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Abstract: Information about the species composition of a forest is necessary for assessing biodiversity
in a particular region and making economic decisions on the management of forest resources. Recog-
nition of the species composition, according to the Earth’s remote sensing data, greatly simplifies
the work and reduces time and labor costs in comparison with a traditional inventory of the forest,
conducted through ground-based observations. This study analyzes the possibilities of tree species
discrimination in coniferous–deciduous forests according to Sentinel-2 data using two automated
recognition methods: random forest (RF) and generative topographic mapping (GTM). As remote
sensing data, Sentinel-2 images of the Raifa section of Volga-Kama State Reserve in the Tatarstan
Republic, Russia used: six images for the vegetation period of 2020. The analysis was carried out
for the main forest-forming species. The training sample was created based on the cadastral data
of the forest fund. The recognition quality was assessed using the F1-score, precision, recall, and
accuracy metrics. The RF method showed a higher recognition accuracy. The accuracy of correct
recognition by the RF method on the training sample reaches 0.987, F1-score = 0.976, on the control
sample, accuracy = 0.764, F1-score = 0.709.

Keywords: tree species; remote sensing; Sentinel-2; classification; random forest; generative
topographic mapping; forest inventory; Raifa forest

1. Introduction

Forests are a key element of many biogeocenoses and play an important role in the
functioning of the world’s socio-economic system [1]. Forest cover is constantly changing
under the influence of natural and anthropogenic factors. Monitoring the Earth’s surface
state is a key requirement for the study of global environmental changes [2]. Field mon-
itoring methods are expensive and labor-intensive, and so remote methods are actively
replacing them [3–5]. By improving the quality of satellite data in open access databases,
these methods have increasingly gained popularity.

Currently, remote sensing data obtained from the Sentinel satellites family have
the highest spatial resolution among Earth remote sensing data distributed on a non-
commercial basis [6]. Among them, the multispectral data of the Sentinel-2 satellites
(launched in 2015 and 2017) have the greatest potential for the task of recognizing the
species composition of forest communities [7–11]. They provide information in several
spectral ranges in the visible, near, and short-wavelength infrared parts of the spectrum
with a spatial resolution of 10–60 m. A higher accuracy composition of forest community
recognition from Sentinel-2 images than that from Landsat data were demonstrated in [12],
primarily due to the higher spatial resolution of the Sentinel-2 data.

A visually subjective interpretation of images can be relatively inaccurate, especially
with respect to tree species composition. There are many sources of potential errors,
including photointerpreter skills, image quality, and complexity of the forest species com-
position [13,14]. As such, automated recognition methods are more often used. Object-
based and pixel-by-pixel classification methods can be applied to recognize the species
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composition of forest communities. The object-oriented approach is applicable only to
high-resolution and ultra-high-resolution images, from which individual tree crowns can
be distinguished [15,16]. At a resolution of more than 20 m, the recognition accuracy drops
significantly, and recognition based on individual trees is no longer possible (spectral
mixing in pixels increases) [17]. In this case, the pixel classification is applied. This is based
on the analysis of averaged information for all objects that fall into the pixel, which is
characteristic of a certain plant community type. Sentinel-2 data can be attributed to high
spatial resolution data conditionally. Therefore, both the first and second approaches are
used in the analysis in question [3,9,11,16]. Two approaches (object-oriented and per-pixel)
were compared on the quality assessment basis of the species composition interpretation
from Sentinel-2 images at two test sites located in Central Europe [9]. Recognition of the
dominant species, with an accuracy of 85%, was the same in both approaches. However,
object-oriented methods require more time for data preparation than pixel-by-pixel recog-
nition methods. To recognize the species composition of forest communities, machine
learning methods are used, including the random forest (RF) method [18]. Over the past
two decades, the use of the RF classifier in the analysis of remote sensing data has attracted
increasing attention due to the results obtained with high classification accuracy and pro-
cessing speed [16,19–22]. In addition, this classifier can be successfully used to select and
rank variables. This is an important advantage given that the high dimensionality of remote
sensing data makes the selection of the most relevant variables a laborious [23], error-prone
and subjective task [24]. An approach using one of the new methods—convolutional neural
networks (CNN), combining per-pixel and object approaches in the learning process—was
applied to the tree species mapping of Russian boreal forests (Leningrad oblast) using
Sentinel-2 satellite images [25]. The proposed modification surpassed the widely used
per-pixel semantic segmentation model in terms of prediction quality (the average F1-score
metric was increased from 0.68 to 0.74).

In all studies using Sentinel-2 images, the importance of infrared and SWIR bands
is noted [7–11,26]. Some studies point to the special importance of the blue and green
wavelengths [26,27]. In [28], the authors discuss the special importance of the blue range for
the classification of coniferous trees due to their relatively lower photosynthetic activity in
blue light. As input data for recognition algorithms, in addition to the values in the image
bands, spectral indices NDVI (Normalized Difference Vegetation Index), EVI (Enhanced
Vegetation Index), etc., were used. Indices can be used as additional input data in the
analysis and interpretation (classification) of space images [29] and provide additional
information about the vegetation cover [7,11].

