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Abstract: Earth observation data are useful to analyze the impact of climate-related variables on
geomorphological processes. This work aims at evaluating the impact of rainfall on slow-moving
landslides, by means of a quantitative procedure for identifying satellite-based displacement clusters,
comparing them with rainfall series, and applying statistical tests to evaluate their relationships at the
regional scale. The chosen study area is the Basento catchment in the Basilicata region (southern Italy).
Rainfall series are gathered from rain gauges and are analyzed to evaluate the presence of temporal
trends. Ground displacements are obtained by applying the P-SBAS (Parallel Small BAseline Subset)
to three datasets of Sentinel-1 images: T146 ascending orbit, and T51 and T124 descending orbits, for
the period 2015-2020. The displacement series of the pixels located in areas mapped as landslides
by the Italian Landslide Inventory and sited within rain gauge influence regions (defined as 10 km
circular buffers) are studied. Those displacement series are analyzed and compared to the rainfall
series to search for correlations, by employing statistical and non-parametric tests. In particular,
two landslides are selected and investigated in detail. Significant results were obtained for the T124
descending orbit for both landslides, for a 3-day cumulative rainfall and a 7-day delay of the slope
response. Challenges in the whole procedure are highlighted and possible solutions to overcome
the raised problems are proposed. Given the replicability of the proposed quantitative procedure it
might be applied to any study area.

Keywords: Sentinel-1; statistical test; climate-related hazard; remote sensing; southern Italy

1. Introduction

Climate variables and their changes have effects on landslide activity and slope
stability [1]. This is becoming even more evident under the effects of global warming
and resulting climate change [2,3]. However, quantifying the type, extent, magnitude and
direction of the climate changes on the slope stability remains difficult. This is mostly due
to the fact that climate and landslides operate at different spatial and temporal scales and
reconciling these differences is difficult and might produce uncertain results [4,5].

Differential Interferometric Synthetic Aperture Radar (DInSAR) allows identifying
ground displacements over large areas, and studying the landslide activity at different time
scales. Since the 1990s, the DInSAR technology has been used to measure the displacement
of the earth’s surface due to volcanic disturbances, seismic phenomena and subsidence [6].
Indeed, DINSAR allows the measurement of the deformation component along the radar
line of sight (LOS) with large spatial coverage capability and accuracy of a fraction of
the wavelength of the transmitted microwave signals (from a few to tens of cm). This
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result is achieved by exploiting the phase difference (interferogram) between pairs of
complex SAR images [7], usually referred to as Single Look Complex (SLC). Over the last
decades, thanks to the availability of advanced SAR constellations (e.g., COSMO-SkyMed,
TerraSAR-X/TanDEM-X, Sentinel-1) with improved capabilities in terms of revisit time,
spatial resolution and ground coverage, DINSAR technology has been largely applied
also to monitor over time surface deformations in several deformation scenarios, such
as landslides, built-up environment, post-seismic phase and volcanic activity, as testified
by the large number of related applications [8-12]. Indeed, the current SAR images are
acquired with a spatial resolution of a few meters, a revisit time of some days and spatial
coverage of hundreds of km.

In particular, the DINSAR technique is widely used and has broadly recognized tools
for landslide mapping and monitoring due to the medium-to-high temporal and spatial
resolution [13]. In their work, Solari and co-authors [13] provide an overview of data usage
in Italy. The authors identified six classes. None of them is dedicated specifically to the rela-
tionship between the landslide activity and climate parameters (i.e., rainfall measurements).
Recently, Moretto et al. [14], proposed a classification discerning five different levels of
landslide predictability by SAR interferometry, listing: successful spatial and temporal
prediction of the time of failure with SAR data (“predictable landslide”); observation of
a worsening of the situation, without the ability to predict the time of failure (“critical
behavior predictability”); detection of spatial anomaly allowing to accurately delimit the
slope instability without temporal insight (“spatial predictability”); classification of the
state of activity of a landslide based on the geological /geomorphological interpretation
of SAR data (“qualitative spatial predictability”); displacements not observable by InSar
(“unpredictable landslide”). The improved temporal and spatial resolutions of the new
generation sensors help researchers to understand in detail the kinematics of slope instabil-
ity processes as well as the spatial and temporal patterns of landslide movement/activity
and their relationships to causative or triggering factors [15].

The availability of data provided by different satellite sensors and the shortening
of the revisiting time is a key to understanding the increasing success of the use of SAR
images. Indeed, it was observed an increasing interest in the use of DInSAR for landslide
detection and mapping in the last ten years [16].

