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Abstract: Carbon neutrality is becoming an important development goal for regions and countries
around the world. Land-use cover/change (LUCC), especially urban growth, as a major source of
carbon emissions, has been extensively studied to support carbon-neutral planning. However, studies
have typically used methods of small-scale urban growth simulation to model urban agglomeration
growth to assist in carbon-neutral planning, ignoring the significant characteristics of the process to
achieve carbon neutrality: large-scale and long-term. This paper proposes a framework to model
large-scale and long-term urban growth, which couples a quantity module and a spatial module to
model the quantity and spatial allocation of urban land, respectively. This framework integrates
the inertia of historical land-use change, the driving effects of the urbanization law (S-curve), and
the traction of the urban agglomeration network to model the long-term quantity change of urban
land. Moreover, it couples a partitioned modeling framework, spatially heterogeneous rules derived
by geographically weighted regression (GWR), and quantified land-use planning orientations to
build a cellular automata (CA) model to accurately allocate the urbanized cells in a large-scale spatial
domain. Taking the Guangdong–Hong Kong–Macao Greater Bay Area (GHMGBA) as an example,
the proposed framework is calibrated by the urban growth from 2000 to 2010 and validated by that
from 2010 to 2020. The figure of merit (FoM) of the results simulated by the framework is 0.2926, and
the simulated results are also assessed by some evidence, which both confirm the good performance
of the framework to model large-scale and long-term urban growth. Coupling with the coefficients
proposed by the Intergovernmental Panel on Climate Change (IPCC), this framework is used to
project the carbon emissions caused by urban growth in the GHMGBA from 2020 to 2050. The results
indicate that Guangzhou, Foshan, Huizhou, and Jiangmen are under great pressure to achieve the
carbon-neutral targets in the future, while Hong Kong, Macao, Shenzhen, and Zhuhai are relatively
easy to bring up to the standard. This research contributes to the ability of land-use models to
simulate large-scale and long-term urban growth to predict carbon emissions and to support the
carbon-neutral planning of the GHMGBA.

Keywords: carbon neutrality; cellular automata; urban growth; land use; urban agglomeration

1. Introduction

In recent decades, global climate change has attracted wide attention from academic
communities, the Intergovernmental Panel on Climate Change (IPCC), and countries [1,2].
In particular, the aggravation of the greenhouse effect has made climate protection an im-
perative topic for sustainable development [3,4]. Carbon emissions are a major contributor

Remote Sens. 2023, 15, 338. https://doi.org/10.3390/rs15020338 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15020338
https://doi.org/10.3390/rs15020338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3575-2371
https://orcid.org/0000-0003-1461-660X
https://orcid.org/0000-0001-5691-6112
https://doi.org/10.3390/rs15020338
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15020338?type=check_update&version=1


Remote Sens. 2023, 15, 338 2 of 21

to the global greenhouse effect, primarily caused by fossil fuel consumption in urbanization
and industrialization processes [5–7]. Many countries have formulated their carbon-neutral
plans to realize the sustainable development of human society, which involves many as-
pects, including clean energy development, energy conservation, emission reduction, tree
planting, and land-use planning [8–13]. Among them, land use is an important source of
carbon emissions, and its planning directly affects the level of regional urbanization and
industrialization development, thereby affecting the implementation of carbon-neutral
plans [14–16].

Urban growth is the most active process in land-use/cover change (LUCC), and the car-
bon emissions associated with it are the primary source of land-use carbon emissions [17,18].
Therefore, most land-use planning focuses on the quantity and spatial allocation of urban
land. This demand, combined with the wide use of 3S (Remote Sensing RS, Geographical
Information Systems GIS, and Global Positioning System GPS) technologies, has led to
the development of many data-driven approaches to model urban growth and support
land-use planning, such as the agent-based model (ABM), cellular automata (CA), and
their derivatives [19–26]. In particular, CA is the most widely used model to simulate
urban growth because of its simple and open structure and advantages in easy combination
with machine learning methods [27,28]. Numerous scholars have devoted themselves to
improving the simulation capability of CA by optimizing its basic components that directly
affect simulation performance, such as transition rules and neighborhood [29–33]. The
neighborhood is the basic component of CA to represent local interactions between land
patches and simulate the micro-self-organization process in urban growth [34]. Through op-
timizing the structure and local rules of the neighborhood, several kinds of neighborhoods
have been designed to improve the simulation performance, including the distance-decay
neighborhood, the spatial heterogeneity-weighted neighborhood, the dual-scale neighbor-
hood, and so on [35–37]. Transition rules are at the core of CA and determine the quantity
and spatial allocation of urban land in the simulation process [38]. The derivation of tran-
sition rules has undergone several stages, from subjective to objective and from external
phenomenon analysis to internal mechanism exploration, which continually improves the
simulation capability of CA [32,39]. Nowadays, machine learning methods such as the
artificial neural network (ANN), random forest (RF), support vector machine (SVM), and
genetic algorithm (GA) are commonly used in building transition rules, increasing the
ability of CA to characterize complex urban dynamics significantly [40–43].

However, carbon neutrality is the long-term goal of large-scale regions, such as river
basins and countries [44,45], while the widely used CA framework is usually developed
for simulating urban growth in small-scale regions, like cities [27,28,46]. This means that
even though the simulation capability of CA has been dramatically improved with the
incorporation of machine learning, it still needs to be improved to accurately simulate
large-scale urban growth and effectively support carbon-neutral plans [31,47–49]. The
difference between small-scale and large-scale urban growth simulation is that large-scale
urban growth simulation needs to consider the network structure and complex connections
between cities [50]. Furthermore, the differences between urban growth characteristics
and mechanisms in different cities will be more obvious in large-scale regions, which will
significantly affect the simulation performance of urban growth. This means that the spatial
heterogeneity of urban growth mechanisms should be incorporated into the derivation
of CA transition rules for large-scale urban growth simulation [51,52]. The differences
mentioned above can be represented in CA modeling as the differences between top-down
macro quantity-control rules and bottom-up micro spatial-layout rules for small-scale and
large-scale regions. In brief, to support carbon-neutral plans, urban growth modeling
should consider the complex network interactions between cities when assigning long-term
urban land quantity changes and should adopt spatially heterogeneous rules to allocate
urbanized patches in large-scale spatial domains.

