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Abstract: High-resolution DEMs can provide accurate geographic information and can be widely
used in hydrological analysis, path planning, and urban design. As the main complementary means
of producing high-resolution DEMs, the DEM super-resolution (SR) method based on deep learning
has reached a bottleneck. The reason for this phenomenon is that the DEM super-resolution method
based on deep learning lacks a part of the global information it requires. Specifically, the multilevel
aggregation process of deep learning has difficulty sufficiently capturing the low-level features with
dependencies, which leads to a lack of global relationships with high-level information. To address
this problem, we propose a global-information-constrained deep learning network for DEM SR
(GISR). Specifically, our proposed GISR method consists of a global information supplement module
and a local feature generation module. The former uses the Kriging method to supplement global
information, considering the spatial autocorrelation rule. The latter includes a residual module and
the PixelShuffle module, which is used to restore the detailed features of the terrain. Compared with
the bicubic, Kriging, SRCNN, SRResNet, and TfaSR methods, the experimental results of our method
show a better ability to retain terrain features, and the generation effect is more consistent with the
ground truth DEM. Meanwhile, compared with the deep learning method, the RMSE of our results is
improved by 20.5% to 68.8%.

Keywords: DEM super-resolution; spatial autocorrelation; Kriging; ResNet

1. Introduction

DEMs (digital elevation models) can digitally express specific terrain information and
have been widely used in hydrological analysis and modeling [1–3], path planning [4], and
urban design [5]. In order to obtain the best results in the above applications, it is very
important to obtain a high-resolution DEM that can provide more accurate geographic infor-
mation. However, the cost, time, and computing power of using a detecting instrument (i.e.,
a laser radar) to produce a DEM increases sharply with the increase in product resolution,
which makes it difficult to meet the needs of practical production tasks [6,7]. Hence, it is
necessary to study the methods that can supplement the high-resolution DEM data.

Among the existing DEM data supplement methods, the DEM SR (DEM super-
resolution) method is an important approach that can be divided into interpolation-based
and deep-learning-based methods [6,7]. The former uses the classical interpolation method
as the interpolation kernel to improve the resolution of the DEM data, whereas the latter
uses massive homogeneous spatial data to train the corresponding DEM and calls for
the well-fitted model to achieve DEM super-resolution. Different DEM super-resolution
mechanisms make the characteristics of these two methods very distinct. Specifically, the
interpolation-based method depends on the degree of agreement between the interpolation
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kernel and the global distribution of the DEM in the target region, and it will achieve
good results when the two are very close [8–10]. The method based on deep learning
focuses on the expression of local features and achieves good results through the multilevel
aggregation of local features [9,11]. However, due to the complexity of real terrain [12], it is
difficult for interpolation-based methods to provide interpolation kernels that are similar to
the terrain distribution rules, and the results often have greater limitations. On the contrary,
the method based on deep learning has a large number of parameters that can capture the
terrain distribution law in the training process and thus has greater potential in the DEM
SR task [6,9,11,13].

However, the current deep-learning-based DEM SR method mostly pays attention to
the extraction of local features and ignores the global information contained in the terrain,
which creates a bottleneck for the deep-learning-based DEM SR method [14–16]. Specifically,
due to DEMs having a regular grid organization similar to images, scholars tend to improve
DEM SR performance by migrating to the image SR method but pay little attention to the
significant spatial correlation in the DEM [6,7,17]. In fact, spatial autocorrelation [14,18]
is a very common source of global information in the terrain (as shown in Figure 1, the
global Moran’s I index [12,19] of the target area is 0.999230 and there are significant high–
high and low–low distribution patterns between elevation points, which indicates that
the target region has significant spatial autocorrelation), but the feature extraction module
(e.g., the CNN (convolutional neural network) module [20,21], ResNet (residual network)
module [22,23], PixelShuffle module [24], and the deformable convolution module [25,26])
adopted by the existing DEM SR method based on deep learning has difficulty capturing
sufficient global information. Hence, the lack of necessary global information limits the
performance of the DEM SR based on deep learning.
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Figure 1. The elevation values of the terrain have spatial correlation: (a) is the remote sensing images of
the region, (b) is the DEM of the region, and (c) is the LISA (local indicators of spatial association) map.

Essentially, due to the limitation of the size of the convolution kernel, the probability
that the low-level features that are remotely interdependent (global information) in the
neural network are captured and aggregated into high-level information is very low [27–29],
which explains the loss of global information in traditional networks such as a CNN. A
feasible solution is to use the spatial autocorrelation of the terrain to supplement the global
information in the network, which can be mainly thought of in terms of two aspects:

(1) As a supplement method of DEM SR, the constraints provided by spatial autocorrelation
can directly provide the DEM SR results with a certain degree of accuracy for the model.
For example, the Kriging method [30] is used to find the spatial interpolation kernel that
conforms to the target region by calculating the relationship between the spatial distance
and the semi-variogram, and its interpolation results are highly accurate.

(2) The results generated under the spatial autocorrelation rule are involved in the final
results of the DEM SR, which is based on constraining the parameter flow direction
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of the learnable convolution kernel throughout the whole network, which indirectly
supplements the global information for the model.