Despite the widespread use of SAR with respect to the detection, mapping, model-
ing and monitoring of landslides, analysis dealing with the temporal variability of the
landslide activity and rainfall trend has not been deepened. A few works dealing with
the quantitative comparison between rainfall series and maps of surface displacements
obtained from interferometric analyses of satellite data can be found in the scientific lit-
erature. Most of the studies are at the slope (or small catchment) scale and look for a
comparison, mainly by means of graphs, between displacement series of a landslide and
weekly, monthly or annual accumulated rainfall data gathered from a rain gauge more
or less close to the landslide location, e.g., [17-20]. In some cases, other information from
onsite measurements, as inclinometers, is included in the comparison with monthly and
annual rainfall series, e.g., [21-23]; in other cases, the displacements maps are resampled to
identify clusters with anomalous behavior, e.g., [24]. However, a few statistical correlations
are searched or investigated. As an example, Ardizzone and co-authors [25], analyzing
the Ivancich landslide, a deep-seated translational slide located in the municipality of
Assisi (central Italy), evaluated the cross-correlation between the monthly rainfall data and
the time series of the monthly ground displacement. They observed a complex temporal
interaction between the rainfall and the ground deformation histories in the landslide area,
with a lack of a direct effect of rainfall on the ground deformation.

A few examples are related to analyses conducted at the catchment, e.g., [26,27] in
Spain, or the regional scale, e.g., [28] in Dominica, in which again only graphic comparisons
between average displacements and weekly and monthly rainfall from one station are
reported. Recently, Mufioz-Torrero Manchado and co-authors [29] searched for a correlation
(calculated by means of the Pearson coefficient) between the annual number of shallow
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landslides included in a regional inventory for the period 1992-2018 in western Nepal and
seven climatic variables calculated using the ERA5 datasets. However, in this case, the
landslide information is not retrieved from interferometric analysis but with the visual and
systematic analysis of Google Earth images, also due to the type of investigated phenomena,
i.e., shallow landslides.

To our knowledge, works dealing with the statistical comparison of ground deforma-
tions obtained from interferometric analysis of satellite-gathered data and rainfall measure-
ments at the regional or catchment scale are not present in the scientific literature. With
this paper, a procedure is proposed to fill this gap. Three datasets of Sentinel-1 images
for the period 2015-2020 are processed by the Parallel Small Baseline Subset (P-SBAS)
technique and analyzed with respect to mapped landslides. The obtained displacement
series are analyzed and compared to the rainfall series to search for relationships by em-
ploying statistical and non-parametric tests, and to evaluate the effects of climate drivers
on slow-moving landslides.

This methodology and its application were developed and carried out within the
framework of the OT4CLIMA project (Development of Innovative Earth Observation
Technologies for the Study of Climate Change and Its Impacts on the Environment), funded
by the Italian Ministry of Education, University and Research, in the National Operational
Program (PON), Research and Innovation 2014-2020, in the “Aerospace” thematic domain.
The main aim of the project was to develop advanced Earth observation technologies and
methodologies for improving the capabilities to better understand the effects of climate
change and to mitigate them at the regional and sub-regional scale.

The procedure presented here was applied in the Basento river basin, within the
Basilicata region, southern Italy. After an overall analysis of the whole basin, the defined
procedure allows for the selection of two landslides to analyze their displacement series
and search for correlations among displacements and rainfall series by means of statistical
and non-parametric tests.

2. Study Area
2.1. Geological and Geomorphological Setting

From a geological point of view, the Basilicata region (Figure 1) is part of the southern
Apennines chain. This chain is a NW-SE-oriented segment of the Italian Apennines and con-
sists of an Adriatic-verging accretionary wedge derived from the Neogene compressional
deformation of the Africa-Apulian passive margin, strongly dismembered by Quaternary
neotectonics and therefore articulated in longitudinal and transversal basins [30,31]. The re-
gion is characterized by three different units from west to east: (1) the Apennines Chain with
silico and carbonate deposits, evaporites and ophiolitic deposits (Upper Jurassic-Cretaceous
to Middle Pliocene); (2) the Bradanic Trough, with Lower Pliocene and Quaternary deposits
(gravel, clay and sand); and (3) Apulian Foreland characterized by well-layered Cretaceous
limestones [32]. Due to its geological and tectonic features, the Basilicata region is one of
the most prone Italian regions to geo-hydrological phenomena [33,34]. A recent regional-
scale landslide inventory map shows a strong control of topographical and litho-technical
features on the spatial distribution of landslides in Basilicata [35]. Moreover, the authors
report that the percentage of the area affected by landslides is 7.7% of the total surface of
the region (Figure 1) and that the most representative (i.e., about 55% of the total landslide
area) landslides are earth flows (36.2%). Extreme rainfall or snowmelt occurrences are the
main triggering factors of these phenomena [35-38]. Nearly 50% of the towns in the region
are classified at high landslide or flood risk [39].
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Figure 1. The inset shows the location of the Basilicata region. The main map shows the Basento,
Bradano, Agri and Sinni River catchments. Landslides from the inventory of landslide phenomena in
Italy (pink polygons) and rain gauges (blue triangles) used for rainfall analyses are also shown.