It is important to note that the satellite revisit time is 2–5 days, which makes it possible
to obtain several cloud-free images during the growing season. A number of works have
shown that the quality of classification can be improved by using multi-temporal data.
Certain vegetation species can be identified by their unique phenology [5]. The principle of
recognizing these objects and revealing their characteristics through remote sensing data
are based on differences in the spectral response of objects of different types on different
phenological dates [30]. The greatest differences are shown by tree species in spring and
autumn images, which is confirmed in [8,10,31,32]. In [32], the best results were achieved
when using three images, as well as in the study [8] when using five images during the
growing season. At the same time, it is recommended to avoid taking images in late
autumn, when most of the leaves have fallen (the influence of the background increases
and the separation of broad-leaved species becomes more problematic [33]).

Particular attention is given to the problem of creating training samples, since their
quality and representativeness significantly affect the accuracy of the results. The mate-
rials for the training sample can be ground data, collected in the field during the study
itself [10,31,32], as well as fund data of forest inventory [7–11,16,17]. Sometimes these
are orthophotomaps and ultra-high resolution satellite data, which are partially visually
interpreted [7,9,19,34,35]. In [36], they built models using inventory data and using field
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data, concluding that models trained in the field can outperform models trained from
inventory data, despite the larger sample size.

The aim of the study is to evaluate the automated recognition possibilities of the forest
communities’ species composition in the coniferous–deciduous forests of Russia using
Sentinel-2 satellite data. The usefulness of Sentinel-2 data, in combination with ground
forest inventory data, is investigated for predicting multivariate species composition using
the example of the Raifa section of Volga–Kama State Reserve (hereinafter referred to as the
Raifa forest), located in the Tatarstan Republic, Russia.

2. Materials and Methods
2.1. Study Area

The study object is the forest cover of the Raifa forest, with a total area of 3450 thousand ha.
The Raifa forest is located within the Western Kazan terraced valley region of East European
pine and broad-leaved pine subtaiga forests on high floodplain terraces of the Volga
(Figure 1) [37]. There is a temperate, continental climate, with warm summers, moderately
cold winters, and uneven precipitation. The geomorphological structure of the site with its
diversity contributes to the heterogeneity of the microclimate. Soils are represented by thick,
sandy podzol on loamy soils, sandy, soddy, strongly podzolic soils on loamy soils, and
sandy, loamy, soddy, weakly podzolic soils on sandy soils, as well as soddy, medium and
slightly podzolic light loamy soils [38]. The study area combines the formations of three
forest zones in the European part of Russia—the southern taiga, mixed and broad-leaved
forests [39]. Most of the tree species growing in the form of pure plantations and mixtures
in the study area are three main groups: small-leaved-birch, aspen; conifers—pine, spruce;
broad-leaved—linden, oak, maple [40]. The Raifa Forest is a protected forest, a part of the
Volga–Kama State Reserve which was organized in 1960.
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Figure 1. Study area: Raifa forest (section of Volga–Kama State Reserve).

2.2. Ground Data

The geo-information database of forest inventory data, created on the base of cadastral
descriptions of the Raifa forest in 2013 (provided by the administration of the Volga–Kama
Reserve), was used as the initial forest cover ground data. The database includes a vector
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map (layer) of forestry stands—a digitized and georeferenced plan of forest stands (on a
scale of 1:10,000) (Figure 2). For each stand, the database contains the following taxation
characteristics: composition of the forest community in the stand (percentages abundance
of the main tree species), average age, average diameter, the average height of trees, forest
quality, and others. The study used information about the upper (first) forest tier of
1972 stands of the Raifa forest. According to the forest cadastral data, there are 13 species
of trees here (Table 1, Figure 3). Pine grows on most of the territory (53.6%). Birch, linden,
and spruce are quite abundantly represented. Ground data were used to create a training
sample and also to test the quality of the remote sensing data interpretation.
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Figure 2. Map of forestry stands of the Raifa forest: (a) study area; (b) map fragment.

Table 1. The presence of tree species in the Raifa forest.

Tree Species Number of Stands Where the
Species Is Present

Number of Stands with 100%
Presence of the Species

Wych elm (Ulmus glabra Huds.) 17 0
Silver birch (Betula pendula Roth., B. pubescens Ehrh) 1171 69

Siberian larch (Larix sibirica Ledeb.) 18 2
Scotch pine (Pinus sylvestris L.) 1416 375

Sallows (Salix sp.) 13 3
Poplar (Populus sp.) 5 0

Norway maple (Acer platanoides L.) 33 0
Little-leaf linden (Tilia cordata Mill.) 609 8

Finnish spruce (Picea x fennica (Redel) Kom.) 719 1
Common oak (Quercus robur L.) 74 2

Common aspen (Populus tremula L.) 22 1
Common alder (Alnus glutinosa (L.) Gaertn.) 74 4

Cedar (Cedrus sp.) 3 0
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Figure 3. The abundance of tree species in the Raifa forest.

2.3. Remote Sensing Data

For the study, we used remote sensing data obtained from the Sentinel-2 satellites. We
used data with a Level-2A processing level (atmospherically corrected) [41]. Sentinel-2
Level-2A data for the study area is available from the second half of 2019 only. We used
images for the 2020 growing season. In our case, the study area is located in the protected
zone. The reserve regime provides full protection against active forest management: clear
and selective cutting, and so on. There were not any forest fires and significant climate
disasters (windbreaks, windblows) in the Raifa Forest over the past decade also. There are
only background dynamic processes that take place in the protected forest that lead to the
relative stability of tree species composition of forest communities, no sharp changes from
year to year in the upper forest tier. In this regard, we consider that the seven-year shift
between the date of ground surveys (2013) and the date of remote sensing observations
(2020) should not become critical.

