform several operations on spectral images
for field crop monitoring. In a similar manner, point cloud data have been adopted for many
agricultural applications, such as crop phenotyping analyses [245–248] and the autonomous
navigation of farm tractors and robots in agricultural environments [249,250].

Although we will draw a broader picture, the discipline-specific starting point is
the point cloud data model, which is the initial data model common to all multisource
fusion methods that include point clouds. The authors of [251] define the point cloud data
model as a set of georeferenced points in 3D Cartesian space that is related to a geospatial
reference system (e.g., the Universal Transverse Mercator). We present the visualization
of a point cloud and its features in Figure 5. The point features can originate from an
active measurement process, such as the LiDAR intensity [252] or they can be derived from
postprocessing techniques, such as spectral reconstruction [253].

The end goals of point cloud data fusion are to utilize the 3D geometric, spatial struc-
tural, and lidar backscatter information inherent in point clouds and fuse it with spectral
data sources, or in some cases, geoinformation layers, such as geographic information sys-
tem (GIS) data. We can generally categorize the methodological approaches to point cloud
data fusion in the literature into three main concepts: (1) the point cloud level, at which the
primary point cloud is enriched with new point features; (2) the image/voxel level, at which
new image layers are derived that represent the 3D point cloud information; (3) the feature
level, at which the point cloud information is fused on the segment/object level [240].
The choice of method is largely dependent on the target model after the data fusion. For
example, the classification of a dataset calls for point cloud or image level processing.

The concept of enriching the point cloud with features (also known as point cloud
coregistration or alignment) involves texturing the point clouds with the image data,
usually from either a multisensor system, such as lidar systems mounted with spectral
cam-eras, or from photogrammetric point clouds (i.e., the structure from motion and dense
image matching). Under this, precise coregistration is used to transfer the labels of the
classified spectral data to the corresponding 3D points. With this approach, the authors
of [254] related the spectra from 2D multispectral aerial imagery and thermal imagery to
3D point cloud crop models to classify vines in different vigor classes. According to their
results, the discriminant power of single indices can be increased and enhanced by their
combination, with the best performance obtained using the whole set.

Unlike the point cloud level methodological concept, the image/voxel level is con-
cerned with the transformation of point clouds into 2D images or voxels that can be
ana-lyzed by the image-processing approaches discussed in Section 3.2 of this article. We
can directly derive a number of 2D images from the rich point clouds that come from
the point cloud geometry, lidar backscatter, and full-waveform lidar data. Finally, the
feature/object level concept is based on the first two concepts in terms of the data model,
which is used to derive objects, followed by a classification step. We can use approaches
such as image or point cloud segmentation to derive the attributes for the classification.
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Hyperspectral and LiDAR Data Fusion

HSI technology has certain limitations in terms of differentiating between objects that
are composed of the same spectral characteristics (e.g., the same crop species under the same
health conditions). In the same way, LiDAR point cloud data alone cannot differentiate
between objects in absolute proximity and of the same size, shape, and elevation (e.g.,
the Eleusineindica species in a finger millet field) due to the lack of spectral information
pro-vided by these sensors.

Advancements in multisensor data fusion to take advantage of the information pro-
vided by the different sensors that simultaneously capture a particular scene provide
potential solutions to the abovementioned issues [255]. Researchers have developed many
computer vision algorithms to implement such a solution, including machine-learning and
deep-learning algorithms. For HSI and LiDAR data fusion, we can broadly categorize the
available techniques in the literature into three major categories: data association, state
estimation, and decision fusion [242].

The aim of data association (also known as pixel-level fusion) is to improve the
quality via the fusion of the oriented observation data. State estimation (also called feature-
level fusion) is carried out by extracting features from different data sources to create
new features or feature vectors, which are usually adopted to facilitate the subsequent
application. Decision-level fusion inputs different sensor data to separately interpret the
land-cover features and obtain the land-cover feature categories, and it then applies certain
decision rules to fuse them. As there is typically a large gap in the imaging patterns between
different sensors, the most commonly implemented fusion strategy for HSI and LiDAR
fusion is feature-level fusion [256]; however, more recently, researchers have combined
feature-level fusion with decision fusion to improve the fusion accuracy. Furthermore,
they have widely applied CNN architectures in HSI and LiDAR fusion due to their robust
feature representation abilities and ability to naturally adapt to images [256]. As there
is a considerably large number of publications in the literature regarding data fusion,
including the basic steps involved, we do not intend to review all the studies in this section.
Instead, we aim to highlight studies in which the authors used the most recent techniques
for hyperspectral and LiDAR data fusion. In particular, we explore the methods that use
convolutional neural network (CNN) architectures in detail, considering that they are more
powerful than conventional techniques for supervised inference tasks [256].