The Basento catchment, with an area of 1535 km? and a NW-SE trend, falls within the
domain of the Apennine chain in the western part, and within the Bradanic Trough in the
eastern part. The stratigraphic and structural setting of the basin plays a significant role
in determining landslide occurrence and distribution. From the available bibliographic
data, it appears that in the areas where highly overconsolidated Pliocene clays and in-
tensely fissured tectonized Miocene clay shales outcrop, the most widespread landslides
are slow earth flows, complex/compound landslides and, to a minor extent, rotational
slides. Indeed, Guida and laccarino [40] recognized and mapped 484 landslides in the
upper Basento catchment, mostly involving Pliocenic highly overconsolidated clays and
Miocenic intensely fissured tectonized clay shales. According to Urciuoli et al. [41] about
95% of those landslides can be classified as earthflows, having a kinematic evolution char-
acterized by mobilization and flow within a defined lateral shear surface, evolving in
a very slow slide [23]. The particular geological context makes this area susceptible to
reactivation phenomena.

2.2. Climatic Features and Trends

The Basilicata region has a typical Mediterranean temperate climate, with dry and
warm summers (Csa and Csb, according to the Koppen—Geiger climate classification [42]).
The mean annual rainfall is about 1000 mm and is mainly concentrated in autumn and
spring [43]. A decreasing trend in annual and seasonal (mainly autumn-winter) total
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precipitation was detected in the region in the period 1951-2010, particularly in 1970-2000,
by using the Mann—Kendall non-parametric test (downward trend observed in 49 out of
55 analyzed stations) [43]. At the same time, an increase in the frequency and intensity of
multi-day sequences of moderate to heavy precipitation, especially in the last decade, was
observed. Such an increase has led to the growth of severe flooding and landslide events,
not only in autumn and winter, but even in the early spring [43].

For a general indication of rainfall trend for the purposes of the OT4CLIMA project the
Innovative Trend Analysis (ITA) method has been applied. The method, firstly proposed
by Sen [44], unlike other methods (such as the well-known Mann-Kendall test), has the
advantage that it does not require any assumptions (serial correlation, non-normality,
sample number and so on). Moreover, its application is very simple [44—46] and it has been
already applied in southern Italy [47]. Briefly, the time series is divided into two equal parts,
with adequate length, which are separately sorted in ascending order; the two obtained
sub-series are plotted on the X- and on Y-axis of a Cartesian plane, respectively, classified
into three magnitude ranges (low, medium and high). If the data are collected on the
1:1 ideal line (45° line), there is no trend in the time series. If sample points are clustered
in the upper triangular area of the 45° line, an increasing trend in the time series exists;
conversely, there is a decreasing trend if data are in the lower triangular area. In this way,
for any hydrometeorological or hydro-climatic time series, trends of low, medium and high
values of data can be clearly identified.

Table 1 reports a summary of the ITA test for annual and seasonal rainfall totals
and maxima measured by four stations in Basilicata, selected considering the minimum
percentage of missing data in the period 1989-2018. Figure 2 shows, as an example, the
results obtained for the series of maximum seasonal rainfall recorded by the Potenza
station. Figure 2a reveals a positive trend for the whole data of the March—-April-May
(MAM) season. Figure 2b shows a weak positive trend for the low data and a negative
trend for the medium and high part of the September-October-November (SON) data. The
series of annual and seasonal rainfall totals (Table 1) show clear positive trends for almost
all temporal aggregations (especially for the annual and winter series) and for almost all
ranges of values. The same homogeneity is missing for what regards the series of maxima.
However, the positive trend prevails, and is more evident for the MAM aggregation.
It should be acknowledged that such analysis is derived from the comparison of two
15-year subseries, the first of which includes years characterized by relevant, widespread
meteorological droughts.

Table 1. Trends, defined with the ITA method, for annual and seasonal rainfall totals and maxima for
four stations in Basilicata (related basins in brackets) and for three ranges of values (low, medium
and high). Key: DJF, December—January-February; MAM, March-April-May; JJA, June-July-August;
SON, September—October—-November; +, upward trend; -, downward trend; =, no trend.

Station Year DJF MAM JJA SON
(Basin) Total Max Total Max Total Max Total Max Total Max
Matera low + = + = + + + = + +
med + = + = + + + = + =
(Bradano) .
high + + + = + + - = + -
Potenza low * ) * - - N - ) - -
med + + + = + + + + +
(Basento) .
high + - + + + = + - + -
San Nicola low + + + + + + + + + +
med + + + = + + + + +
(Basento) .
high + + + + + + + + + =
low + + + + + + + + + -
Tramutola
(Agri) med + + + + + + + + = -
high + - + = = = = + - -
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Figure 2. Results of the ITA test applied to the series of seasonal maxima recorded by the Potenza
station, for the (a) March-April-May (MAM) and (b) September-October-November (SON) seasons.