Some studies have explored novel solutions for modeling urban growth in a large-
scale region. Accessibility, urban flows, and data field approaches such as gravity-based
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models and potential-based models are usually used to measure the spatial interactions
between cities in an urban agglomeration [47,53–56]. However, these approaches are
incapable of describing the network relationships between cities in an urban agglomeration.
Moreover, they are usually quantified as spatial allocation rules to affect the distribution
of newly urbanized cells, which ignores their direct effects on urban growth quantity at
the macro level. On the other hand, the transition rules with spatial heterogeneity are not
rare in CA modeling, but they are usually applied to single cities or small-scale regions,
such as geographically weighted regression (GWR) [57,58] and machine learning-based
search algorithms [59,60]. In addition, zoning or partitioning strategies are usually used to
address the spatial heterogeneity of urban growth in some studies [31,47], but they can only
characterize spatially heterogeneous urban growth features at the sub-region scale. More
importantly, without considering spatial interactions between sub-regions, these strategies
may result in the separation of research areas [54]. Furthermore, a recent study has proved
that coupling partitioned quantity rules with spatially heterogeneous rules can significantly
improve the simulation performance [61]. Therefore, integrating the quantity module based
on network relationships and the spatial module based on spatial heterogeneous CA rules
would be an appreciable solution to simulate large-scale and long-term urban growth and
support carbon-neutral planning.

This paper proposes a framework to carry out the above solution, of which the core
consists of two modules, namely, the network automata (NA)-based quantity module
and the CA-based spatial module. The former module focuses on describing the network
interactions between cities at the macro level, and the latter is aimed at deriving the spatial
heterogeneous rules for the spatial allocation of urban cells. Taking the Guangdong–Hong
Kong–Macao Greater Bay Area (GHMGBA) as an example, the proposed framework is
applied to simulate and predict its urban growth to measure carbon-neutral pressure and
provide early warning for regional development.

2. Study Area and Data Sources
2.1. Guangdong–Hong Kong–Macao Greater Bay Area

The Guangdong–Hong Kong–Macao Greater Bay Area (GHMGBA) is the region with
the most complex administrative system in the world. The total land area of GHMGBA is
about 5.6 × 104 km2, and it covers 9 cities on the Chinese mainland, i.e., Guangzhou (GZ),
Shenzhen (SZ), Zhongshan (ZS), Huizhou (HZ), Zhuhai (ZH), Foshan (FS), Dongguan (DG),
Jiangmen (JM), and Zhaoqing (ZQ), and two special administrative regions, i.e., Hong
Kong (HK) and Macao (MO). At the county administrative level, there are 50 counties in the
mainland cities of GHMGBA, 18 sub-regions in Hong Kong, and 5 sub-regions in Macao.
These regions not only differ in size but also population and socioeconomic development.
To make different administrative units comparable, this paper refers to the Nomenclature of
Territorial Units for Statistics (NUTS) of the European Union (EU) and the Tertiary Planning
Unit (TPU) of Hong Kong and recombines the county-level regions into 36 normative units
of spatial planning (NUSP) with the consideration of their land area and urbanization levels
(Figure 1) [62,63].
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Figure 1. Location of the study area.

2.2. Data Materials
2.2.1. Urban Land in 2000, 2010, and 2020

This study aims to explore the evolution trend of the GHMGBA urban agglomera-
tion until the year 2050 (the target year of territorial spatial planning in China), which
needs at least three periods of land-use data to conduct the calibration and validation
processes. Therefore, the urban land-use changes from 2000 to 2010 are used to calibrate
the transition rules, and the observed land-use data in 2020 are used for validation. From
GlobeLand30 (https://www.globallandcover.com, accessed on 7 June 2021), the land-use
datasets for the years 2000, 2010, and 2020 are retrieved. The GlobeLand30 land-use dataset
consists of 10 different types of terrain, including artificial surfaces, cultivated land, forests,
grasslands, water bodies, shrubland, wetland, tundra, perennial snow and ice, and bare
land. The production of the GlobeLand30 dataset is supported by the National Geomatics
Center of China (NGCC), and its source includes many 30 m resolution multispectral
remote sensing images (TM5, ETM+, and OLI) of Landsat (USA), multispectral images
of the China Environment and Disaster Reduction Satellite (HJ-1), and 16 m resolution
multispectral images of the China High Resolution Satellite (GF-1). Chen et al. [64] created
and developed the web-based system (GLCVal) (http://glcval.geo-compass.com, accessed
on 9 June 2021) to support the global collaborative validation of GlobeLand30. With the
support of GLCVal and the guidance of the technical specification, about 20 countries have
completed the accuracy assessment of GlobeLand30. It turns out that the total accuracy
of GlobeLand30 is 85.72% and the Kappa coefficient is 0.82, which indicates the reliability

https://www.globallandcover.com
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of GlobeLand30 [65]. This study reclassified GlobeLand30 into five categories, including
farmland, forests, grassland, water bodies, and built-up land.