Li [257] proposed a CNN and composite kernel-based novel framework for the fusion
of hyper-spectral images and LiDAR-derived elevation data (Figure 6). They took advan-
tage of a combination of extinction profiles (first proposed for use in remote sensing data
processing by Ghamisi et al. [258]; this is a technique-based extinction filter using extrema-
oriented connected independent filters) and CNN features to enable the joint use of low-
and high-level features to improve the classification performance. They initially applied
extinction profiles to both data sources to extract the spatial and elevation features from
hyperspectral and Li-DAR-derived data, respectively. Next, they designed a three-stream
CNN to independently extract the useful spectral, spatial, and elevation features from both
data sources. Instead of a simple stacking strategy, as first proposed in [241,259], they again
designed a multisensor composite kernel (MCK) scheme to fuse the heterogeneous spectral,
spatial, and elevation features extracted by the CNN. This scheme resulted in the higher
spectral, spatial, and elevation separability of the extracted features, which enabled them
to effectively perform multisensor data fusion in the kernel space.

The simple stacking strategy proposed in [241,259] requires a fully connected layer to
fuse the feature extracts; however, fully connected layers often contain a substantially large
number of parameters, which increases the training difficulty when considering a small
number of training samples. Support vector machines and extreme-learning machines,
with their composite kernel versions, were the two machine-learning classifiers employed
to produce the final classification result. The concept of the kernel method here refers to
using a nonlinear mapping function (e.g., Hilbert kernel) to transfer the input data from
the original feature space into a higher feature space, such that the nonlinear problem in
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the feature space can be transformed into a linear problem. Furthermore, the theoretical
elegance of the kernel trick makes it an effective tool for HSI analysis due to its insensitivity
to the Hughes phenomenon (also referred to as the curse of dimensionality).
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The researchers applied the proposed framework on two commonly used public
datasets with different characteristics: an urban data set captured over Houston, the
United States, and a rural dataset captured over Trento, Italy. The framework yielded high
overall accuracies of 92.57% and 97.91% for the Houston and Trento datasets, respectively.
Moreover, according to the authors, the proposed fusion framework can be regarded as
a general data fusion framework that can be applied to any other dataset containing both
hyperspectral and LiDAR data. They particularly highlight its use in agricultural data to
better classify certain classes (e.g., healthy or stressed crops).

Ge et al. [260] extended the work of Ghamisi [257] by proposing a residual fusion
strategy that combines the extinction profile (EP) extraction method with the local binary
pattern (LBP) method to improve the accuracy and reliability of the feature extraction.
They fed the combined output of the two feature extraction strategies into a kernel col-
laborative representation-based classifier with Tikhonov regularization (KCRT), which
Li et al. [261] demonstrated as superior to collaborative representation-based classification
(CRC), first proposed by Wang et al. [262], which is because the regularization term in the
original CRC could not be adaptively adjusted according to the similarity between the
training and testing samples.

Later on, Xia et al. [263] proposed another approach: semisupervised graph fusion
(SSGF). Particularly, they introduced the unsupervised fusion graph into the semisuper-
vised local discriminant analysis (SELD) framework proposed by the authors of [264,265]
to learn the projection matrix. They first applied morphological filters to LiDAR data and
the first few components of the hyperspectral data to model their respective heights and
spatial information. Then, they used the proposed SSGF algorithm to generate the spectral,
elevation, and spatial features in a lower subspace to obtain the new features. The objective
of SSGF is to maximize the class separation ability and preserve the local neighborhood
structure by using both labeled and unlabeled samples.

Although the CNN-based approaches have produced excellent performance measures
up to this point, compared with conventional techniques, the main disadvantage of this
approach is that the feature extraction of different data sources is individually performed,
instead of jointly, exploiting the features from both modalities. According to Mohla [266],
this results in the loss of some important shared high-level features from both modalities.
Furthermore, Chen [267] earlier argued that such an approach may create a substantial
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imbalance among the different features, which can lead to inequality in the represented
information. For this reason, a few researchers have attempted to address this issue.