3. Materials and Methods
3.1. DInSAR Analysis

Among the several multitemporal DInNSAR techniques, in this work the Parallel Small
Baseline Subset (P-SBAS) approach [48,49] was applied as implemented by Manunta et al. [50]
to process Sentinel-1 IWS data. It is worth noting that with respect to [50] the processing
chain has been slightly modified by introducing an additional step aimed at identifying
and filtering out possible residual atmospheric artifacts that may affect the DINSAR mea-
surements. This result is achieved through the proper exploitation of the available GNSS
position time series. Moreover, from the algorithmic point of view, the automation and
robustness of the Sentinel-1 P-SBAS processing chain was improved by introducing several
check mechanisms to guarantee its fully unsupervised execution. The Sentinel-1 P-SBAS
deformation time series were widely validated through comparisons with LOS-projected
GNSS measurements [50,51]; these analyses demonstrated that the standard deviation of
the difference between Sentinel-1 P-SBAS and GNSS measurements is <0.5 cm.

In the following, the main procedures characterizing the P-SBAS chain and the basic
rationale of its implementation is described, without detailing the implemented algorithmic
solutions and the parallelization techniques exploited for each processing step, which are
extensively discussed in [50-52]. Figure 3 shows a schematic flowchart of the P-SBAS
processing chain.

D1 i (51 Identification of area of Generation of a first SRl IR
B Stimsack o et andius images | | sequencodt | PSS by

GNSS data) to be processed interferometric data pairs and Noise Filtering

Displacement time n i

series and mean re;gﬁggi‘;ﬂc gr?:ast?on Generation of first e Interferometric data pairs

End velocity map in R hericz e +— estimate of deformation [« T durgp 9 [ selection (optimized
geographic Fr)emoval time series P triangular network)
coordinates

Figure 3. Flowchart of the P-SBAS processing chain. Modified from [50,51].

The first operations concern handling and ingestion of input data, represented by
the sequence of Sentinel-1 Single Look Complex (SLC) images, the orbital information
associated to each SAR acquisition, the digital elevation model (DEM) of the investigated
zone and the GNSS position time series available for the area, which in our case are provided
by the Nevada Geodetic Laboratory at the University of Nevada, USA (UNR-NGL) [53].

Once the data input is correctly ingested, the SAR data stack is properly co-registered
with respect to a reference SAR geometry by exploiting the geometrical SAR registration
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procedure described in [50]. In particular, the co-registration procedure is carried out
through the cascade of three steps, referred to as rigid offset estimation, master image rigid
offset retrieval, and geometric registration, respectively. The first two steps of this procedure
(i-e., the rigid offset estimation and master image rigid offset retrieval) allow us to precisely
estimate the rigid shift between each SAR image and a selected reference one, referred to
as the master image. The achieved results are subsequently used to correctly carry out
the geometric registration step based on the approach presented by Sansosti et al. [54]
that allows us to achieve a temporal sequence of co-registered burst images, by exploiting
topographic and orbital information. Subsequently to the geometrical co-registration
step, the area of interest as well as the burst images to be processed are identified and
a first sequence of interferometric data pairs involving the available SAR acquisitions is
created, which is then exploited within the subsequent interferograms generation, Spectral
Diversity procedure and noise filtering operations [50]. At this stage, the corrected multi-
look interferograms (and the corresponding spatial coherence maps) of adjacent bursts
are accurately assembled through an interferogram mosaicking operation to generate the
differential interferograms of the whole investigated area, which is hereafter referred to as
the “frame”. Moreover, on these interferograms, the noise filtering procedure discussed
in [55] is applied.

Subsequently, a selection, among all the considered small baseline interferometric
pairs, of an optimized triangular network within the perpendicular baseline/time plane is
computed [55]. In particular, maximum values of 150 days for the temporal baseline and
of 200 m for the spatial baseline were selected. This implies that essentially no constraint
is applied to the spatial baselines because the orbital tube diameter is about 200 m. The
sequence of the so-identified multi-look noise-filtered small baseline interferograms of
the frame is then unwrapped through the extended minimum cost flow (EMCF) phase
unwrapping (PhU) algorithm [56]. Once EMCF is carried and the stack of unwrapped
interferograms is retrieved, a first estimate of the deformation time series is computed
by applying the SVD method, following the lines of the original SBAS approach [48]. In
this step, a procedure for the compensation of possible topographic phase residuals is
implemented. Moreover, it includes the estimation and removal of atmospheric artifacts by
taking into account that they are typically correlated in space and poorly in time [48], as
well as by benefiting from their correlation with topography.

Last operations are represented by an additional step implemented within the pre-
sented P-SBAS processing chain, which is discussed in detail in [51]. In this block, the avail-
able GNSS measurements are used to identify and filter out possible residual atmospheric
artifacts that may affect the DINSAR measurements [51]. Lastly, the final displacement time
series and the corresponding mean deformation velocity maps of the investigated frame
are computed and generated in a geographic/cartographic reference system.

In this work, three Sentinel-1 datasets, acquired by descending and ascending orbits
over Southern Italy, were processed with the P-SBAS processing chain. In particular, data
collected by Sentinel-1 Track 146 (ascending) and Tracks 51 and 124 (descending) between
2015 and 2020 were analyzed (Figure 4). No spatial baseline constraint was imposed
in the interferometric pair selection exploited in our processing thanks to the narrow
orbital tube characterizing the Sentinel-1 constellation. Moreover, the 1-arcsec SRTM
DEM was exploited to generate the analyzed DInSAR interferograms on which a complex
multi-look operation with 20 looks in range directions and 5 in the azimuth one were
performed to obtain a pixel dimension of about 80 x 80 m. The same DEM was also used
to geocode the computed deformation time series and the corresponding mean velocity
maps. The achieved deformation time series and velocity maps provide information on
the coherent pixels, identified by considering those with a temporal coherence value [56]
greater than a selected threshold that in our analysis is set equal to 0.9 for all the processed
Sentinel-1 datasets.