Although existing DEM SR methods have a good learning ability, they remain insuf-
ficient for the realistic restoration of terrain features. We argue that the problem arises
from the lack of global terrain information, and hence, we propose a global-information-
constrained deep learning network for DEM SR (GISR). Our model is designed for the
purpose of the extraction and supplementation of global information. Specifically, there are
two modules in the proposed GISR. First, a global information supplement module based
on the Kriging method adds missing global information, whereas a local feature generation
module is proposed for terrain feature extraction and recovery. In addition, a collaborative
loss is adopted to supervise the training process and to optimize the parameter learning
direction. The main contributions of our paper are summarized as follows:

• We propose a global-information-constrained deep learning network for DEM SR
(GISR) that can optimize the DEM SR process toward generating global terrain features
and achieving advanced results. Specifically, compared with the traditional bicubic
Kriging interpolation method and existing neural network methods (TfaSR [31], SR-
ResNet [32], and SRCNN [33]), the RMSE of our results is improved by 20% to 200%,
and the MAE of our results is improved by 20% to 300%.

• We use the Kriging interpolation method, which accounts for spatial autocorrelation,
to construct the global information supplement module. The module directly fuses
the global information of the interpolation method and indirectly supplements the
global information by affecting the loss to generate a DEM more similar to the real
terrain distribution.

The rest of this paper is organized as follows: Section 2 is a review of the work
related to the SR approach. In Section 3, we detail our proposed approach. In Section 4,
the design of the experimental evaluation is described, and the results and analysis are
presented. Section 5 is a discussion of the advantages and limitations of the proposed
approach. In Section 6, we present our conclusions and discuss future work. The source
code and data we have developed to implement our method are shared on Figshare
(https://doi.org/10.6084/m9.figshare.21384093, accessed on 30 November 2022).

2. Related Work
2.1. Super-Resolution (SR) Based on Traditional Spatial Interpolation Methods

Spatial interpolation is a traditional SR operation that aims to predict the value at
an unobserved location given some sampled data at observed locations [34]. Based on
different hypothesis theories, classical spatial interpolation methods include the distance-
weighted reciprocal method [35], natural nearest neighbor method [36,37], spline inter-
polation method [38,39], bicubic method [40,41], and Kriging method [10,30,42]. More
specifically, the IDW (inverse distance weighted) interpolation method assumes that each
sampling point has a certain local influence ability; the natural nearest neighbor method
assumes that the sample points are unevenly distributed, which makes it an average weight
algorithm that can be used for DEM SR [31]; spline interpolation [38] assumes that the
surface attribute is gradual, and that the interpolation is realized by fitting a surface with
minimum curvature that is valid on the terrain [43]. As a common DEM interpolation
method [13], the bicubic interpolation method assumes that the change rate of each ad-
jacent point value follows a specific distribution, and the corresponding parameters can
be determined by known data; the Kriging method [30] assumes that the distance and
direction between sample points reflect a spatial relationship that explains the spatial
variation. Kriging includes many methods that can be divided into methods by charac-
terizing the spatial structural features by estimating the semi-variogram cloud (simple
Kriging method and ordinary Kriging) and by combining a regression of the dependent
variable on auxiliary variables with the simple Kriging of the regression residuals (regres-
sion Kriging and general Kriging) [7]. Among the classical terrain interpolation algorithms
mentioned above, the Kriging interpolation often performs better than others in situations
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of large-scale complex terrain interpolation because it can determine the interpolation
kernel that is closer to the spatial distribution of the target region by finding an appropriate
distance and semi-variogram. However, considering computational complexity and stabil-
ity in practical applications, the bicubic interpolation method is commonly used for image
super-resolution tasks.