Sentinel-2 Level-2A data are data on the reflectances of the earth’s surface (values of
Bottom-Of-Atmosphere (BOA) reflectance); these data are organized into ten spectral bands.
The spatial resolution is 10 m in four spectral bands (Band 2: Blue, 458–523 nm; Band 3:
Green, 543–578 nm; Band 4: Red, 650–680 nm; Band 8: Near-infrared (NIR), 785–900 nm).
Additionally, the spatial resolution is 20 m in six bands (Band 5: Red-edge I, 698–713 nm;
Band 6: Red-edge II, 733–748 nm; Band 7: Red-edge III, 773–793 nm; Band 8a: Narrow
Near-infrared (NNIR), 855–875 nm; Band 11: Shortwave infrared-1 (SWIR1), 1566–1651 nm;
Band 12: Shortwave infrared-2 (SWIR2), 2100–2280 nm). Cloudless images, covering the
study area and closest in time to the ground Raifa forest inventory, were selected from
the Copernicus Open Access Hub server [42]. A total of 6 images for the 2020 growing
season were used (Table 2). Dates of remote sensing data: 9 May, 21 June, 8 July, 5 August,
24 September, and 29 October 2020.

Spectral vegetation indices are often used as additional input data in the analysis
and interpretation of vegetation cover using remote sensing data; these indices can pro-
vide additional information for recognition algorithms [7,11,29]. That is why, for each of
the 6 images, a raster with vegetation index NDVI = (NIR − Red)/(NIR + Red) for the
corresponding date was calculated as an additional spectral variable, where NIR is the
near-infrared band (785–900 nm), and Red is the red band (650–680 nm).

For further processing and analysis, a composite was prepared to contain 66 raster
layers: 10 spectral bands of 6 multi-temporal images and 6 corresponding NDVI vegetation
indices (for the corresponding dates). At the stage of pre-processing, all the raster layers
were masked by the study area border.
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Table 2. Sentinel-2 images. Spectral bands: Band 2—Blue, 458–523 nm; Band 3—Green, 543–578 nm;
Band 4—Red, 650–680 nm; Band 5—Red-edge I, 698–713 nm; Band 6—Red-edge II, 733–748 nm;
Band 7—Red-edge III, 773–793 nm; Band 8—Near infrared (NIR), 785–900 nm; Band 8A—Narrow
Near infrared (NNIR), 855–875 nm; Band 11—Shortwave infrared-1 (SWIR1), 1566–1651 nm;
Band 12—Shortwave infrared-2 (SWIR2), 2100–2280 nm.

File Name Date 10 m Bands 20 m Bands Cloud Coverage
for Study Area Processing Level

S2A_MSIL2A_20200509T075611_N0214
_R035_T39VUC_20200509T111003 2020.05.09 2,3,4,8 5,6,7,8A,11,12 0 L2A

S2A_MSIL2A_20200621T080611_N0214
_R078_T39VUC_20200621T112622 2020.06.21 2,3,4,8 5,6,7,8A,11,12 0 L2A

S2A_MSIL2A_20200708T075611_N0214
_R035_T39VUC_20200708T111246 2020.07.08 2,3,4,8 5,6,7,8A,11,12 0 L2A

S2B_MSIL2A_20200805T080609_N0214
_R078_T39VUC_20200805T105558 2020.08.05 2,3,4,8 5,6,7,8A,11,12 0 L2A

S2B_MSIL2A_20200924T080649_N0214
_R078_T39VUC_20200924T102247 2020.09.24 2,3,4,8 5,6,7,8A,11,12 0 L2A

S2A_MSIL2A_20201029T081051_N0214
_R078_T39VUC_20201029T104651 2020.10.29 2,3,4,8 5,6,7,8A,11,12 0 L2A

2.4. Training Sample

The list of recognizable classes (tree species) and the reference sites of their presence
were determined based on the ground study data. The list of classes includes birch, spruce,
linden, alder, and pine. Rare species (<1%) are not included in the list of recognizable
classes. Pine, which is widely represented in the study area, is divided into two subclasses:
“natural old-growth forest” and “plantations at the felling site”. To determine the reference
sites—the locations of certain tree species—stands with a homogeneous composition of
the forest community were selected. So, for birch and two types of pine, stands were
considered as homogeneous where a 100% presence of one of these species was recorded in
the upper tier. Additionally, for alder, spruce and linden, which are represented on mixed
stands in the study area, stands were taken with one of these species predominant, namely,
with at least 80% presence. In total, the data set of reference sites contains 122 stands with
a total area of 230 ha—Table 3. The pixels, corresponding to the reference sites, define
a multidimensional training sample: for them, belonging to the recognizable classes is
known, and the values of the layers of the analyzed composite in these pixels serve as
the reference values of the corresponding classes. The control sample was created only
for species that are abundantly represented in the territory—birch and two subclasses of
pine—using stands with 100% presence of each of these species that were not included
in the training sample (Table 3). Alder, spruce and linden grow on mixed stands in the
study area. There are few stands where these species predominate, and all of them were
included in the training sample so that it was representative (sufficient sample size) and
preliminarily balanced.