Remote Sens. 2023, 15, 320

8of 19

41I°N
Nalb

40°N
N.OF

39°N

0 25 50km

N6t

Figure 4. (a) Sentinel-1 tracks used in this work. Results of the P-SBAS analysis for the (b) T146,
ascending, and (c) T51 and (d) T124, descending orbits. Background from Google Earth.

3.2. Geomorphological Analysis

The selection of the case studies (slow-moving landslides) from the achieved defor-
mation time series and velocity maps, derived from the processing of Sentinel-1 images
in ascending and descending orbits, was based on the identification of clusters of pixels
(represented by points in the figures of the present work) that are characterized by similar
behavior, from a cinematic point of view. The adopted selection procedure was based on
geomorphological criteria and available data and information.

The available data that were used for the selection procedure are as follows:

e Inventory of landslide phenomena in Italy (IFFI), available in polygonal shapefile
format (https://www.progettoiffi.isprambiente.it/ (accessed on 1 September 2022)
and https:/ /idrogeo.isprambiente.it/app/ (accessed on 1 September 2022)).

e  Geological map of Italy, available as a WMS service on the Italian National Geo-
portal (http:/ /wms.pcn.minambiente.it/ogc?map=/ms_ogc/WMS_v1.3/ Vettor-ali/
Carta_geolitologica.map; accessed on 1 September 2022).

e  Maps of ground deformation and associated “time series” prepared for the OT4CLIMA
project from Sentinel-1 images in ascending and descending orbits, for the time period
2015-2020, in shapefile format (point geometry).

e  Map of the rain gauges and the daily rainfall measurements (provided by the De-
centralized Functional Center of the Basilicata Region civil protection, http://www.
centrofunzionalebasilicata.it/it/; accessed on 1 September 2022).


https://www.progettoiffi.isprambiente.it/
https://idrogeo.isprambiente.it/app/
http://wms.pcn.minambiente.it/ogc?map=/ms_ogc/WMS_v1.3/Vettor-ali/Carta_geolitologica.map
http://wms.pcn.minambiente.it/ogc?map=/ms_ogc/WMS_v1.3/Vettor-ali/Carta_geolitologica.map
http://www.centrofunzionalebasilicata.it/it/
http://www.centrofunzionalebasilicata.it/it/

Remote Sens. 2023, 15, 320

90f19

e  Literature and technical documentation and consultation of local online newspapers
related to landslide activity in the Basilicata region.

The selection of the case studies was carried out according to the following work phases:

1. In the GIS environment, the velocity maps were overlaid on the IFFI landslide shape-
file, the geological map and the map of the rain gauges by keeping as background the
Google Earth and/or Bing satellite image.

2. Through a GIS intersection, the pixels on the velocity maps that fell within a circular
buffer of a 10 km radius from the rain gauges were selected. This radius can be con-
sidered as a probable influence range of the rain on landslides, it is also in accordance
with several works dealing with the reconstruction of rain-gauge-based rainfall events
able to trigger landslides in Italy (e.g., [57] and references therein)

3.  The selected pixels were classified based on the average velocity of deformation
(Figure 5a) over the five years of observation (2015-2020) and the cumulative measure
of deformation at the last measurement date (Figure 5b). In the average velocity
classification, the pixels characterized by a velocity between —0.1 and 0.1 cm/year
were considered “stationary” and excluded from the further analyses.

4. The pixels with analogous increasing or decreasing trends located in or around
landslide areas were put in clusters.

5. Information on landslide activities from the scientific literature, online newspapers
and technical documents were analyzed to select the landslides characterized by the
same state of activity.
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Figure 5. Classifications for (a) average velocity of deformation over the five years of observation
(2015-2020) and (b) cumulative deformation at the last measurement date, adopted in this work.

3.3. Statistical Analysis

Global and time lagged synchronies between the two time series data were investigated
and quantified, as outcome of interactions between rainfall (the forcing/cause) and surface
displacement (effect). Indices that do not make assumptions on the probability density
functions of the series were adopted, because the rainfall data and their logarithm are
not even roughly normally distributed, and they show an uneven variability (see similar
concepts of homoscedasticity).

Thus, the Kendall rank correlation coefficient T [58], and the information based Maxi-
mal Information Coefficient (MIC) [59] were adopted in the analysis. The classical Pearson’s
correlation coefficient was not adopted because the variables here analyzed, in particular
the rainfall, were not normally distributed, as requested by the method. On the other
hand, the Kendall rank correlation coefficient does not need strong assumptions on the
variable distributions.
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The first, 7, is a statistic measuring the relationship, or the association between rank-
ings of different ordinal variables (e.g., rainfall and displacement), and it can be used to
measure the significance of their relation.