2.2.2. Ecological Conserved area Forbidden for Urban Growth

Spatial constraints are an important part of urban growth modeling data, especially
when the modeling is aimed at supporting carbon-neutral planning. In urban planning,
most spatial constraints originate from ecological protection policies, such as ecological
redlines [66,67]. In combination with the geographical conditions of the GHMGBA, the
Pearl River and its surrounding wetlands (ecological water), and forest areas with a relative
elevation difference greater than 50 m (ecological forest) are considered as the ecological
conserved area, in which the land cannot be developed into urban land (Figure 2). In
addition, although permanent basic farmland is prohibited from being developed in China,
its distribution is not immutable and can be adjusted according to development needs
after the approval of the superlative administrative level. As a part of China’s national
strategy, urban development in the GHMGBA will inevitably occupy some farmland, so the
constraint effects of permanent basic farmland are not considered in the current work. On
the contrary, once the regional ecological environment is damaged, it is difficult to recover.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 23 
 

 

accuracy of GlobeLand30 is 85.72% and the Kappa coefficient is 0.82, which indicates the 
reliability of GlobeLand30 [65]. This study reclassified GlobeLand30 into five categories, 
including farmland, forests, grassland, water bodies, and built-up land. 

2.2.2. Ecological Conserved area Forbidden for Urban Growth 
Spatial constraints are an important part of urban growth modeling data, especially 

when the modeling is aimed at supporting carbon-neutral planning. In urban planning, 
most spatial constraints originate from ecological protection policies, such as ecological 
redlines [66,67]. In combination with the geographical conditions of the GHMGBA, the 
Pearl River and its surrounding wetlands (ecological water), and forest areas with a rela-
tive elevation difference greater than 50 m (ecological forest) are considered as the ecolog-
ical conserved area, in which the land cannot be developed into urban land (Figure 2). In 
addition, although permanent basic farmland is prohibited from being developed in 
China, its distribution is not immutable and can be adjusted according to development 
needs after the approval of the superlative administrative level. As a part of China’s na-
tional strategy, urban development in the GHMGBA will inevitably occupy some farm-
land, so the constraint effects of permanent basic farmland are not considered in the cur-
rent work. On the contrary, once the regional ecological environment is damaged, it is 
difficult to recover. 

 
Figure 2. Spatial data for urban agglomeration growth simulation (Built-up in 2000, 2010, 2020, eco-
logical water and forest). 

3. Methodology 
3.1. Modeling Framework 

Figure 3 shows a diagram of the framework of the urban agglomeration growth 
(UAG) simulation model. As can be seen from the figure, the core of the modeling frame-
work consists of two parts, namely, a quantity module and a spatial module. In the quan-
tity module, each city in the urban agglomeration is regarded as a network node, and all 
the cities together compose the network structure of the urban agglomeration. The 

Figure 2. Spatial data for urban agglomeration growth simulation (Built-up in 2000, 2010, 2020,
ecological water and forest).

3. Methodology
3.1. Modeling Framework

Figure 3 shows a diagram of the framework of the urban agglomeration growth (UAG)
simulation model. As can be seen from the figure, the core of the modeling framework
consists of two parts, namely, a quantity module and a spatial module. In the quantity
module, each city in the urban agglomeration is regarded as a network node, and all the
cities together compose the network structure of the urban agglomeration. The function of
network nodes is to control the urban land quantity of corresponding cities, and their state
of evolution is modeled by the Markov process and adjusted according to their interactions.
In combination with urbanization laws and maximum scale constraints, the long-term
spatiotemporal evolution of urban land quantity for each city in the urban agglomeration
can be modeled by the network automata. In the spatial module, a partitioned CA model
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based on GWR is used to conduct the spatial allocation of newly urbanized cells, which can
accurately control urban land quantity in each city and incorporate spatial heterogeneity
into large-scale urban growth modeling. Through coupling the two modules, urban ag-
glomeration growth can be effectively simulated from both quantitative and spatial aspects.
It should be noted that the urban shrinkage caused by depopulation is not considered in
this study, as the focus is to explore the trend of urban agglomeration development to get
an early warning of carbon-neutral pressure. Meanwhile, the IPCC coefficient is used to
estimate the increased carbon emissions caused by urban agglomeration growth and to
provide early warnings of the carbon-neutral pressure [13,68].
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Figure 3. Workflow to examine the carbon-neutral pressure caused by urban agglomeration growth.

3.2. UAG Simulation Model
3.2.1. Quantity Module: Network Automata

The network automata model is the main component of the quantity module and
is used to predict the synergic development of urban land quantity in cities within the
urban agglomeration. The establishment of the quantity module is described as follows.
Firstly, the urban agglomeration is divided into several sub-regions, and each sub-region
is regarded as a network node. All the network nodes are connected to form the urban
agglomeration network. Since a county is the basic administrative unit for implementing
land policies in China, it is used as the standard to divide the study area. Specifically,
cities with a size similar to counties, such as Shenzhen, Dongguan, and Zhongshan, are
directly identified as county-level regions, and Hong Kong and Macao are also identified
as county-level regions due to their specialty. Secondly, the initial probability is obtained
through urban growth from time t − 1 to time t, and then a Markov chain process is
operated with the constraint of urbanization laws to predict the urban growth quantity
from time t to time t + 1 [69,70]. Thirdly, the gravity field model is used to measure the
radiant potential of each node in the urban agglomeration network at time t [55,56]. This
radiant potential is then used as a weighting coefficient to make the urban agglomeration
network vibrate and then balance. That is, the total urban growth quantity from time t to
time t + 1 will be assigned to each network node according to the radiant potential. The
number of vibrations in the simulation can be determined by practical needs. In theory,
the more vibrations there are, the more balanced the relationship between network nodes
should be. Fourthly, the maximum developed quantity of each network node is estimated
with the constraint of the ecological conserved area and is used as the quantity constraint
for the urban growth in the corresponding region. It should be noted that the change in
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ocean area is not considered in this study because sea reclamation is strictly restricted by
policies. The network automata model can be mathematically represented as follows.