2.2. DEM SR Based on Deep Learning Methods

The DEM SR method based on deep learning obtains the convolution kernel parame-
ters closest to the spatial distribution of the target region by training massive homogeneous
data, which enables it to complete the DEM SR task. This method’s creation cannot be
separated from the development of deep learning technology in the field of computer
vision. Specifically, the emergence of CNNs [20,21] helped scholars realize the feasibility
of generating high-level semantic information from low-level features through multilevel
feature transmission (in a feature extraction and feature recovery manner). However, due
to the information loss of the pooling layer [44,45] and the mechanism of the full connection
layer [46], the output of the CNN structure at this time is mainly a patch-wise network,
which is more useful in scene classification [45,47,48], semantic segmentation [49,50], and
object detection [51,52]. However, the introduction of FCNs (fully convolutional net-
works) [53] changed this situation. FCNs replaced pooling and full connection layers with
convolutional layers, reducing the loss of high-level semantic information, and successfully
promoting pixel-wise output, which made it possible to use FCNs for SR tasks. Inspired
by the above network framework, scholars in the field of image super-resolution have
proposed SRCNNs [33] and GANs, which are networks that surpass conventional inter-
polation methods. Considering the similar organizational structure of DEMs and images,
scholars introduced SRCNNs [6], D-SRGANs [17], and CEDGANs [7] based on analogies
and achieved better performances than interpolation-based SR methods. Limited by the
degradation and vanishing gradients of the deep network, the above methods can only
aggregate limited high-level semantic information through the shallow network, and the
accuracy bottleneck soon appears. This problem was soon alleviated by ResNet [28] in the
field of computer vision. Zhou et al. [16] applied this module and proposed an enhanced
double-filter deep residual neural network (EDEM-SR) method that can capture more DEM
features by introducing residual structures to deepen the network depth and enhance the
ability to capture DEM features. Zhang et al. [12] also verified that the deep [23] network
with a ResNet structure could achieve better DEM SR performance. Furthermore, Zhang
et al. [36] considered the characteristics of DEM features and introduced a deformable
convolution module, which was a breakthrough with regard to the limitation of the convo-
lution kernel morphology and could enhance the ability to capture irregular DEM features;
thus, the authors proposed that more DEM features could be retained. In addition, some
novel DEM SR methods have also emerged. For example, Demiray et al. [54] created a DEM
with an SR that was 16 times higher by improving MobileNetV3; Lin et al. [55] introduced
the internally learned ZSSR (zero-shot super-resolution) method to solve the DEM SR task;
Zhang et al. [56] proposed the recursive sub-pixel convolutional neural networks (RSPCNs)
which have obvious improvements in both accuracy and robustness; and He et al. [57]
introduced a Fourier transform as an encoder and acquired a good performance, which can
enrich the existing DEM SR task encoder.

3. Methods

To further improve the DEM SR performance, we propose the global-information-
constrained deep learning network for DEM super-resolution (GISR). Specifically (see
Figure 2), in this method the LR DEM (low-resolution DEM, 16 × 16) is preprocessed.
The size of the DEM is expanded to 64 × 64 using systematic sampling [7]. Additionally,
the sampling data are changed into input DEM data (64 × 64) through ordinary Kriging
interpolation. We used different variogram models (linear, power, gaussian, spherical,
and exponential) and selected the best prediction results as samples. The preprocessed
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DEM is used as input for the local feature generation module, and the 64 × 64 DEM is
the output at full size, which can be obtained through ResNet and PixelShuffle. Next,
the 16 × 16 low-resolution DEM is used as input for the global information supplement
module. Further, the DEMs generated by the global information supplement module and
the local feature generation module are combined to obtain the final result. In addition, the
collaborative loss is applied to optimize the training director of the model.
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3.1. Global Information Supplement Module

The global information supplement module plays a direct (sampling the smooth DEM)
and indirect (constraining the corresponding deep learning network parameters) role,
and thus, it is important to find an interpolation kernel that is very close to the terrain
law. Among the existing interpolation kernel methods, the Kriging interpolation kernel
has the best performance. Kriging interpolation [10,30,42] is a classical method based on
Tobler’s first law of geography [18,58] (geographical objects or attributes are interrelated in
a spatial distribution, usually called spatial autocorrelation), which makes full use of the
spatial correlation between the original data of regionalized variables and carries out an
unbiased optimal estimation for the values of regionalized variables at noncamping points.
To implement the Kriging interpolation method, we need to define the operations.

First, determine the terrain distribution mode in the region. According to the first law
of geography, there is a relationship between known points. The ordinary Kriging method
assumes that this relationship can be expressed as a function of distance and semi-variance
between two pairs of known points, where distance represents spatial proximity, and
semi-variance represents a spatial attribute. By drawing scatter plots of all distances dij
and semi-variances pij, the relationships of functions can be fitted, such as linear, quadratic,
exponential, and logarithmic relationships. Define the distance formula between the known
point i (xi, yi) and the known point j

(
xj, yj

)
as follows:

dij = d
(
(xi, yi),

(
xj, yj

))
=
√
(xi − xj)

2 + (yi − yj)
2 (1)
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The semi-variance formula is as follows [38]:

pij =
1
2

E
[(

hi, hj
)2
]
= σ2 − Cov

(
hi, hj

)
(2)

where hi is the elevation value of point i (xi, yi), hj is the elevation value of point j(
xj, yj

)
, cov

(
hi, hj

)
is the covariance of point i (xi, yi) and point j

(
xj, yj

)
, σ2 is variance

of point i (xi, yi) and point j
(
xj, yj

)
.

The basic formula of Kriging interpolation is:

ĥ0 = ∑n
i=1λihi (3)

where ĥ0 is the unbiased estimate of the point (x0, y0); the λi weight coefficient is the
estimated value at the point that can be satisfied, ĥ0; and the true value h0 is the smallest
set of optimal coefficients:

min
λi

Var
(

ĥ0 − h0

)
(4)

Under the assumption of homogeneous spatial attributes and the premise of unbiased
estimation, the cost function of obtaining the optimization objective is

J = Var
(

ĥ0 − h0

)
= Var(∑n

i=1λihi − h0) (5)

It is solved by using Lagrange multiplier method, and the solution method is to
construct a new objective function:

J + 2φ

(
n

∑
i=1

λi − 1

)
(6)

where φ is the Lagrange multiplier. Solving the parameter set φ and λi that minimize the
cost function can satisfy the requirement that they minimize J under ∑n

i=1 λi = 1 constraint:

2pk0 −∑n
j=1

(
pki + pjk

)
λj + 2φ = 0; k = 1, 2, · · · , n

∑n
i=1 λi = 1

(7)

After a series of derivations and calculations, the following weight matrix can be obtained:
p11 p12 · · · p1n 1
p21 p22 · · · p2n 1
· · · · · · · · · · · · · · ·
pn1 pn2 · · · pnn 1
1 1 · · · 1 0




λ1
λ2
· · ·
λn
−Φ

 =


p10
p20
· · ·
pn0
1

 (8)

To solve for the elevation value of unknown points, first, use the fitting function of
distance and semi-variance and calculate pi0 according to the distance from the interpolation
point to all known points, then inverse the above matrix to obtain all the weight coefficients,
and finally, bring back the basic formula of Kriging interpolation, ĥ0 = ∑n

i=1 λihi. Thus, the
elevation value of the interpolation point is obtained. The approximate flow of the Kriging
interpolation method is shown in Figure 3.
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3.2. Local Feature Generation Module

The local feature generation module was designed to retain the terrain details and to
reproduce a more realistic geographical distribution pattern. The local feature generation
module inputs the 64 × 64 low-resolution DEM generated by the global information supple-
ment module. First, the convolution layer (kernel size = 9, padding = 4, and stride = 1) is used
based on the relatively large receptive field (9× 9). The terrain features are extracted and then
activated using the PReLU (parametric rectified linear unit) [53]. Then, the extracted features
flow into the residual module. Next, the features pass through a roll-up layer (kernel size = 3,
padding = 1, and stride = 1) and a BN (batch normalization layer) [59] again. The features
and residual blocks obtained in this step are extracted for stacking, and the stacked features
flow into the upper sampling module as input. The upper sampling module consists of
four layers, namely, the convolution layer (kernel size = 3, padding = 1, and stride = 1),
batch normalization layer (BN), PixelShuffle [24] layer (factor = 2), and PReLU activation
layer. The feature size passes through the convolution layer (kernel size = 9, padding = 4,
and stride = 2) and the Tanh [60] layer.

Among them, the PReLU [53] layer is selected as the active layer because it can
adaptively learn and correct the parameters of linear units and improve accuracy with
negligible additional computing costs. Additionally, the PReLU can avoid zero gradients,
unlike the LReLU [61]. The experiment shows that, compared with the ReLU [62], the
precision of the LReLU is almost not improved. At the same time, PReLU parameters can be
learned adaptively, which improves the learnability of the network. The PReLU only adds
a small number of parameters, which means that the calculation amount of the network
and the risk of overfitting only increase a little, particularly when different channels can
use the same parameters. In addition, to further optimize the extracted features, we added
a full convolution network to the network to preserve the terrain details extracted from the
receptive field and constrain the training director of the model. Next, we will introduce the
relevant concepts of the residual feature extraction module and PixelShuffle in detail.

3.2.1. The Concept of the Residual Feature Extraction Module

With the deepening of the deep learning network, the problems of vanishing gradients,
exploding gradients, and degradation are gradually emerging. The ingenious design of the
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ResNet network effectively alleviates these problems and creates the possibility of building
a deeper and more complex network [22,23]. ResNet introduces a jump connection structure,
which allows some layers of the neural network to skip the connection between neurons on
the next layer and the current layer, weakening the strong connection between each layer.
Specifically, it saves the parameter characteristics of the current layer before training and
transfers these parameters and the data after training the last layer. In this way, some of the
features of the previous layer are preserved, and convolution training can also be performed,
effectively alleviating the problem of deeper network degradation. The gradient correlation
is continuously attenuated with the increase in layers. The jumping of ResNet can effectively
reduce the attenuation of this correlation, thus alleviating the problem of vanishing and
exploding gradients [63]. In addition, batch normalization controls exploding gradients by
standardizing data distribution to prevent vanishing gradients.

The residual feature extraction module is a sixteen-residual-block (n = 16) network
module built according to ResNet. Each residual block contains five layers, including two
convolution layers (kernel size = 3, padding = 4, and stride = 1), two batch normalization
layers (BN), and a linear correction unit (PReLU) activation layer with parameters. Specifically,
the convolution layer is used to extract terrain features, and the BN layer is used to reduce the
impact of extreme altitude (for example, very large and very small altitude values). It also
solves the problem where the deep neural network is more difficult to train and converges
more slowly as the network deepens. The activation layer is used to improve the stability and
nonlinearity of network performance. Therefore, the proposed residual model can extract
useful deep terrain features. The ResNet layer structure is shown in Figure 4.