It is obtained through the following equation:

P-Q

T /ProrDPror ) M

where P is the number of concordant pairs, Q the number of discordant pairs, T the number
of ties in ¥ (our first data series ranking) and U in i (our second data series ranking). A pair
of observations (x;,y;) and (x2,y2) where i < j is concordant when x; > x; and y; > y;,
or x; < xjand y; < y;. The pair is discordant when x; > x; and y; < y;, or x; < x; and
y;i > y; [60]. An increasing T implies increasing agreement between the two series rankings.
The two series can be considered as statistically associated when the null hypothesis (Hp)
of independence is rejected. In this work, a p-value lower than 0.1 (p < 0.1) was considered
as strong evidence against the independence to get less than 10% of probabilities that Hy is
correct. In particular, T was computed through the 1.8.0 version of the scipy.stats.kendalltau
function (to check whether it is a function or not) in Python v. 3.7.

The latter, the MIC, is an exploratory data analysis tool that looks for the scatter
plot binning of a pair of variables (e.g., rainfall and displacement) maximizing their in-
duced mutual information [61] where the information is measured through the number
of points falling inside the boxes of the scatterplot [59]. MIC is obtained through the
following equation:

MIC = max{I(x,y)/logamin{ny,n,}} )
where
I(x,y) = Z p(xi)logs—— + Zy P(l/j)logzL - Z Zy P(xiyf)l"SZ; ®)
i=1 plai) 5 rlv) S5 pl))

X and ¥ are the series and 7, and 1, are the number of the bins of the partitions of the
x- and y-axis, respectively [62]. MIC does not rely on distributional assumptions and it is
able to identify a broad class of associations [62] with scores ranging from 0 (no association)
to 1 (full association). The MIC was estimated using the 1.5.10 version of the cstats function
in the ‘Minerva’ package, in R v. 3.6.3.

4. Results

The application of the procedure described in Section 3 allowed the selection of clusters
of pixels, in or near landslide areas, and the identification of significant case studies among
these clusters.

After the overlay of the IFFI landslide shapefile and the lithological map with the
DInSAR-based displacement pixels, the rain gauges of Potenza QA, Laurenzana and
Albano di Lucania, within the Basento river catchment, were selected. Then, the ground
displacement pixels (based on the ascending and descending satellite data) within a circular
buffer of 10 km in radius centered in each of the three rain gauges, were selected, allowing
the identification of 13 clusters of pixels located in or near landslide areas (taking into
account that the pixels could partially overlap the landslide polygons). Among these
clusters, two landslide areas characterized by the same state of activity were selected as
significant case studies, also exploiting information gathered from the scientific literature,
newspapers and technical documents.

The first landslide (Landslide 1 in Figure 6) is a rotational slide with a maximum
width of 0.4 km and length of about 1.2 km, while the second (Landslide 2 in Figure 6)
is a slow earth flow with a maximum width of 0.4 km and length of about 1.4 km. The
landslide areas involve agricultural land, mainly arable, with dispersed housing and
roads. More in detail, according to the 2018 CORINE Land Cover map, Landslide 1
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involves only non-irrigated arable land (code 211), while Landslide 2 involves mostly
complex cultivation patterns (code 242) (Figure 6b). Moreover, according to the Italian
geo-lithological map, both landslides occur within clayey and clayey-limestone (turbidites)
units of the Paleocene (Figure 6c). Landslide 1 occurs for a minor part in in sands and
conglomerates of the Pliocene.
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Figure 6. (a) Boundaries of the Basento river catchment with indications of the main landslide types
according to the IFFI database (https://idrogeo.isprambiente.it/app/; accessed on 1 September
2022), of the rain gauges and of the two selected landslides. (b) Land cover of the areas of the
selected landslides according to the 2018 CORINE Land Cover map (https:/ /land.copernicus.eu/pan-
european/corine-land-cover/clc2018; accessed on 1 September 2022). (c) Geo-lithological settings of
the areas of the selected landslides according to the Italian geo-lithological map (http://www.pcn.
minambiente.it/mattm /servizio-di-scaricamento-wfs/; accessed on 1 September 2022).

With reference to the boundaries of the selected rotational slide and earth flow,
Figures 7 and 8 show the surface displacements for the T146 ascending orbit and T124
descending orbit, respectively, classified according to the average velocity of deformation
over observation period.
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Figure 7. Boundary of the rotational slide (landslide 1 in Figure 6), with the points representing the
pixels of surface displacements for the (a) T146 ascending orbit (9 pixels) and (b) T124 descending
orbit (10 pixels), classified according to the average velocity of deformation over the five years of
observation (2015-2020). Background from Google Earth.
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Figure 8. Boundary of the earth flow (landslide 2 in Figure 6), with the points representing the
surface displacements for the (a) T146 ascending orbit (11 pixels) and (b) T124 descending orbit
(10 pixels), classified according to the average velocity of deformation over the five years of observa-
tion (2015-2020). Background from Google Earth.