Qt+1
n = Qt

n + (wααt+1
n + wββt+1

n )× (ut
n − ut−1

n )×Qmax
n , Qt+1

n ≤ Qmax
n , ut

n = Qt
n/Qmax

n , wα + wβ = 1 (1)

αt+1
n =

(
g
(
ut

n, λ)− ut
n)

ut
n − ut−1

n
(2)

βt+1
n =

∑
m

ωm × (ut
m − ut−1

m )

(ut
n − ut−1

n )
, ∀m 6= n (3)

ωm =
(ut

m − ut−1
m )

∑
m
(ut

m − ut−1
m )

(4)

where Qt
n and Qt+1

n denote the urban land quantity of node n in years t and t + 1, respec-
tively. αt+1

n and βt+1
n are, respectively, the urbanization acceleration of node n itself and

the effect it receives from the urban agglomeration network. wα and wβ are the weighting
coefficients to balance the above two effects. Their default values are set to 0.5 and can be
adjusted according to the testing data. ut

n is the urban land development ratio of node n at
year t and equals the ratio of current urban land quantity Qt

n to the maximum developed
quantity Qmax

n . g is the predicted urban land development ratio of node n in the next year
based on the S-curve that describes the urbanization process. λ is the moving step of time
nodes on the S-curve, with ten steps corresponding to ten years. The value of λ should
reduce with the iterations of the network automata model to represent the controlling
effects of China’s Land Intensive Use Control Policy. This configuration will lead to the
hierarchical convergence of the urban land quantity of all network nodes. This means that
not all the urban land development ratios will approach 1, and some ratios may converge
to other values according to their situations. Overall, if the urbanization of node n is in
an accelerated stage, αt+1

n is larger than 1, otherwise, it is smaller than 1. βt+1
n denotes the

radiation effect of neighboring regions m(m 6= n) on the focal region n. If region n is the
radiation center, βt+1

n > 1, which means the weighted urbanization speed of its neighboring
regions is larger than its urbanization speed, otherwise βt+1

n < 1. ωm is the weighting
coefficient of the radiation effect, which is determined by the inverse distance weighting of
m neighboring regions of the focal region n.

As can be seen from the construction of the network automata, nearly all the parame-
ters can be automatically obtained from historical land-use change, except for the effects of
the S-curve and the urban agglomeration network [71]. For the former, the urbanization
S-curve of the GHMGBA is fitted based on its urbanization process. That is, the urban land
development ratios of all the nodes in the years 2000 and 2010 are sorted into a sequence
and then extrapolated to 1 according to their tendency (Figure 4). With the help of Figure 4,
the application of the g function can be explained, as if the current urban land development
ratio of a node is close to the S-curve value at time t (0.1792), its urban land development
ratio at the next stage should be adjusted to be close to the S-curve value at time t + 1
(0.3320). Based on that, the urbanization acceleration αt+1

n can be obtained through the
driving effect of S-curve laws, which can avoid linear urban growth.

In terms of the effect of the urban agglomeration network, the Generate Spatial Weights
Matrix tool in ArcGIS is used to calculate the inverse distance weights of neighboring
regions on the network node n, which is used to calculate βt+1

n . The interaction network
between the nodes in the GHMGBA in 2050 is obtained after 4 iterations and shown in
Figure 5. In Figure 5, the yellow circle represents the urban land quantity in 2010, while
the red circle represents that in 2050. All the circles have been proportionally processed to
be comparable. The larger the circle radius is, the larger the urban land quantity should
be, and the greater the difference between red and yellow circles is, the larger the urban
growth quantity should be. On the contrary, minor differences between red and yellow
circles denote that urban growth is reaching its limit or has no more potential. The blue
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lines in Figure 5 represent the interaction intensity between network nodes; the thicker the
line is, the stronger the synchronization between two nodes and the stronger the effect of
the urban agglomeration network on the node should be.
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3.2.2. Spatial Module: Cellular Automata

The network automata can well predict the urban land quantity of each node (sub-
region). However, the urban land quantity needs to be accurately allocated in the spatial
domain to further complete the urban growth simulation process. Therefore, the partitioned
CA framework is adopted to build the spatial module to reproduce and predict land-use
patterns in this study, which can be described as:

pt
ij = Sij·Ωt−1

ij (Xt−1
W ⊕ ∆xW)·δt−1

ij ·Ψij, Ψij ∈ {0, 1} (5)
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Xt+1
ij∈n = CA(pt

ij∈n, Qt+1
n ), X ∈ {0, 1} (6)

where pt
ij is the transition probability of cell ij to be developed as an urban cell at time t,

which consists of transition potential Sij, neighborhood effect Ωt−1
ij (φ), the constraint of

ecological conserved areas Ψij, and the stochastic perturbation δt−1
ij . X denotes the cell

state, with 1 meaning urban land and 0 meaning non-urban land. Among them, Ωt−1
ij

is calculated by a moving-window function, Xt−1
W denotes the state of cell ij in its Moore

neighborhood W, and ∆xW denotes the key development area. ∆xW is a binary variable,
and ⊕ is an integrative operator. Combined with them, the key development cells in the
neighborhood will be labeled as 1 to strengthen the effect of spatial planning. Ψij is the
static constraint of ecological conserved areas, and Ψij = 0 means that the objective cell is an
ecological conserved cell that cannot be developed. δt−1

ij is a stochastic function to generate

random numbers in iterations to represent the uncertainty in realistic urban growth. Xt+1
ij∈n

denotes the state of cell ij in the sub-region n at time t, which can be determined by pt
ij and

the partitioned strategy Qt+1
n .