2.5. Spectral Properties Analysis

The analysis of the spectral properties of the selected forest-forming species was
carried out on the basis of spectral signature curves construction. This curve shows the
relationship between the wavelength and the reflectance of the object under study. The
spectral curve of vegetation cover objects has a typical shape, but some differ for different
types of objects (for example, different tree species). It also depends on the survey date
due to the phenological variability of vegetation cover properties. An analysis of the
spectral curves features makes it possible to identify the most informative spectral bands by
determining at what wavelengths, and on what phenological dates, the greatest differences
occur between the reflectances of different tree species.
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Table 3. Trees species in the training and control samples.

Tree Species Short Name Number of Stands in
the Training Sample

Total Area of
Stands (ha) in the
Training Sample

Number of Stands in
the Test Sample

Total Area of
Stands (ha) in the

Test Sample

Common alder
(Alnus glutinosa (L.) Gaertn.) alder 16 21 - -

Finnish spruce
(Picea x fennica (Redel) Kom.) spruce 11 7 - -

Little-leaf linden (Tilia cordata Mill.) linden 17 30 - -

Silver birch (Betula pendula Roth.) birch 27 26 42 28

Scotch pine (Pinus sylvestris L.) pine o. 24 98 137 316Old-growth natural forest/stands

Scotch pine (Pinus sylvestris L.) pine y. 27 48 116 146Pine plantations on at the felling
site

Total: 122 230 295 490

2.6. Recognition Methods

To recognize the species composition of forest communities, we used two modern mod-
eling methods, both of which are actively used in the analysis and interpretation of remote
sensing data: the random forest (RF) and the generative topographic mapping (GTM).

The RF method, proposed by Leo Breiman [18], has become widely used in solving
pattern recognition problems and is currently one of the most popular methods of the
supervised classification and construction of nonparametric regression. This method is an
ensemble classifier. That is, it is a set of classifiers (decision trees), each of which generates
its own solution, and the final classification is obtained by “voting” different classifiers.
The decision trees are trained on various data sets, obtained from the training sample using
the bootstrap aggregation (bagging) procedure. Moreover, the decision trees use various
features, randomly selected from the original set of features, to make decisions. The method
is resource-intensive but quite simple to use—its implementation requires two parameters
to be set: the number of classifiers (decision trees) and the number of features randomly
selected when branching each decision tree. Before building classification models, the
VSURF (variable selection using random forests) function is used to reduce the number of
input variables by selecting the most important variables [43]. The VSURF provides two
variables’ subsets. The first, called «interpretation», shows variables highly related to the
response variable (even with high redundancy in this subset) for interpretation purposes.
The second, called «prediction», is a sufficient parsimonious (redundancy is eliminated)
subset of important variables, designed to provide a good prediction of the response
variable. To implement the RF algorithm, as well as to preprocess data and analyze the
results, software modules were developed in the R language [44] using rgdal [45], raster [46],
RandomForest [47], and VSURF [43] packages.

The GTM method is a development of Kohonen’s self-organizing neural networks
(Self Organizing Map, SOM) [48–50] and allows us to obtain a predictive model for the
probabilities of thematic classes. Thematic classification by this method is carried out in
two stages. At the first one, an unsupervised classification of pixels is performed, based on
the similarity of their spectral characteristics, generating a given (large enough) number of
spectral classes. The method makes it possible to build the ordination of these classes—a
mapping of classes in a two-dimensional space, which allows the tracking of the “mutual
position” of classes in the feature space and, thereby, the approximating a continual change
in the properties of objects. The mapping of classes to the ordination plane is performed
with the preservation of topological properties (that is, classes that are similar in the feature
space will be located close to the ordination plane). To convey the degree of similarity of
classes, their visualizations are rendered in the form of a minimum spanning tree and its
Sammon mapping [51]. In the second stage, based on the training sample, the thematic
interpretation (calibration) of spectral classes is performed with the construction of a
nonparametric regression model of thematic classes on spectral classes. The result of the
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calibration is a probability distribution of thematic classes for each spectral class. The GTM
method was implemented using the «Scanex Image Processor» program for processing
Earth remote sensing data (ThematicPro module) [52].

2.7. Accuracy Assessment

To assess the classification quality considered two ways. In the first case, a pixel-
by-pixel comparison of the classification results, conducted with the training and control
samples, was performed. A pixel-by-pixel comparison was carried out based on the
contingency matrices and the calculation of such classification quality metrics as recall,
precision, F1-score, accuracy:

TPR =
TP

TP + FN
(1)

PPV =
TP

TP + FP
(2)

F1 =
2 × TPR × PPV

TPR + PPV
(3)

accuracy =
TN + TP

TP + FN + FP + TN
(4)

where TPR is a true positive rate or recall, PPV is positive predictive value or precision,
TP is True Positive (the number of correctly classified pixels of a given class), FN is False
Negative (the number of pixels of a given class missed by the model), FP is False Positive
(the number of pixels classified as a given class while being of another class), and TN is
True Negative (the number of correctly classified pixels do not belong to the given class).