Figure 9 shows an example of the results related to the selected rotational slide
(Figure 7), for the T124 descending orbit. Among all the series of cumulative displacements
for all the pixels falling within the landslide polygon (Figure 9a), an average, representa-
tive path was identified (considering only the pixels with analogous paths) and used for
comparison with the series of rainfall accumulated over different periods. The displace-
ment series are roughly normally distributed, therefore considering the average or the
median values for defining the representative path is equivalent, because the differences
between average and median values are not significant. The visual comparison between
the representative cumulative displacements of the landslide and the 3-day cumulative
rainfall (shown in Figure 9b as example) shows increases in the landslide displacements
in correspondence of rainfall peaks. Moreover, the relative displacements and the series
of daily rainfall accumulated over different periods were plotted on a Cartesian plane
(Figure 9c shows the relative displacements vs. the 3-day cumulative rainfall) to search for
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visual and statistical relationships. Finally, the Kendall test was carried out considering the
relative displacements with different shifts (lag from 0 to 10 days between the rainfall and
the day the displacement is measured from the satellite) and the cumulative rainfall series.
Only the cumulative rainfall series that satisfied the hypothesis of a p-value lower than 0.1
are shown: Figure 9d shows that the series of 3-day cumulative rainfall has the highest
score, with a shift of 5 to 7 days. This means that the higher correlation for this landslide
activity can be observed for 3-day cumulative rainfall with a lag time of 5 to 7 days.
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Figure 9. Example of the results obtained for the rotational slide (Figure 7), for the T124 descending or-
bit: (a) cumulative displacements measured over the whole observation period (black curves) with the
indication of the average displacements representative for the landslide (red curve); (b) representative
cumulative displacements and 3-day cumulative rainfall; (c) scatter plot of the relative displacements
and the 3-day cumulative rainfall; (d) values of the Kendall coefficient, T, measuring the ordinal
association between rainfall series and relative displacements with different shifts (lag from 0 to
10 days); only the rainfall series that satisfied the hypothesis of a p < 0.1 are shown (in this case only
the series of 3-day and 5-day cumulative rainfall).

Analogously, Figure 10 shows an example of the results related to the selected earth
flow (Figure 8), still for the T124 descending orbit. In this case, the best value of the Kendall
coefficient pertains to the 7-day cumulative rainfall, regardless of the lag time with the
landslide displacements. For the sake of brevity, only these two results are reported here;
however, the method can be applied to every orbit and every rainfall series.

Figure 11 shows the values of the MIC for different cumulative rainfall (3 days to
30 days) and different shifts of the displacements—rainfall series (lag from 0 to 10 days),
for the two considered landslides and the two interested orbits (T124, desc and T146, asc).
Greenish cells indicate a higher MIC, meaning a higher exchange of information between
the two series. Remarkably, the highest values of the MIC (cells in green) are related to a
shift from 5 to 8 days and a 20- to 30-day cumulative rainfall. It is the case of the rotational
slide and the T146 ascending orbit (Figure 11b). However, the values of the MIC related to
a 3- to 5-day cumulative rainfall and a shift from 5 to 7 days (the combination that obtained
the highest p-value) are still high. Moreover, it can be observed that there is a higher rate of
shared information in the series related to the rotational landslide (Figure 11a,b) than those
related to the translational landslide (Figure 11c,d).
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Figure 10. Example of the results obtained for the earth flow (Figure 8), for the T124 descending orbit:
(a) cumulative displacements measured over the whole observation period (black curves) with the
indication of the average displacements representative for the landslide (red curve) defined excluding
the three lower paths that have a trend different from the others; (b) representative cumulative
displacements and 7-day cumulative rainfall; (c) scatter plot of the relative displacements and the
7-day cumulative rainfall; (d) values of the Kendall coefficient, T, measuring the ordinal association
between rainfall series and relative displacements with different shifts (lag from 0 to 10 days); only
the rainfall series that satisfied the hypothesis of p < 0.1 are shown.
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Figure 11. Values of the MIC for different cumulative rainfall (3 days to 30 days) and different shifts
of the displacements—rainfall series (lag from 0 to 10 days). Results for the rotational slide (Figure 7)
related to the (a) T124 descending orbit and (b) T146 ascending orbit, and for the earth flow (Figure 8)
for the (c) T124 descending orbit and (d) T146 ascending orbit. Greenish cells indicate a higher MIC
(higher exchange of information between the two series) compared to the reddish ones (lower MIC).
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5. Discussion

The procedure proposed in this work allows for the identification of clusters of pixels
measuring satellite-based surface displacements indicating landslide activity, and for the
comparison among series of displacements and rainfall measurements.

In the work, we faced different problems related to series completeness and spa-
tial/temporal data density. On one hand, rainfall series contained some gaps that did
not allow the proper application of well-known tests, such as the non-parametric Mann—
Kendall test, for the identification of trends. At the same time, the ITA test was applied
to two relatively recent periods and only to the series that had sufficient data. However,
the rainfall series fully overlap temporally the satellite-based displacement measurements,
thus allowing a comparison among them.