Wang et al. [268] proposed a novel multiattentive hierarchical fusion net (MAHiDFNet)
to achieve the feature-level fusion and classification of HSI and LiDAR data. Particularly,
they first developed a three-branch HSI–LiDAR CNN backbone, similar to that in [257],
to simultaneously extract the spatial, spectral, and elevation features of the land-cover
objects. Mohla [266] first proposed this simultaneous feature extraction during HSI–LiDAR
data fusion for use in the context of land-cover classification. The researchers fused the
oriented feature embedding by applying a hierarchical fusion strategy based on the output
of the triple-branch CNN. Then, they adopted an attention-module-based shallow feature
fusion strategy to highlight the modality-specific and modality-integrated features. To
construct the hierarchical feature fusion framework in the deep feature fusion stage, they
fused the acquired multimodality features, and they finally fed the fused features into the
classification module to obtain the classification result at the pixel level.

In summary, there have been substantial efforts made towards finding effective ways
to deal with the large data that are currently being captured in agricultural environments.
Despite these efforts, data and analysis gaps are still prevalent due to the fact that agricul-
tural environments are mostly uncontrolled and there are a vast number of factors that
need to be considered and properly measured for the full characterization of a given area.
According to Silveira [269], one of these factors concerns the complexity that is associated
with agricultural environments. For example, the information that is captured is not suf-
ficient to cover all the variations found in real practice. The information captured from
a single sensor is often incapable of providing explicit solutions, even if the problem at
hand is well defined, and effective algorithms are applied. Fusing the information retrieved
from different sensors that provide different data types is one possible solution that re-
searchers have explored over the past few years. Data fusion enables the exploration of
the complementarities and integration of different data types to obtain more reliable and
useful information on the areas of analysis. Whereas some success has been achieved,
as discussed in this section, there are still a number of challenges that hinder the more
extensive adoption of this type of approach, and especially for agricultural areas with
highly complex environments [270].

3.3.2. Spatiotemporal Fusion

As the size of the region-of-interest (ROI) continues to increase, such as in remote
sensing at the regional and global scales, there is a tradeoff between the spatial resolution
and temporal resolution (i.e., the temporal revisit frequency). As an example, NASA’s
Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor and Aqua satellites
collect data at different spatial ranges, from 250 m to 1 km, which are often too coarse
to ex-tract the explicit land-cover information that may exist at a finer spatial scale than
the sensor resolution. The multispectral onboard Sentinel-2B instrument captures the
Earth’s reflected radiance with a high revisit time (i.e., 5 days) and high spatial resolution
(four bands at 10 m, six bands at 20 m, and three bands at 60 m) [271]. Thus, due to its
low temporal resolution, it is not suitable for monitoring short-term disastrous agricultural
events, such as floods.

However, due to recent technical advances, the remote sensing community now has
access to both dense timeseries data and high spatial- and spectral-resolution images. For
example, Sentinel-3 Ocean and the Land Color Imager (OLCI) sensor currently provide
images at a spatial resolution of 300 m and a temporal resolution of 2.8 days, which are
expected to increase upon the launch of Sentinel-3B. Moreover, Planet’s microsatellites
acquire daily images at a spatial resolution of 3.125 m. Likewise, for relatively manageable
small-scale applications, the recent advancements in remotely piloted aircraft systems, or
drones, provide a considerable amount of multisource data with high spatial and temporal
resolutions. However, these studies require access to historical data, which have fine
temporal and spatial resolutions.
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The authors of [271,272], along with those of other articles in the literature, provide
in-depth well-established discussions and/or implementations of several spatiotemporal
data fusion methods and techniques based on remote satellites. In the context of satellite
remote sensing, spatiotemporal fusion can be performed either by combining low- and high-
spatial resolution imagery from the same satellite system (e.g., 30 m multispectral imagery
with 15 m pan-chromatic images from the Landsat satellite), or from different satellite sys-
tems [273]. Researchers have developed several methods to achieve spatiotemporal fusion
across different application fields, such as crop and urban growth monitoring. According
to [274], we can broadly classify these methods into three major groups: (1) reconstruction-
based methods; (2) learning-based methods; and (3) unmixing-based methods. However,
the authors of [272] argue that these three broad categories are not sufficient to cover
all the spatiotemporal fusion methods. Therefore, they propose five categories based on
the specific techniques used to link fine and coarse images: (1) unmixing-based meth-
ods; (2) weight-function-based methods; (3) Bayesian-based methods; (4) learning-based
methods; and (5) hybrid methods.