Remote Sens. 2023, 15, 305 8 of 29 
 

 

3.2.1. The Concept of the Residual Feature Extraction Module 

With the deepening of the deep learning network, the problems of vanishing gradi-

ents, exploding gradients, and degradation are gradually emerging. The ingenious design 

of the ResNet network effectively alleviates these problems and creates the possibility of 

building a deeper and more complex network [22,23]. ResNet introduces a jump connec-

tion structure, which allows some layers of the neural network to skip the connection be-

tween neurons on the next layer and the current layer, weakening the strong connection 

between each layer. Specifically, it saves the parameter characteristics of the current layer 

before training and transfers these parameters and the data after training the last layer. In 

this way, some of the features of the previous layer are preserved, and convolution train-

ing can also be performed, effectively alleviating the problem of deeper network degra-

dation. The gradient correlation is continuously attenuated with the increase in layers. 

The jumping of ResNet can effectively reduce the attenuation of this correlation, thus al-

leviating the problem of vanishing and exploding gradients [63]. In addition, batch nor-

malization controls exploding gradients by standardizing data distribution to prevent 

vanishing gradients. 

The residual feature extraction module is a sixteen-residual-block (n = 16) network 

module built according to ResNet. Each residual block contains five layers, including two 

convolution layers (kernel size = 3, padding = 4, and stride = 1), two batch normalization 

layers (BN), and a linear correction unit (PReLU) activation layer with parameters. Spe-

cifically, the convolution layer is used to extract terrain features, and the BN layer is used 

to reduce the impact of extreme altitude (for example, very large and very small altitude 

values). It also solves the problem where the deep neural network is more difficult to train 

and converges more slowly as the network deepens. The activation layer is used to im-

prove the stability and nonlinearity of network performance. Therefore, the proposed re-

sidual model can extract useful deep terrain features. The ResNet layer structure is shown 

in Figure 4. 

 

Figure 4. The details of residual feature extraction module (Conv 3 × 3 is convolution layer with
kernel size = 3).



Remote Sens. 2023, 15, 305 9 of 29

3.2.2. The Concept of PixelShuffle

PixelShuffle [24] (sub-pixel convolutional neural network) is used to obtain high-
resolution feature maps from low-resolution feature maps through sub-pixel convolution
and multichannel recombination. This paper uses it as a feature up sampling method.

Assume the feature map FL of a low-resolution DEM has a size of h× w× c. The height
and width of the feature map of the reconstructed high-resolution DEM are expanded r
times, and the size is h * r × w * r × c. PixelShuffle convolves FL with a convolution kernel
of depth c * r2 to obtain a feature map of h × w × c * r2. Additionally, it is then reorganized
into h * r × w * r × c by PixelShuffle (PS), which is defined as follows:

PS(T)x,y,c= T[x/r], [y/r],C∗r∗mod(y,r)+C∗mod(x,r)+c (9)

where T is the feature map of the input r2 channels, each original low-resolution pixel is
divided into r2 smaller grids, and these grids are filled with the values of the corresponding
positions of r2 feature maps according to a certain rule (C and mod comprise the certain
rule). The reorganization process is completed by filling the lattice and dividing it by
each low-resolution pixel according to the same rules. The process of sampling DEM with
PixelShuffle is shown in Figure 5.
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3.3. Collaborative Loss

Image SR focuses on the visual perception of the reconstructed image, whereas the
DEM pays more attention to the reproduction degree of terrain features and elevation accu-
racy [32]. Therefore, considering the extraction effect of terrain features and geographical
rules, we designed a collaborative loss model. Our loss function can be divided into two
parts: the first is the elevation loss, which is used to constrain the global elevation accuracy,
and the second is the feature loss, which improves the terrain accuracy and retains the
terrain features while accelerating the convergence. We chose L1 loss and RMSE loss to
comprise the loss function, and the formulas are as follows:

L1(yi, ŷi) =
1
N ∑N

i=1|yi − ŷi| (10)
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RMSE (yi, ŷi) =

√
1
N ∑N

i=1(yi − ŷi)
2 (11)

where yi represents the true elevation value, ŷi represents the predicted elevation value,
and N represents the number of pixels counted.

3.3.1. Elevation Loss

In work that applies DEM SR, elevation accuracy is very important, which is different
from paying attention to the visual effects of general natural images. Therefore, elevation
loss is added to improve the accuracy of the global terrain. In practical works, people
often use the RMSE to measure DEM accuracy; thus, the RMSE is used here to represent
elevation loss. The specific formula is as follows:

LE = RMSE
(

hi, ĥi

)
(12)

where hi is the original high-resolution DEM, and ĥi is a high-resolution DEM generated
by the residual module.

3.3.2. Feature Loss

The loss function is an algorithm used to measure the feature gap between real data
and generated false data, which constrains the direction of model training. The relevant
formulas are as follows:

LFv = L1(vi, v̂i) (13)

LFc = RMSE(I, C) (14)

where vi is the terrain feature extracted from the original high-resolution DEM through
the VGG [64] module, v̂i is the terrain feature extracted from the high-resolution DEM
generated by the residual module through the VGG module, I is the matrix with all values
of one, and C is the feature extracted from the high-resolution DEM generated by the
residual module through the full convolution module [32].