On the other hand, the availability of a landslide inventory map in digital format
provided a starting point for the geomorphological analysis. The regional coverage of the
inventory required a non-straightforward multi-scale analysis to identify the clusters of
pixels on landslide areas. The portion of landslides that can be detected through DinSAR
techniques in a territory can depend on several factors including type, exposition and/or
displacement direction, velocity and land cover. However, it is generally low. Recently,
Festa et al. [63] processed Sentinel-1 images acquired from March 2015 to December 2018
over the whole Italian peninsula through the P-SBAS technique. They compared the results
with the landslides mapped by the IFFI project and observed that the fraction of deforming
areas positioned on previously mapped landslides is 12.0% and 13.8% for descending and
ascending orbit, respectively. Furthermore, ground displacement pixels obtained through
InSAR analyses are mostly located along road infrastructure and at buildings in urban
areas, where landslides are often absent because they are not reported in the inventory
maps or, if present, already stabilized by anthropic intervention. Moreover, only for very
few landslides was it possible to confirm the state of activity in the considered time period
(2015-2020), therefore the number of landslides to be considered was greatly reduced.
Additionally, the clusters of pixels that characterized the movement of a landslide had
to have a similar trend and to be distinguishable from other pixels outside the landslide
itself, which do not show any remarkable displacement. Finally, it was necessary to
be sure that the landslide activity in the analyzed period was related to rainfall, and
for this reason the buffer around rain gauges was considered. Indeed, Basilicata is a
region where landslide triggers also include other factors such as snowmelt [64] and
earthquake [65-67]. Therefore, in order to consider only rainfall-related landslides and
avoid misinterpretations, the landslide selection must be carried out by gathering as much
information as possible. Regarding the snowmelt, to our knowledge no other activities
related to snowmelt were found for the two considered landslides in the observation period.
Regarding the seismic trigger, no landslides triggered by earthquakes in Basilicata in the
period between 2015-2022 were listed in the Italian Catalog of Earthquake-induced ground
failures [67].

The use of Sentinel-1 images allowed the analysis of a 5.5-year time window (2015-2020).
Moreover, the Sentinel-1 constellation appears to be a suitable choice because it offers an
almost global coverage, and then the possibility of reproducing this method elsewhere, and
an unprecedented revisit time, i.e., a 6-day repeat cycle at the latitude of the study area. This
high revisit frequency allows obtaining a series of close measurements of displacements
able to evaluate the activity of slow-moving landslide phenomena. An analysis aimed
at the evaluation of long-lasting variations would need a time series longer than the one
adopted here. The use of other satellite-based products, such as ERS or Envisat, would have
allowed the analysis of a longer time series, with the hamper of a lower revisit frequency
(around 30 days) and a covering period ending in 2012. The construction of a merged series
with different products is not trivial and, in any case, would lead to a reduction in the
temporal resolution of the series. For these reasons, we preferred to test our procedure with
this relatively short temporal period, with the idea of extending it as soon as the Sentinel-1
program reaches a longer covering period. In fact, it is expected that a longer observation
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period and an increase of acquisition frequency (e.g., daily) of the images would allow a
better comparison between rainfall and displacement measurements and then a deeper
understanding of the underlying mutual relationship.

It is worth noting that, due to several phenomena (mainly geometrical distortions and
temporal decorrelation effects), steep and vegetated areas could not be observable with
InSAR techniques. In this work, we have not used a visibility index [68], usually adopted to
investigate areas in which InSAR can be successfully employed to analyze slope processes,
including landslides. The use of visibility indices is suggested when there is scarcity of
data and/or knowledge of the study area. In our case, having already information on
both landslides and displacements, we did not need to verify a priori whether DINSAR was
useful or not.

6. Conclusions

The main aim of this work was to define and propose for the first time in the literature
a quantitative procedure for identifying satellite-based displacement clusters, comparing
them with rainfall series (from different sources) and applying statistical tests to evalu-
ate their relationships at a regional scale. In particular, for the analyzed test case, the
results show that, for both landslides, there is a significance of the Kendall’s test for the
displacements detected by the descending orbit (T124) for a 3-day cumulative rainfall and
a slope response of about 7 days. Although the study area was chosen in the framework
of the OT4CLIMA project, and thus, not specifically identified for landslide analyses, it
was possible to get to the point of selecting two case studies (the landslides) in order to
apply a statistical analysis. The proposed statistical tests here used to evaluate the relations
between weather forcing and displacements might be also applied to select optimal move-
ment predictors necessary to develop data-driven models, e.g., [69,70], for simulating and
eventually predicting displacement time-series.

Given the replicability of the whole quantitative procedure, we expect that it can be
applied in any study area. Interesting future applications might include satellite- or radar-
based rainfall estimates and might consider areas with different climatic and physiographic
features and eventually also the analysis of other variables, such as air or rock temperature.
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