Spectral unmixing-based methods approximate the fine pixel values by unmixing the
coarse pixels based on the theory of linear spectral mixtures to extract the endmembers
and abundances (i.e., the proportions at the subpixel level) [275]. High-resolution datasets
provide a number of endmembers and abundances obtained from a, and the spectral signa-
ture of the endmembers is unmixed from the coarse-resolution dataset. The assumption
behind linear spectral mixing theory is that the reflectance that corresponds to each coarse
spatial-resolution pixel is a linear combination of the responses of each land-cover class
that contributes to the mixture [276]. The four steps in spectral unmixing required to
predict a fine-resolution image are as follows: (1) the classification of the image with high
spatial resolution using unsupervised methods, such as k-means; (2) the computation of
the endmember fractions of each coarse pixel; (3) the unmixing of the coarse pixels at the
prediction date within a moving window; and (4) the assignment of the unmixed reflectance
to fine pixels.

Learning-based methods take advantage of the intrinsic capabilities of machine
learning to predict the unobserved finer-temporal-resolution images from coarse-spatial-
resolution images. The most commonly employed machine-learning methods for spa-
tiotemporal data fusion include regression trees [277], random forest [278], dictionary-pair
learning [279], extreme learning [280], artificial neural networks [281] and convolutional
neural networks [280].

Bayesian-based methods, as the name suggests, use the Bayesian probabilistic theory
of estimation to combine images. Under this framework, the goal of data fusion is to achieve
the desired fine image at the prediction date by maximizing its conditional prob-ability
relative to the fine and coarse input images [282]. In other words, Bayesian-based data
fusion aims to discover how to model two relationships (i.e., between the observed coarse
image and fine image observed at the same date and the one observed at different dates)
between the input images and predicted image.

Researchers use weighted-function-based methods, which are also called reconstruction-
based methods [271], to estimate the synthetic spectral reflectance at the pixel level by
means of the weighted sum of the similar neighboring pixels of the input image source.
Researchers have developed many methods under the weighted-function-based approach,
which, among others, include the following: the spatial and temporal adaptive reflectance
fusion model (STARFM) [283]; enhanced STARFM semiphysical fusion approach [284];
spatiotemporal adaptive data fusion algorithm for temperature mapping (SADFAT) [255];
spatial temporal adaptive algorithm for mapping reflectance change (STAARCH) [285];
spatiotemporal integrated temperature fusion model (STITFM) [274]; spatiotemporal en-
hancement method for medium-resolution LAI (STEM-LAI) [286]; spatiotemporal vege-
tation index image fusion model (STVIFM) [287]; and database unmixing (DBUX) [288].
Among these methods, the most applied reconstruction-based image fusion method is the
STARFM [271] due to its ability to accurately predict the surface reflectance on a daily basis
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at an effective resolution that is close to that of the Landsat enhanced thematic mapper Plus
(ETM+) (i.e., 30 m). However, its performance largely depends on the characteristic patch
size of the landscape and reduces to some extent when used on landscapes with extremely
heterogeneous fine grains.

The integration of two or more of the four abovementioned categories constitutes the
fifth category: hybrid methods, the purpose of which is to improve the spatiotemporal da-ta
fusion performance through the utilization of the advantages associated with the individual
methods. One of the recently developed hybrid methods is flexible spatiotemporal data
fusion (FSDAF), which combines weighted-function-based methods and unmixing-based
methods [289], which makes it effective even in highly heterogenous landscapes. Other
hybrid methods in the literature include the spatial and temporal reflectance unmixing
model (STRUM) [275], and the spatial–temporal remotely sensed images and land-cover
maps fusion model (STIMFM) [290].