The transition potential Sij is the core parameter of CA modeling [25,32,38]. It rep-
resents the probability of a cell being an urban cell and is the foundation of grid-based
urban growth simulation. Generally speaking, some natural and anthropogenic factors
need to be considered in the derivation of the transition potential distribution, such as
topographic features, transport networks, population density, and so on [33]. However,
several anthropogenic factors, like transport networks and population density, are unstable
factors for large-scale and long-term urban growth, which will have significant effects on
urban development under the management of China’s government. For example, a newly
built railway or super highway will change the driving mechanisms, and attenuating the
constraints of the household registration system will attract a large-scale population inflow.
Therefore, some relatively stable factors are selected to be spatial driving variables in the
development of urban agglomeration, including (a) elevation, (b) slope, (c) distance to the
main canal (the Pearl River), (d) distance to the core nodes (Guangzhou, Shenzhen, Hong
Kong, and Macao) of the urban agglomeration network, (e) distance to several important
nodes, and (f) distance to other nodes. These spatial driving variables are used as indepen-
dent variables in the derivation of transition potential distribution, and the urban growth
of the GHMGBA during 2000–2010 is used as the dependent variable.

The relationship between the dependent variable and independent variables is always
interpreted by data mining approaches, in which logistic regression (LR) is the most
widely used [27,28]. LR modeling defaults the driving mechanisms to being spatially
homogeneous, which makes each spatial driving variable have only one spatially stationary
regression coefficient [57]. However, the spatial heterogeneity of urban growth would
become more significant on a large scale than on a small scale, as each city may have its
characteristics. Therefore, GWR is adopted to estimate the transition potential of each cell
to incorporate the spatially heterogeneous features of urban growth. This study resamples
the binary change (0 means unchanged and 1 means urbanized) of 30 m-resolution urban
growth from 2000 to 2010 into a continuous density distribution with a resolution of
100 m. The spatial driving variables are also linearly normalized to a range between 0
and 1 to participate in GWR modeling. Furthermore, the probability distribution obtained
from GWR modeling needs some modification to be the transition potential distribution,
including (1) assigning 0 to the cells in ecological conserved areas, (2) assigning 1 to existing
urban cells, and (3) inserting key development areas and integrating them into ∆xW to
steer the urban growth trend. In the historical development of the GHMGBA, areas near
line A (in Figure 6) are the focus areas of urban growth, while the new development
strategy proposed by the government plans to promote the development of areas near
line B and coordinate with areas near line C. Since the urban land distribution had few
changes near line B from 2000–2010, it is difficult for GWR modeling to acquire a probability
distribution with high-probability cells near line B. Therefore, some subjective experiences
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and inferences need to be integrated into the transition potential distribution as no model
can perfectly predict future dynamics. This study labels the nodes near lines B and C and
makes their ∆X = 1. With the above derivations and modifications, the final transition
potential distribution with key development areas has been obtained and is shown in
Figure 6.
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3.3. Carbon Emissions Caused by UAG

Although the process of carbon emissions caused by land-use change is complex,
this study focuses on the change in carbon emissions caused by urban growth and its
encroachment on other land uses. Therefore, carbon emissions caused by land-use change
are estimated using the coefficients proposed by the IPCC [13,68,72].

En(k) = An(k)·B(k) (7)

where En(k) is the carbon emission of the k-th land use in region n, An(k) is the area of the
k-th land use in region n, and B(k) is the carbon emission coefficient of the k-th land use. A
recent study has estimated the carbon emissions related to land use in the GHMGBA with
a combination of remote sensing data and socioeconomic data. It has estimated the carbon
emissions from different land-use types in the GHMGBA based on the logarithmic mean
Divisia index (LMDI), which is one of the most effective and commonly used methods for
analyzing the factors affecting carbon emissions. According to its results for 2010, if the
cultivated land, forest land, grassland, and water bodies are developed into urban land,
the reduced carbon sink should be 397.09 t/ha, 419.71 t/ha, 393.31 t/ha, and 459.21 t/ha,
respectively. Although the implementation of carbon-neutral planning may decrease these
values from 2010–2050, they can still be used as references for early warning.
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4. Results and Analysis
4.1. Predicted Urban Land Quantity

The prediction accuracy of the network automata model has been tested before apply-
ing it to predict urban land quantity. Four prediction models are established to investigate
the performance of the proposed network automata model, including (1) ErS1: urban
growth is driven by the historical inertia of 2000–2010; (2) ErS2: urban growth is driven by
the historical inertia of 2000–2010 and the S-curve of urbanization; (3) ErS3: urban growth
is driven by the historical inertia of 2000–2010 and the effects of urban agglomeration net-
work; and (4) ErS4: urban growth is driven by the three factors, i.e., the proposed network
automata. With the four models, the urban land quantity of 36 sub-regions in 2020 has
been simulated and is compared to the observation in 2020 to show their errors (Figure 7).
Ideally, if the model can perfectly predict the urban land quantity of each sub-region, the
error line should be a straight line with a value of 0. As can be seen from Figure 7, the
error lines of the four models are fluctuant, and their mean error rates are 17.39%, 15.82%,
12.86%, and 9.83%, respectively. The results show that the proposed network automata
model has the best performance in predicting urban land quantity, and its error rate is less
than 10%, which means that it is more reliable than the other models in predicting urban
land quantity and can be used to predict the urban land quantity of each sub-region in 2050.
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Figure 7. Error detection of the predicted urban land quantity in each sub-region.