The loss of topographic features is composed of two parts, namely, LFv and LFc :

LF = LFv + βLFc (15)

The loss function directly determines the direction of network optimization and
affects the quality of final DEM generation. Therefore, multiple loss function collaborative
constraints are designed. The collaborative loss is a combination of elevation accuracy loss
and terrain feature loss, as shown below:

LC = αLE + LF (16)

Among them, α and β are the weight coefficients.

4. Experiments
4.1. Experimental Setup

This section describes the experimental setup, including datasets, parameters, selected
comparison methods, and terrain indicators. First, we selected DEMs with complex terrain
distribution (seen in Figure 6) to test the generalization of the proposed method. The
resolution of the DEMs is 30 m, and the study area size is 7201 × 7201. It can be seen from
the figure that the terrain elevation values range from 304 m to 2335 m, which is much
larger than the range from 0 to 255 in the image field. The study area has a wide range of
slopes, with the highest slope approaching 80 degrees and being mostly concentrated at
0–40 degrees. The area includes complex terrain features, such as ridges, valleys, rivers,
cliffs, etc.
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the elevation distribution of the study area, and (c) is the slope distribution of the study area.

The terrain will change over time due to external effects; thus, it is a challenge to
simultaneously obtain DEMs with different resolutions in the same area. Considering the
experimental setup’s rationality and the experimental data’s availability, we need to conduct
down sampling processing on the high-resolution DEM to obtain the corresponding low-
resolution DEM. The down sampling factor was designed at 4, which is a commonly used
target scale. Since the experimental setting is a 1:1 super-resolution, we need to restore the
downsampled DEM to its original size. We used the Kriging method to complete the size
restoration. The large DEM was cut into non-overlapping 64 × 64 single-channel small
DEMs randomly, and 12,544 DEM fragments were obtained. To avoid overfitting the model,
the DEM was uniformly extracted from each region using systematic sampling. The volume
ratio of the training set and test set was 8:2, which means that 10,035 DEMs were sampled as
training data and 2509 DEMs as test data. To enhance the persuasiveness of the experiment,
we selected four different types of areas in the test set for the test demonstration. Specifically,
Figure 7contains raw DEM data, elevation statistics, slope statistics, and horizontal and
vertical drop distributions. Using the DEM parameter information in Figure 7, we can
intuitively find the difference between them: The overall elevation (about 600–1000 m) and
elevation range (about 500 m) of R1 and R2 are roughly similar, but the terrain distribution
of R1 is slightly flatter than R2 (the R1 slope is concentrated at 0–10 degrees, and R2 at
10–30). The overall elevation of R3 is the smallest (about 100–700 m), the elevation range
is close to R1R2 (513 m), and the topographic relief is large. The overall elevation of R4 is
close to that of R1R2 (about 600–1000 m), but the elevation difference is the smallest (171 m),
and the slope is also concentrated at 0–10 degrees, which is a relatively smooth area.
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region, (b) is the elevation distribution of the study region, (c) is the elevation drop in the vertical
direction of the study region, (d) is the statistics of elevation drop in the vertical direction of the study
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region, (e) is the slope distribution of the study region, (f) is the statistics slope distribution of the
study region, (g) is the elevation drop in the horizontal direction of the study region, and (h) is the
statistics of elevation drop in the horizontal direction of the study region. The horizontal direction is
the elevation difference between the left and right adjacent pixels, and the vertical direction is the
elevation difference between the up and down adjacent pixels.

To shorten the test time, we chose the 64 × 64 small-sized DEM, but this does not
mean that our model can only be effective for this size. We used the PyTorch platform to
train and test the network and the Adam optimizer (with a batch size of 16) to replace
the classical random gradient descent method to update the network weight more effec-
tively [65]. The learning rate for backpropagation was set as 0.0002, and the network was
trained with 100 epochs. The weights of loss were set as α = 1 and β = 0.01 to balance out
their value scales.

Then, to evaluate our network’s effectiveness, we compared it with several common
DEM super-resolution methods, including classical interpolation methods and deep learn-
ing network methods. The commonly used classical interpolation methods include nearest
neighbor interpolation, bilinear interpolation, bicubic interpolation, cubic B-spline interpo-
lation, etc. The research of Han et al. showed that bicubic interpolation produces the best
image effect, and it is usually used as a baseline to evaluate the effect of the SR method;
therefore, we chose the bicubic [8], Kriging [42], SRResNet [32], TfaSR [31], and SRCNN [6]
methods to test the deep learning network.