The second way was to compare the model’s (obtained from the results of recognition)
and the real (terrestrial, presented in the forest taxation database) percentage compositions
of tree species on stands. For each species, statistical characteristics of errors (differences
between real and model percentages of species in the stands) were calculated: mean error
(ME), mean absolute error (MAE), root mean square error (RMSE), and weighted average
percentage error (WAPE):

ME =
∑N

i=1(procreal,i − procmodel,i)

N
(5)

MAE =
∑N

i=1

∣∣∣procreal,i − procmodel,i

∣∣∣
N

(6)

RMSE =

√
∑N

i=1(procreal,i − procmodel,i)

N

2

(7)

WAPE =
∑N

i=1

∣∣∣procreal,i − procmodel,i

∣∣∣
∑N

i=1 procreal,i
(8)

where N is the number of stands. In addition, for each stand, the distance between the
model «forest stand formula» and real «forest stand formula» was calculated using a metric
such as the Manhattan distance:

Manhattan distance = ∑n=5
j=1

∣∣∣procreal,j − procmodel,j

∣∣∣ (9)

where n is the number of tree species.

3. Results
3.1. Spectral Properties of the Studied Tree Species

The spectral curves were constructed based on the pixels of the training sample of
six Sentinel-2 images, obtained on different phenological dates, and generalized using the
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mean for the studied species. This is shown in Figure 4. The greatest differences between
the reflectances of tree species are observed in the red-edge (Band 6, Band 7) and near-
infrared (Band 8, Band 8a) bands in all images. Differences are practically not observed in
the visible part of the spectrum. Far infrared (SWIR Band 11, Band 12) bands provide useful
information at the beginning and end of the growing season. In the summer months, the
spectral curves of coniferous and deciduous species are quite different from each other—the
reflectances of coniferous species in all bands are lower than those of deciduous species.
In autumn, the situation changes to the opposite. Indeed, for linden, this already so in
September, whereas for alder and birch, this is so in October. Between themselves, the
curves of hardwoods are less distinguishable. The greatest difference between linden and
other deciduous trees can be seen on the August and September curves, while alder and
birch in these months are practically indistinguishable from each other in terms of spectral
properties. The ratio between the deciduous curves (higher–lower) varies depending on the
date. That is, for the separation of hardwoods, the individuality of the seasonal dynamics
of their reflectances (June, July, August, September) is important. The most informative
data point for the separation of different ages pine subclasses is the October image, while
in the summer months their reflectances practically coincide. The spectral curve of spruce
noticeably separates from the curves of other species on the graphs of summer images. In
our case, the May image turned out to be the least informative, due to its too early date
(9 May), before the start of the “green wave” (usually, images from the second half to the
end of May are very useful for recognizing tree species). An analysis of the separability
of the NDVI empirical distributions for different tree species (Figure 5) showed that two
pine subclasses are best separated from other species by NDVI, calculated from June and
October images. The least significant images for the recognition of tree species are the May
and September NDVI, and the most significant are the July and August ones.
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The analysis results of the tree species’ spectral reflective properties, the weights of
each of the 66 features included in the satellite composite (for 10 spectral bands and NDVI
of 6 multi-temporal images) were set expertly—as shown Table 4. These weights were
taken into account at the classification stage.

Table 4. Weights of spectral bands.

Band May June July August September October

Band 2—Blue 0.5 0.5 0.5 0.5 0.5 0.5
Band 3—Green 0.6 0.6 0.6 0.6 0.6 0.6
Band 4—Red 0.5 0.5 0.5 0.5 0.6 0.8

Band 5— Red-edge I 0.8 0.6 0.6 0.6 1.0 0.8
Band 6— Red-edge II 0.9 1.0 1.0 1.0 1.0 1.0
Band 7— Red-edge III 0.9 1.0 1.0 1.0 1.0 1.0

Band 8—NIR 0.9 1.0 1.0 1.0 1.0 1.0
Band 8A—Narrow NIR 0.9 1.0 1.0 1.0 1.0 1.0

Band 11—SWIR1 0.9 0.9 0.9 0.9 0.9 1.0
Band 12—SWIR2 0.8 0.6 0.6 0.6 0.8 1.0

NDVI 0.5 0.8 1.0 1.0 0.6 0.8

3.2. Automated Recognition of Tree Species

Pixel classification, with the allocation of six target classes (birch, linden, alder, spruce,
two subclasses of pine), was implemented by two methods—RF and GTM. The prepared
composite of multi-temporal Sentinel-2 data with 66 layers (variables) and the training
data set were fed into the algorithms as input. In both cases, the training data set was
balanced using sampling algorithms. The significance of predictors was also taken into
account. In the case of the RF method, the most important variables were selected using
the VSURF function [43]. In our case, these are Band 5, Band 6, Band 7 from July image to
October image, Band 12 on May image and on October image, Band 3 on July image, NDVI
on June, August and October images. For the GTM method, the significance of variables
was set by weights (Table 4). The parameters of the RF method are set as follows: the
number of decision trees is 500 (which, as many studies have shown [53,54], is sufficient
to stabilize errors), and the number of features randomly selected for each tree from the
original set of features is 8 (square root of the total number of variables) [55]. For the
GTM method, the number of allocated spectral classes was 225 classes (15 × 15 grid). The
results of recognition are presented in the form of 2 raster layers, the pixels of which are
assigned the codes of classes of recognized species (birch, linden, alder, spruce, two pine
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subclasses), obtained by two methods (RF and GTM), respectively. Figure 6 shows maps of
the classification results.
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3.3. Recognition Quality Assessment

To assess the quality of interpretation, each of the 2 resulting rasters was pixel by pixel
compared with the training and control samples. The recognition quality metrics (1)–(4)
calculated based on contingency matrices are shown in Table 5.
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Table 5. Accuracy metrics of automated tree species recognition.