The tested network automata model is used to predict the urban land quantity in
each sub-region for the period 2020–2050, which is shown in Table 1. As shown in the
prediction results, the urban land in Shenzhen will stop growing in 2030, and the urban
land in Dongguan and Macao will stop growing in 2040. This is because their area is
relatively small but they have experienced a rapid urbanization process before 2020, which
leads to a high radix of urban land development ratio for them. The predicted urban
growth during 2040–2050 is far less than that during 2030–2040 in several sub-regions
such as GZ-2, GZ-4, GZ-5, ZH-1, ZH-2, ZS, HZ-2, and HK, where their decrease rates are
up to 50%. Furthermore, the urban land development ratios of sub-regions in different
periods are diagrammed to investigate the urban growth characteristics of the GHMGBA
(Figure 8). As a whole, although the urbanization of China has entered a later stage with
no more large-scale urban growth, the GHMGBA still has its own development needs. The
quantity growth of urban land in sub-regions of the GHMGBA has an obvious trend of
hierarchical convergence. After quartering the urban land development ratios, it can be
found that in 2050, there are 10 sub-regions ranked in the first level (0.75~1), 8 sub-regions
ranked in the second level (0.5~0.75), 11 sub-regions ranked in the third level (0.25~0.5),
and 7 sub-regions ranked in the fourth level (0~0.25). These characteristics indicate that
hierarchically converging is an inevitable trend for the prediction of urban land quantity
in urban agglomerations, especially in the case of implementing the intensive land-use
system in China. Combined with the above results, it can be speculated that the urban
growth in sub-regions is different, and there are several sub-regions in the GHMGBA that
will reach the later stage of urbanization in 2050. Nevertheless, the total urbanization of
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the GHMGBA is still in an acceleration phase and will enter the stable stage in 2035~2050,
which is partly because the implementation of the “Development Plan for the GHMGBA”
will provide new impetus for its development. Finally, according to the prediction results
in this study, all the urban land area in the GHMGBA will be about 15,277.14 km2 in 2050,
which accounts for 27.28% of the total land area and is lower than the red line (30%).

Table 1. Predicted urban land quantity of sub-regions in 2030, 2040, and 2050 (km2).

ID Sub-Region Q2030 Q2040 Q2050 ID Sub-Region Q2030 Q2040 Q2050

1 GZ-1 512.13 545.92 563.01 19 HZ-3 339.55 395.58 428.36
2 GZ-2 390.54 414.92 419.16 20 HZ-4 365.26 424.27 462.13
3 GZ-3 445.5 474.98 489.91 21 HZ-5 96.57 126.73 143.86
4 GZ-4 227.84 261.28 277.29 22 JM-1 209.98 228.38 238.05
5 GZ-5 407.01 447.05 466.74 23 JM-2 313.36 357.79 381.08
6 GZ-6 437.93 492.96 521.11 24 JM-3 198.74 227.4 242.85
7 GZ-7 193.11 229.04 248.81 25 JM-4 378.17 438.71 478.2
8 SZ 1278.72 1278.72 1278.72 26 JM-5 227.32 267.78 291.12
9 ZH-1 226.46 242.04 245.71 27 JM-6 155.52 180.48 197.85
10 ZH-2 391.22 436.13 453.29 28 ZQ-1 116.93 129.24 136.54
11 FS-1 929.31 988.28 1018.69 29 ZQ-2 200.68 229.45 245.55
12 FS-2 576.59 617.08 637.86 30 ZQ-3 218.59 254.41 276.76
13 FS-3 301.17 337.79 356.48 31 ZQ-4 59.16 69.04 75.17
14 FS-4 173.73 197.56 210.64 32 ZQ-5 64.18 76.15 83.39
15 DG 1821.86 1920.35 1920.35 33 ZQ-6 101.41 119.98 131.77
16 ZS 858.94 941.9 980.3 34 ZQ-7 50.87 58.88 65.2
17 HZ-1 368.02 410.36 434.26 35 HK 380.82 404.98 410.72
18 HZ-2 389.66 426.21 440.19 36 MO 25.83 26.02 26.02
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4.2. Predicted Land-Use Patterns in 2050

Based on predicted urban land quantity growth, urbanized cells can be spatially allo-
cated through the spatial module, i.e., the CA model, to complete the urban agglomeration
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growth simulation. The simulation performance of the CA model is detected through
the kappa index (Kappa) and figure of merit (FoM); the former measures the quantity
consistency between two maps, while the latter measures the change consistency. Based on
simulated and observed land-use maps in 2020 (Figure 9), the Kappa of simulated urban
land is calculated to be 0.4416, which seems to be not high enough. This is because Kappa
is easily affected by the proportion of urban land to the total area, and urban land accounts
for a small percentage of the GHMGBA [61,73]. FoM is relatively better than Kappa in
terms of reflecting the simulation performance as it focuses on the urban land change
in the simulated and actual urban growth [74]. It is obtained by calculating the ratio of
intersection and union of simulated and observed urban growth and is 0.2926 in this study,
which is satisfactory and indicates the good performance of urban growth modeling.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 23 
 

 

Based on predicted urban land quantity growth, urbanized cells can be spatially al-
located through the spatial module, i.e., the CA model, to complete the urban agglomera-
tion growth simulation. The simulation performance of the CA model is detected through 
the kappa index (Kappa) and figure of merit (FoM); the former measures the quantity 
consistency between two maps, while the latter measures the change consistency. Based 
on simulated and observed land-use maps in 2020 (Figure 9), the Kappa of simulated ur-
ban land is calculated to be 0.4416, which seems to be not high enough. This is because 
Kappa is easily affected by the proportion of urban land to the total area, and urban land 
accounts for a small percentage of the GHMGBA [61,73]. FoM is relatively better than 
Kappa in terms of reflecting the simulation performance as it focuses on the urban land 
change in the simulated and actual urban growth [74]. It is obtained by calculating the 
ratio of intersection and union of simulated and observed urban growth and is 0.2926 in 
this study, which is satisfactory and indicates the good performance of urban growth 
modeling. 

 
Figure 9. Simulated and observed land-use maps in 2020. 

The CA model is used to predict the future land-use patterns in the GHMGBA in 
2050 (Figure 10) after testing the capability of the CA model to simulate urban growth. As 
can be seen from Figure 10, depending on the key development areas prescribed in the 
“Development Plan for the GHMGBA”, the urban land patches of the GHMGBA will be 
evenly distributed in 2050 and gradually form an obvious “Ω” structure, which can be 
confirmed by the significant development of western sub-regions. Furthermore, five loca-
tion cases are selected to verify the effectiveness of predicted land-use patterns, including 
(a) the development zone in Zhaoqing, (b) Sino-Singapore Guangzhou Knowledge City, 
(c) the central urban area of Huizhou, (d) the Nansha Development Zone in Guangzhou, 
and (e) the Doumen district of Zhuhai. The five locations in the predicted map (2050) are 
enlarged in Figure 11 and compared with the base map, which is the latest high-resolution 
satellite image of 2020. The comparison shows that road networks or bulldozed ground 
happen almost in all of these locations, indicating they are experiencing the urbanization 
process. These findings indicate that the proposed framework has a good ability to predict 
the urban development of the GHMGBA. This is because the network automata can re-
construct the development mode of the urban agglomeration. Although the effect of this 
reconstruction cannot be observed in the short term (e.g., urban land-use change from 
2010–2020), it would make a significant difference in long-term prediction when com-
bined with government planning. 