This paper evaluates the results of DEM super-resolution based on three indicators:
elevation [56], slope [31,66], and SSIM (structure similarity index measure) [67]. The
calculation formulas for the slope (Formulas (17)–(19)) and SSIM (Formulas (20)–(22)) are
as follows:

dx =

[(
ei−1,j+1 + 2ei,j+1 + ei+1,j+1

)
−
(
ei−1,j−1 + 2ei,j−1 + ei+1,j−1

)]
8× Cellisize

(17)

dy =

[(
ei+1,j−1 + 2ei+1,j + ei+1,j+1

)
−
(
ei−1,j−1 + 2ei−1,j + ei−1,j+1

)]
8× Cellisize

(18)

slopeij = arctan
√

dx2 + dy2 (19)

SSIM(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ2
x + σ2

y + C2
(20)

C1 = (k1L)2 k1 = 0.01 (21)

C2 = (k2L)2 k2 = 0.03 (22)

In Formulas (17)–(19) [31,66], ei,j denotes the elevation of the cell
(
xi, yj

)
, Cellisize

denotes the resolution of the DEM, and slopeij denotes the slope of the DEM. In Formula
(20) [67], µx and µy are the mean of x and y, respectively; σx and σy are the standard
deviation of x and y, respectively; σxy is the covariance of x and y; and C1 and C2 are fixed
parameters used to maintain the stability of Formulas (21) and (22) [67], where L is the
maximum value of the pixel (L ≈ 255, due to normalization).

The specific evaluation methods include the mean absolute error (MAE) and the root
mean square error (RMSE), and the formulas are as follows [13,68]:

MAE =
1
N ∑N

i=1

∣∣∣hi − ĥi

∣∣∣ (23)

RMSE =

√
1
N ∑N

i=1

(
hi − ĥi

)2
(24)

where N denotes the number of pixels in the test samples, hi denotes the values in the original
high-resolution DEM, and ĥi denotes the values in the reconstructed high-resolution DEM.
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4.2. Training

This section details the training process. The training details shown in Figure 8
represent the variation in the average global elevation accuracy (RMSE-elevation). The
abscissa is the epoch, and the ordinate is the loss value (Km). By observing the curve, we
found that:
1© Figure 8 shows a downward trend, which decreases rapidly in the early stage and

gradually flattens in the late stage. This phenomenon shows that our model can
effectively capture the depth of the spatial terrain characteristics of the samples.

2© During the whole training process, the loss fluctuates up and down. At the initial
stage of training, the initial waveform fluctuates greatly. When the training epoch
increases, the performance of the DEM generation tends to be stable, and the fluctu-
ation amplitude becomes smaller. There are two reasons for loss fluctuation: (1) In
the training process, the randomly selected samples come from different regions, and
their elevation drop and terrain complexity are different, leading to the instability of
loss. (2) The preprocessing effect of some regions with too complex terrain is not good
(Figure 9), resulting in a large loss value of the generated results, which makes the loss
fluctuate. It is proved by experiments that the results of training after removing the
problematic samples from the preprocessing are almost the same as those of training
with all samples.
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Next, Figure 10 shows the effect of the model terrain generation over different training
periods. It is observed that that the terrain recovery degree gradually improves during
the whole training process. After 5 epochs of training, the overall effect of the DEM was
restored, and as the training continues, the generated DEM had more fine details as it reached
10 epochs. After 40 epochs, the model had reproduced most of the topographic features and
geographical spatial patterns. By the 70th epoch, the visual effect of the generated DEM was
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no different from that of the real high-resolution DEM, and the super-resolution task was
completed. After that, the effect of training was improved with little effect.
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5. Results and Discussions
5.1. Results

In this section, we will use untrained samples as test data to test the effect of our
proposed network. For a more objective explanation, we use classical interpolation methods
(bicubic interpolation and Kriging interpolation) and deep learning networks (SRResNet
and TfaSR) to conduct a comparative experimental analysis with our proposed model.
The deep learning networks and our model are trained for 100 epochs to ensure fairness.
The overall accuracy, visual effect, and terrain feature retention will be comprehensively
compared and explained.

5.1.1. Overall Accuracy

In this section, we evaluate the overall accuracy. We compare the bicubic interpolation,
Kriging interpolation, SRResNet, TfaSR, and SRCNN, with our methods in two different
test areas to prove the effectiveness of our proposed model. A series of indicators reflect the
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elevation and slope, and the MAE and RMSE are used to measure the accuracy, whereas
the SSIM is used to measure the structural similarity.

It can be seen in Table 1 that: (1) In the test regions R1, R2, R3, and R4, the performance
of the GISR method proposed in this paper is superior to the compared methods in elevation,
slope, and SSIM. (2) In the traditional interpolation method, Kriging’s evaluation indices in
this section are better than the bicubic ones. It is easy to understand because the Kriging
method considers the global spatial autocorrelation better, whereas the bicubic method
only establishes relationships with a few points around the mapping point (see Section 3
for details). Although the net result of SRCNN is simple, it is superior to TfaSR, SRResNet,
and other deep learning networks with complex structures in some test regions.

Table 1. The accuracy indicators of different methods.