RF/Training Data: GTM/Training Data:

Tree Species Recall Precision F1-Score Recall Precision F1-Score

Alder 0.977 0.988 0.983 0.665 0.563 0.610
Spruce 0.899 0.974 0.935 0.575 0.509 0.540
Linden 0.994 0.991 0.992 0.948 0.914 0.931
Birch 0.971 0.967 0.969 0.531 0.747 0.621

pine y. 0.979 0.994 0.986 0.792 0.762 0.777
pine o. 0.998 0.988 0.993 0.891 0.895 0.893

macro avg 0.970 0.983 0.976 0.734 0.732 0.729
accuracy 0.987 0.829

RF/Test Data: GTM/Test Data:

Tree Species Recall Precision F1-score Recall Precision F1-score

Birch 0.694 0.606 0.647 0.546 0.600 0.572
pine y. 0.607 0.706 0.652 0.635 0.523 0.574
pine o. 0.849 0.805 0.826 0.701 0.779 0.738

macro avg 0.717 0.706 0.709 0.628 0.634 0.628
accuracy 0.764 0.673

The second way for assessing the quality of interpretation was a comparison of
data in stands: ground data (represented in the forest taxation database) and model data
(obtained from recognition results). Preliminarily, both resulting classification rasters were
sampled on the vector layer of the Raifa Forest stands, and the model percentages of the
recognizable species present in each of the 1972 stands were calculated, i.e., percentages
of species according to the interpretation results. The statistical characteristics (5)–(7) of
errors (differences between real and model percentages of species in the stand) are given in
Table 6. Figure 7 shows frequency histograms of these errors. Figure 8 shows frequency
histograms of the Manhattan distance (9) values between real and model «forest stand
formulas». Thematic maps of the spatial distribution of the real (based on ground data)
and predicted (model) percent abundance values of tree species in stands in Raifa forest
are given in Figure 9. These maps allow you to assess the quality of interpretation visually,
as well as to see the spatial specifics of the agreement between the model and real values.

Table 6. Comparison of real and model percent abundance values of tree species in stands.

Tree Species Mean of
Real Percent

Mean of Model
Percent ME MAE RMSE WAPE Pearson Correlation

Coefficient

RF Model

Alder 1.9 5.2 −3.4 4.1 10.3 2.23 0.70
Spruce 6.3 4.5 1.8 7.0 12.6 1.10 0.39
Linden 13.6 13.1 0.5 7.1 15.2 0.52 0.83
Birch 22.2 19.4 2.8 14.3 22.7 0.64 0.68
Pine 53.4 57.8 −4.4 13.8 22.9 0.26 0.86

GTM Model

Alder 1.9 7.1 −5.3 6.6 14.9 3.56 0.45
Spruce 6.3 11.5 −5.2 11.9 19.8 1.88 0.21
Linden 13.6 13.8 −0.2 8.0 17.2 0.59 0.81
Birch 22.2 10.2 12.0 16.8 27.0 0.76 0.60
Pine 53.4 57.3 −3.9 14.1 23.4 0.27 0.85
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Figure 9. Thematic maps of the spatial distribution of real (according to ground inventory data) and
predicted (according to models based on remote sensing Sentinel-2 data) percent abundance values
of tree species in stands in Raifa forest: (a) pine, real data; (b) pine, RF model; (c) pine, GTM model;
(d) linden, real data; (e) linden, RF model; (f) linden, GTM model.

4. Discussion
4.1. Validation of Results

In general, the RF model outperformed the GTM model (Table 5). The overall accuracy
of correct recognition of six tree species by the RF method reaches 0.987 on the training data
set, while the GTM method demonstrates an accuracy of 0.829. Such a results correctness
measure is the F1-score, which makes it possible to evaluate the accuracy and sensitivity
of the method in aggregate (harmonic mean of precision and recall), for RF is 0.976, for
GTM is 0.729. On the control data set for three classes (birch and two pine subclasses), the
recognition accuracy was 0.764 for RF and 0.673 for GTM, and the F1-score was 0.709 and
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0.628, respectively. For species that are less frequently represented, both in the entire study
area and in the training sample (alder, spruce), the GTM method performed noticeably
worse than RF (Table 5). This seems to be due to insufficient effort in balancing the training
data when implementing the GTM algorithm, and training with rebalancing can improve
the quality of this model. A comparison of the accuracy metrics, calculated on the training
data, with ones on the test data characterize a property of the model such as overfitting
(overtraining). These kinds of issues should be avoided. A model is said to be overfitted
when it shows pretty good performance for the training data set (fit) but gives poor accuracy
for the test data set (predict). When overfitting, the model tries to fit the training data
exactly and ends up modeling noise/random fluctuations, defeating the modeling purpose.
In our case, the RF-model shows some overfitting (Table 5), but it could not be reduced
without reducing the accuracy of the prediction. The GTM-model is less overfitted.