Figure 9. Simulated and observed land-use maps in 2020.

The CA model is used to predict the future land-use patterns in the GHMGBA in
2050 (Figure 10) after testing the capability of the CA model to simulate urban growth. As
can be seen from Figure 10, depending on the key development areas prescribed in the
“Development Plan for the GHMGBA”, the urban land patches of the GHMGBA will be
evenly distributed in 2050 and gradually form an obvious “Ω” structure, which can be
confirmed by the significant development of western sub-regions. Furthermore, five loca-
tion cases are selected to verify the effectiveness of predicted land-use patterns, including
(a) the development zone in Zhaoqing, (b) Sino-Singapore Guangzhou Knowledge City,
(c) the central urban area of Huizhou, (d) the Nansha Development Zone in Guangzhou,
and (e) the Doumen district of Zhuhai. The five locations in the predicted map (2050) are
enlarged in Figure 11 and compared with the base map, which is the latest high-resolution
satellite image of 2020. The comparison shows that road networks or bulldozed ground
happen almost in all of these locations, indicating they are experiencing the urbanization
process. These findings indicate that the proposed framework has a good ability to pre-
dict the urban development of the GHMGBA. This is because the network automata can
reconstruct the development mode of the urban agglomeration. Although the effect of
this reconstruction cannot be observed in the short term (e.g., urban land-use change from
2010–2020), it would make a significant difference in long-term prediction when combined
with government planning.



Remote Sens. 2023, 15, 338 14 of 21Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 10. Simulated land-use patterns of the GHMGBA in 2050. 

Figure 10. Simulated land-use patterns of the GHMGBA in 2050.

4.3. Early Warning of the Carbon-Neutral Pressure

With the predicted land use map, the loss of carbon-sink land can be detected
(Figure 12a) and the carbon emissions caused by urban agglomeration growth can be
further estimated. As can be seen from the figure, most of the lost carbon-sink land is
distributed in the middle area of the GHMGBA, such as Guangzhou and Foshan. Com-
bining the estimated carbon emission intensity of each land-use type in 2010 [72] and the
simulated land-use change between 2020 and 2050, the total carbon emissions caused by
urban growth in the GHMGBA until 2050 is about 2.17 × 108 tons. These carbon emissions
are deeply related to land-use distribution, which makes the carbon-neutral pressure differ
in the spatial domain. A statistic on the land-use-related carbon emissions has been carried
out at the city level, and the results are graded by the natural breaks method (Jenks) and
shown in Figure 12b. For a city, the more carbon emissions there are, the more pressure
there is to be carbon neutral. The distribution of carbon-neutral pressure at the city level
has an obvious feature. That is, the carbon-neutral pressure in cities in the central region
is relatively large, such as Guangzhou, Foshan, Huizhou, and Jiangmen, and they form a
“Ω” structure. Although a large amount of carbon emissions lead to high carbon-neutral
pressure, it also shows that these cities have great development potential. In addition, the
carbon-neutral pressure of Dongguan, Zhongshan, and Zhaoqing is at a medium level,
and the carbon-neutral pressure of Hong Kong, Macao, Shenzhen, and Zhuhai is at a
low level, which indicates that these four cities are likely to take the lead in achieving
the carbon-neutral goal. By estimating carbon emissions from projected urban growth,
the early warning of carbon-neutral pressures can be provided to support carbon-neutral
targets. This early warning approach allows the GHMGBA sufficient time to formulate
development plans to achieve its carbon-neutral targets, such as upgrading its industrial
structure, limiting uncontrolled urban growth, and increasing carbon-sink land.
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to accurately quantify them. The sources of carbon emissions are diverse, but most of them
are related to anthropogenic activities, in which land-use change is a typical representation
of human–environment interactions [15]. Land-use change has a great impact on carbon
emissions, not only because of urbanization and consequent industrialization but also the
quantity and quality change of carbon-sink land [75]. In particular, the increase in urban
land and the decrease in forestland, grassland, and cultivated land together aggravate
carbon emissions [76]. Therefore, reasonable land-use planning is an effective way to
achieve carbon neutrality. Even though numerous models have been developed to support
land-use planning, there are still some issues to be addressed before applying them to
estimate the carbon emissions caused by land-use change.

Firstly, achieving carbon neutrality is usually a long-term and large-scale problem of
regional planning, in which many counties, cities, and even provinces are covered [44,45].
Although there are more and more studies modeling land-use change in a large-scale region,
the methods they use are always similar to those in small regions. With these methods, it is
usually difficult to depict large-scale land-use change. This is because large-scale urban
growth modeling needs to integrate regional interactions into the simulation process, which
is often omitted in urban growth modeling for small regions [47,53]. Some scholars have
recognized this issue and proposed several solutions to model large-scale land-use change,
such as incorporating urban flows and data fields into land-use modeling [54–56]. However,
these frameworks focus on the micro-allocation of cells. That is, they tend to quantify or
integrate the regional interactions into a spatial distribution to direct the state change of cells.
Although regional interactions do have an impact on the state change of cells, they have
a more direct and explicit effect on the scale development of cities within the large-scale
region. It is necessary to associate regional interactions with urban land quantity to depict
the complex relationships between sub-regions in large-scale urban growth modeling.
Furthermore, the interaction among sub-regions is not a simple bidirectional effect or a
hierarchical structure, it is a complex network coupling the above two [77]. Therefore,
this study proposes a network automata model to characterize the complex long-term
coevolution of urban scale in urban agglomeration. This model framework integrates the
historical inertia of urban development, urbanization law (the S-curve), and the effects of
the urban network. It is a novel solution to enhance the ability to simulate and predict
long-term quantity changes in large-scale regions, thus improving the suitability of land-use
models to support carbon-neutral planning.