3.3.3. Spatiospectral Fusion

Similarly, as is the case for spatiotemporal fusion, different satellite sensors can be used
to observe the surface of the Earth at different spatial resolutions over a given wave-length
range. For instance, Planet microsatellites acquire multispectral images at a spatial resolu-
tion of 3.125 m, and a single single-band panchromatic (PAN) image has a spatial resolution
of 0.73 m (SkySat-3 and SkySat-14), whereas the multispectral instrument onboard Sentinel-
2B captures the Earth’s reflected radiance with a lower spatial resolution (four bands at
10 m, six bands at 20 m, and three bands at 60 m). Therefore, the aim of spatiospectral
fusion is to combine fine-resolution and coarse-resolution images (e.g., 3.125 m SkySat-3
multispectral images and 0.73 m SkySat-3 PAN images) to derive fi-ne-spatial-resolution
images for all the bands. The use of only a single PAN image as the fine-resolution image is
referred to as “pan-sharpening” (the example given above for SkySat-3), whereas the use
of multiple fine images is referred to as multiband image fusion (e.g., fusing the different
resolution bands of Sentinel-2B).

Over time, researchers have developed many techniques to perform spatiospectral
fusion, which they have broadly divided into five categories: (1) multiresolution analysis
(MRA); (2) component substitution (CS); (3) geostatistical analysis; (4) subspace representa-
tion; (5) sparse representation [240]

CS [291] was developed in 1987 to merge multiresolution SPOT HRV and Landsat TM
data, and it was designed to spectrally transform the multispectral data into a different
feature space to separate the spatial and spectral information into different components.
PCA [292] is one of the most applied methods for transformation. Other methods include
Gram–Schmidt [293] and hue saturation [294], among others. In these approaches, the
component that contains the spatial information is replaced with the panchromatic image
for the transformation into the sharpened image.

After the CS approach, researchers continued to propose different techniques with
intrinsic advantages, such as multiresolution analysis [295], the main advantage of which is
the spectral consistency, such that if the combined image is degraded in the spatial domain,
then the degraded image is spectrally consistent with the input coarse-spatial-resolution
and fine-spectral-resolution image [240]. Researchers have also developed geostatistical
analysis to preserve the spectral properties of the original coarse images so that, when
the downscaled image is upscaled to the original coarse spatial resolution, the obtained
result is identical to the original one [296]. Subspace representation is a technique that
approaches the spatiospectral fusion problem through the spectral characteristic analysis
of the scene of interest using a subspace that is spanned by a set of basis vectors, such
as the principal component bases and spectral signatures of endmembers [297]. Recently,
the authors of [298] proposed another approach, sparse representation, which is based
on patch-wise sparse representation to exploit the various external fine-spatial-resolution
multispectral images as the database.
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Pedram et al. [240] present a detailed comparative review of these approaches, with
a statistical analysis of the history and annual average number of citations for each cate-
gory of the abovementioned spatiospectral techniques. According to their research, the
most applied techniques in the last two decades have been component substitution and
multiresolution analysis. In recent years, the remaining three approaches have achieved
considerable applications due to their simplicity, outperforming the previous approaches.

Moreover, the use of hyperspectral imaging and data fusion techniques is becoming
more and more important in almost all environmental and agricultural related aspects
indifferent from field crop monitoring. For instance, there has been a lot more ongoing
studies on monitoring the recovery of abandoned industrial areas through the recovery of
land with woods or agricultural areas in some cases. A recent study by Giuseppe et al. [299]
shows the potential to identify and characterize areas contaminated by asbestos in a mining
site using remote sensing techniques coupled with data fusion based on the PRISMA
satellite hyperspectral images.

4. Conclusions

According to our review, the advent of remote sensing has substantially fueled the
success of precision agriculture in response to the rapidly growing global food demand
amidst the effects of climate change. Spectral imaging has played a vital role in facilitating
crop monitoring to aid the decision making in the implementation of spatially variable
agronomic practices and/or inputs. Driven by cutting-edge data processing techniques,
spectral imaging for field crop monitoring has become a prominent research area in the
remote sensing community. Furthermore, the recent data fusion approaches have elimi-
nated the need to compromise between the spatial and spectral resolutions. Due to recent
technical advances, the remote sensing community now has access to both dense time-
series data and high-spatiospectral-resolution images, without the need to approximate
the compromised components using fusion methods. Moreover, machine-learning and
deep-learning approaches have substantially enhanced the processing and analysis of
spectral information. However, in these approaches, it is assumed that there are sufficient
computational resources, and that no data transmission cost is incurred for their optimal
application; however, this is not always the case.
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