In addition to comparing the results with the training and control samples, we com-
pared the results of interpretation with the data of the ground inventory of the Raifa forest.
That makes it possible to assess agreement throughout the study area. We compared real
(according to ground inventory data) and predicted (according to models based on remote
sensing Sentinel-2 data) values of the percent abundance of tree species in stands—Table 6,
Figures 7–9. The correlation coefficients of real and model percentages of species in the
stands allow us to speak about the consistency of real and predicted values. The corre-
lation of the model percentage of pine and linden in the stands with real percentages in
both methods (RF and GTM) is quite high (>0.8). The correlation coefficient is relatively
high for birch (RF—0.68 and GTM—0.6) and alder for the RF method (0.7). At the same
time, the accuracy of predicting the percentage of a species in a stand (characterized by
the MAE, RMSE, and WAPE indicators) is significantly better by the RF method than the
GTM method for all species. In general, for the entire territory, both methods somewhat
overestimate the presence of pine (RF—ME = −4.4, GTM—ME = −3.9), and underestimate
the presence of birch (RF—ME = 2.8, GTM—ME = 12). The RF method coped much better
with the prediction of the percentage of spruce and alder, rarer species for the territory,
on stands.

Quality control of the prediction results of the species percentages in total can be as-
sessed using the similarity metrics of the «forest stand formulas»—real formula (according
to ground inventory data on the stands) and model formula (according to models on base
remote sensing Sentinel-2 data). As such a metric, we used the Manhattan distance—(9).
This indicator can take a value from 0 to 200 (0—if the real and model formulas are the
same; 200—with the maximum difference between reality and forecast). The closer the
value is to 0, the smaller the «distance» between the formulas, and hence the interpretation
error. The histograms (Figure 8) clearly demonstrate the degree of similarity of the stand
formulas: the distribution has a pronounced right-sided asymmetry, and most of the values
are close to zero. That is, the model and real forest stand formulas are basically close. Here,
it can also be observed that the results obtained by the RF method are more accurate than
the results of GTM.

For a comparison in geographic space, we mapped the forest inventory data and the
predicted abundances (using both methods RF and GTM) of pine and linden in the Raifa
forest (Figure 9). It can be seen how the obtained results correlate with the forest taxation
information geographically.

4.2. Limiations and Further Study

A comparison of our results with other similar studies [8–10,25,36], devoted to auto-
mated recognition of multivariate tree species composition of forest communities using
Sentinel-2 satellite data, showed a similar quality of correct recognition. The review of these
studies shows that the overall accuracy of tree species recognition using Sentinel-2 data can
be characterized by values in the range of 0.7–0.9, depending on the study area and the
study design. Usually, differences in the success of classifying certain species are explained
by the quality of the created training samples, the small size of the training data set, the
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similarity of the spectral characteristics of individual species, as well as their unbalanced
representation in the training data [8,10,56–58]. The source of errors is also the diversity
within each forest species: spectral characteristics differ for different ages of trees and
depend on habitat conditions. In addition, species tend to grow in a mixture, and we
will have a mixture of the spectral properties of several species in a pixel with a spatial
resolution of 10 m. It should be noted that the error of estimating the percent abundance
of one or another tree species in the stand increases with an increase in the heterogeneity
of the species composition of the community. So, for all stands in general, the weighted
absolute percentage error (WAPE) was: linden—0.52, birch—0.64, pine—0.26. However, if
we take into account only stands with a homogeneous composition of the forest community
(those where >90% presence of only one specific type), then the WAPE error becomes
smaller: linden—0.10, birch—0.32, pine—0.05. That is, the more heterogeneous in species
composition of the community is, the less accurately its species composition is recognized,
and, consequently, the ratio of the percent abundance of species in the community. The
limiting factor here, first of all, is the spatial resolution of the Sentinel-2 data (10 m), which
does not a allow more accurate recognition of the species composition of trees in mixed
communities. Additionally, as already mentioned, the source of errors is the fact that the
spectral properties of species depends on many factors, including the age and ecological
conditions of trees, habitat conditions, the effects of shading the crowns of some species
by others, undergrowth influence on upper-tier species spectral characteristics, etc. In
addition, the values of the error indicators could also be affected by possible errors in the
inventory ground data: incorrectly identified species and boundaries of stands, inaccuracies
in determining the ratios of species in stands, etc. In our case, another factor is the time gap
between the ground inventory (2013) and the Sentinel-2 survey (2020). Even though sharp
anthropogenic changes in the vegetation cover under the conditions of the reserve are
excluded, local disturbances associated with natural causes (windfalls, animal activity, etc.)
still occur.

Thus, the assessment of the quality of tree species recognition, based on Sentinel-2
multi-temporal multispectral data, showed that the constructed models generally demon-
strate a high degree of agreement with ground data on the territory of the Raifa Forest. The
results obtained by the RF method showed higher accuracy. Although the GTM method
demonstrates lower recognition accuracy than RF, it has a useful property—the ability to
give an answer in the form of a probability distribution of species on a particular pixel,
which provides additional opportunities for detailed analysis of forest composition. In or-
der to further improve the quality of models, a promising approach is to adjust the training
set. Although even fairly old forest inventory information can be used to train models, it
can be expected that a smaller time gap between the ground data used in training and the
Sentinel-2 satellite imagery will lead to improved recognition quality. Another possibility
for improving the quality of recognition may be the use of the convolutional neural network
(CNN) method for these purposes, which has shown good results in a number of studies.
The relative rarity of ground updates of forest inventory data (once every 10 years and
less often for protected areas), and the fact that new Sentinel-2 satellite data has become
permanently available, testifies to the potential usefulness of our Sentinel-2 data automated
interpretation approach for forest data updates. Information from Sentinel-2 can be used
to characterize forests in combination with field data. The possibilities include checking
model consistency.