Secondly, another problem will emerge as the region of urban growth modeling
becomes larger. That is, the difference between the development of sub-regions will be
more distinct in large-scale regions. This difference is mainly manifested in two aspects,
including quantity and driving mechanisms. As for the former, each sub-region has its
own urbanization stage, so different amounts of urban land are needed in different sub-
regions [31]. A partitioned modeling framework with accurate quantity control should
be coupled with the network automata model to describe the spatial heterogeneity of
urban growth quantity. Consequently, an appropriate zoning method is important for the
rationality and practicability of large-scale urban growth modeling. Recent studies on urban
growth modeling have introduced several zoning methods based on different features,
including topographical features, land-use attributes, and administrative division [78].
However, zoning based on topographical features or land-use attributes is defective in
practicability for land-use planning, and zoning based on the administrative division is
greatly affected by the size and administrative level of different sub-regions. Therefore, this
study adopts the ideas of NUTS (EU) and TPU (HK) to divide the GHMGBA into some
sub-regions with similar sizes. In terms of the latter, many studies expect to characterize
the spatial heterogeneity of driving mechanisms in a similar zoning way. However, zoning
can only depict the macro differences of sub-regions, and it is difficult to explore the spatial
heterogeneity of driving mechanisms at the micro-scale. In addition, a recent study has
proved that coupling the zoning strategy, accurate quantity control, and GWR modeling
will result in a CA model with better simulation performance [61]. Therefore, this study
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uses the GWR model to interpret the spatially heterogeneous driving mechanisms at the
micro-scale. By coupling the partitioned quantity control based on the network automata
model and the driving mechanisms derived by the GWR model, the spatial heterogeneity
of large-scale urban growth can be well interpreted in simulation and prediction, thus
improving the effectiveness of supporting carbon emission estimation.

Thirdly, no matter how good the performance of urban growth modeling is, it is
always difficult to completely model the real process, especially in the prediction of future
land-use patterns. This is because urban growth is a process greatly affected by human
decisions [79]. Many scholars expect to model the decision-making process of humans
to enhance the authenticity of the simulation. ABM modeling is a good example [46].
However, quantifying the decision-making process of humans to be model rules is very
challenging. That is also one of the reasons why the ABM model is not the most popular
land-use model. In addition, CA modelers have tried to incorporate some human decision-
making into urban growth modeling, such as controlling urban land quantity according to
land-use policies, adopting boundaries to restrict disorderly urban growth, and generating
random seeds in the planning area to guide the change of land-use patterns [80]. However,
these approaches cannot be integrated into the self-organization of urban growth, which
is the key process for producing and directly affecting land-use patterns. Therefore, this
study proposes a novel method to improve the neighborhood component that characterizes
self-organized urban growth by incorporating the distribution of key development areas
into its definition. This optimization will strengthen the effect of land-use planning in the
simulation and prediction of self-organized urban growth, thus improving the ability of
CA models to produce desired land-use patterns.

6. Conclusions

This paper proposes a framework based on urban growth modeling to provide early
warnings about the carbon-neutral pressure of urban agglomerations. The framework has
two core modules, the quantity module and the spatial module, to accomplish urban growth
simulation and prediction for large-scale regions over a long time period. The former
integrates the inertia of historical land-use change, the driving effects of the urbanization
law (S-curve), and the traction of the urban agglomeration network to model the long-term
quantity change of urban land in a large-scale region. The latter couples a partitioned
modeling framework, spatially heterogeneous rules, and quantified land-use planning
orientation to build a CA model to accurately allocate the urbanized cells in a large-scale
spatial domain. These two modules are both designed to improve the ability of the land-use
model to simulate urban growth on a large scale and over the long term, which are both
basic characteristics of carbon-neutral planning.

Taking the GHMGBA as an example, the historical urban growth from 2000 to 2010 is
used to calibrate the proposed framework, and its performance is validated by simulating
the urban growth from 2010 to 2020. The calibration and validation results indicate that
the proposed framework is reliable and well-performed both in the modeling of urban
land quantity and the spatial allocation of urbanized cells. With the proposed framework
and IPCC coefficients, the carbon emissions caused by the urban growth of the GHMGBA
from 2020 to 2050 are estimated. The results show that about 2.17 × 108 tons of carbon
will be released as a result of the urban growth of the GHMGBA due to two aspects: the
increase in carbon-source land and the decrease in carbon-sink land. Among the cities
in the GHMGBA, Guangzhou, Foshan, Huizhou, and Jiangmen are under great pressure
to achieve carbon-neutral targets in the future, while Hong Kong, Macao, Shenzhen, and
Zhuhai are relatively easy to bring up to the standard.

However, there are still some limitations in this study. First, urban growth is not only a
typical geographical process with significant spatial heterogeneity but also the evolution of
complex geographical systems, which have obvious nonlinearity. The proposed framework
is unable to capture the nonlinear driving mechanisms of urban growth. Second, the
sources of carbon emissions are very diverse. This paper only models the carbon emissions
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caused by land-use change with remote sensing data and socioeconomic data. In the
future, a comprehensive framework should be developed that incorporates additional
sources into the modeling to accurately predict carbon emissions. Finally, although the
performance of the proposed framework has been validated and assessed by the evidence,
its generalizability should be further tested in other study areas, and its performance needs
a comprehensive comparison with other techniques.
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