5. Conclusions

The study used multi-temporal multispectral remote sensing data from the Sentinel-2
satellites for the automated recognition of tree species composition of forest communities.
Additionally, NDVI rasters were calculated for each survey date. The training sample was
created using forest inventory data: by pixels of stands with a homogeneous composition
of the forest stand (where only one predominant species was observed in the upper tier).
Recognition was carried out by two methods of automatic classification: RF and GTM. The



Remote Sens. 2023, 15, 329 18 of 20

RF method showed a higher recognition accuracy. The accuracy of correct recognition of
six species (birch, spruce, linden, alder, pine/natural old-growth forest, pine/young at the
felling site) by the RF method, estimated on the training set, reaches 0.987, F1-score = 0.976.
In the control sample, for three classes (birch and two sub-classes of pine), accuracy = 0.764
and F1-score = 0.709. Throughout the study area, the correlation between real and predicted
percentage abundance of species in the stands allows us to talk about the consistency of
real and model stand formulas. The error in estimating the percentage abundance of one or
another tree species on a stand increases with an increase in the heterogeneity of the species
composition of the community. Both the optimization of the training set and the testing
of new recognition methods based on remote sensing are promising means of improving
models. The considered approach can be useful for updating forest inventory data and for
checking the information on the ground forest inventory.
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3. Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on

Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [CrossRef]
4. Felbermeier, B.; Hahn, A.; Schneider, T. Study on User Requirements for Remote Sensing Applications in Forestry. In Proceedings

of the ISPRS TC VII Symposium—100 Years ISPRS, Vienna, Austria, 5–7 July 2010; Volume 38, pp. 210–212.
5. Xie, Y.; Sha, Z.; Yu, M. Remote Sensing Imagery in Vegetation Mapping: A Review. J. Plant Ecol. 2008, 1, 9–23. [CrossRef]
6. European Space Agency Sentinel-2 User Handbook: Standard Document 2015. Available online: https://sentinel.esa.int/

documents/247904/685211/sentinel-2_user_handbook (accessed on 29 November 2022).
7. Bolyn, C.; Michez, A.; Gaucher, P.; Lejeune, P.; Bonnet, S. Forest mapping and species composition using supervised per pixel

classification of Sentinel-2 imagery. Biotechnol. Agron. Soc. Environ. 2018, 22, 172–187. [CrossRef]
8. Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote

Sens. 2019, 11, 1197. [CrossRef]
9. Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central

Europe. Remote Sens. 2016, 8, 166. [CrossRef]
10. Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794.

[CrossRef]
11. Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree

Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [CrossRef]
12. Addabbo, P.; Focareta, M.; Marcuccio, S.; Votto, C.; Ullo, S.L. Contribution of Sentinel-2 Data for Applications in Vegetation

Monitoring. Acta Imeko 2016, 5, 44. [CrossRef]
13. Pinto, F.; Rouillard, D.; Sobze, J.-M.; Ter-Mikaelian, M. Validating Tree Species Composition in Forest Resource Inventory for

Nipissing Forest, Ontario, Canada. For. Chron. 2007, 83, 247–251. [CrossRef]
14. Magnussen, S.; Russo, G. Uncertainty in Photo-Interpreted Forest Inventory Variables and Effects on Estimates of Error in

Canada’s National Forest Inventory. For. Chron. 2012, 88, 439–447. [CrossRef]
15. Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree Species Classification Using Hyperspectral Imagery: A Comparison of Two

Classifiers. Remote Sens. 2016, 8, 445. [CrossRef]

https://rscf.ru/project/22-17-00025/
http://doi.org/10.1016/j.rse.2016.08.013
http://doi.org/10.1093/jpe/rtm005
https://sentinel.esa.int/documents/247904/685211/sentinel-2_user_handbook
https://sentinel.esa.int/documents/247904/685211/sentinel-2_user_handbook
http://doi.org/10.25518/1780-4507.16524
http://doi.org/10.3390/rs11101197
http://doi.org/10.3390/rs8030166
http://doi.org/10.3390/rs10111794
http://doi.org/10.3390/rs10091419
http://doi.org/10.21014/acta_imeko.v5i2.352
http://doi.org/10.5558/tfc83247-2
http://doi.org/10.5558/tfc2012-080
http://doi.org/10.3390/rs8060445


Remote Sens. 2023, 15, 329 19 of 20

16. Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution
8-Band WorldView-2 Satellite Data. Remote Sensing 2012, 4, 2661–2693. [CrossRef]

17. Krahwinkler, P.; Rossmann, J. Tree Species Classification and Input Data Evaluation. Eur. J. Remote Sens. 2013, 46, 535–549.
[CrossRef]

18. Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [CrossRef]
19. Mellor, A.; Haywood, A.; Stone, C.; Jones, S. The Performance of Random Forests in an Operational Setting for Large Area

Sclerophyll Forest Classification. Remote Sens. 2013, 5, 2838–2856. [CrossRef]
20. Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for Fully Polarized SAR Image Classification Using

Polarimetric and Spatial Features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [CrossRef]
21. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a

Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]
22. Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
23. Körting, T.S.; Garcia Fonseca, L.M.; Câmara, G. GeoDMA—Geographic Data Mining Analyst. Comput. Geosci. 2013, 57, 133–145.

[CrossRef]
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