Region Method
MAE RMSE

SSIM
Elevation Slope Elevation Slope

R1

Bicubic [40] 14.958 6.405 21.120 8.547 0.789
Kriging [42] 9.870 6.310 13.143 8.163 0.851

SRResNet [32] 7.493 5.124 10.165 6.684 0.890
SRCNN [6] 7.560 5.235 9.926 6.971 0.859
TfaSR [31] 10.730 6.565 13.908 8.665 0.793

GISR 6.365 4.503 8.236 5.824 0.919

R2

Bicubic 25.064 8.289 35.994 11.374 0.835
Kriging 11.546 6.562 16.193 8.831 0.913

SRResNet 8.553 5.235 11.630 6.665 0.927
SRCNN 9.221 5.644 12.728 7.225 0.945
TfaSR 12.578 6.773 16.598 8.587 0.905
GISR 6.232 4.424 8.364 5.581 0.971

R3

Bicubic 22.462 7.148 27.365 9.165 0.847
Kriging 13.217 7.884 17.526 8.981 0.872

SRResNet 16.568 6.825 25.054 8.919 0.901
SRCNN 11.343 6.181 14.379 7.839 0.935
TfaSR 14.122 7.041 17.449 8.763 0.908
GISR 7.785 4.628 9.865 5.910 0.956

R4

Bicubic 11.002 5.460 14.577 7.118 0.705
Kriging 9.276 6.659 12.153 7.885 0.676

SRResNet 7.146 5.029 9.606 6.439 0.791
SRCNN 8.151 6.048 10.438 7.684 0.770
TfaSR 10.840 6.675 14.017 8.551 0.548
GISR 4.871 3.854 6.316 4.951 0.885

In conclusion, the results show the effectiveness of the proposed GISR method, as it
has a good performance in regard to the DEM SR tasks in complex regions.

5.1.2. Visual Assessment

From the perspective of quantitative evaluation, GISR is superior to other methods
where visual evaluation is required because, in many cases, images with better quantitative
indicators have poor visual perception. The high numerical accuracy of a DEM does not
mean better quality. A DEM that is too smooth often performs well in numerical accuracy,
but the cost of smoothing is the loss of terrain details. Therefore, to evaluate the quality of
a DEM, it is necessary to evaluate the degree of detail retention of topographic features.

In Figure 11, it can be seen that the TfaSR results show excessive smoothness that is
even worse than that of the traditional bicubic interpolation method, which performs poorly
with regard to precision numerical values. The Kriging method, which reflects the global
terrain features, presents the phenomena of overall smoothness and the loss of terrain
details. However, it is worth noting that there is an abrupt change in elevation between the
known sample data points and the surrounding interpolation estimation points, resulting
in a discontinuous visual terrain. Similar to the numerical accuracy results, SRCNN and
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SRResNet perform satisfactorily in detail retention. The experimental results show that
our GISR method retains more terrain details in the test regions than other methods and
restores the terrain distribution law of the real DEM.
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5.1.3. Terrain Parameter Maintenance

The slope is an important indicator when measuring the terrain features. We use the
slope to further evaluate the feature retention of the generated DEM. The comparison with the
slope of the real terrain shows the ability of different methods to maintain the terrain features.

In Figure 12, the restoration of terrain features by different methods is shown. The
window frame phenomenon appears on the edge of SRCNN and SRResNet. The over-
smoothing of terrain features with TfaSR is particularly evident in the slope. The abrupt
change between the Kriging data point and the interpolation point shows that the data
point is similar to the noise point in the slope. The experimental results show that in the
test area, our method retains more details of the terrain features (slope) than other methods
and is closer to the terrain distribution of the real DEM.
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5.2. Discussion
5.2.1. The Impact of the Global Information Supplement Module

Since the nature of terrain evolution is affected by long-term geological processes
such as erosion and landslides, it has spatial autocorrelation. The Kriging interpolation
algorithm takes spatial autocorrelation into account. We used this feature to design a
global information supplement module to supplement certain transmission loss infor-
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mation and global information while taking spatial autocorrelation into account. In this
section, we discuss the effectiveness of the global information supplement module.

It can be seen from Table 2 that the elevation accuracy of our GISR method (including
the global information supplement module) is higher than that of the experimental group
without this module and is also higher than that of the Kriging interpolation method.
This shows that the overall network architecture we designed is reasonable, and the
addition of the global information supplement module improved the elevation accuracy
of the DEM. In addition, the analysis of the Kriging interpolation elevation accuracy
shows that the results are not as good as our GISR method’s results. This may be due
to the fact that the Kriging method takes spatial autocorrelation into account to give
the DEM global features, but it lacks detailed terrain features and cannot restore the
terrain undulation of the real DEM. The slope and elevation accuracy follow the same
rule, which will not be repeated here. When the global information supplement module
is removed, the slope direction accuracy is the highest. The RMSE is more sensitive to
extreme values, and the MAE tends to describe the average state. The emphasis of the
two is different, and therefore, the problems reflected are also different.

Table 2. The accuracy indicators of ablation experiments to remove different modules (GISR is a
method in this paper, RG-GISR means removing the global information supplement module, Kriging
as control method).

GISR RG-GISR Kriging

MAE
Elevation 6.250 8.432 7.521

Slope 4.845 5.010 5.873

RMSE
Elevation 8.178 10.387 10.121

Slope 6.148 6.411 7.550

It can be seen from Figure 13 that our GISR method (including the global infor-
mation supplement module) is more similar to the real terrain in terms of DEM and
slope. The experimental group without this module will have incorrect feature informa-
tion, and some features will not be recovered. As with the control group, the Kriging
method’s overall terrain distribution still shows excessive smoothness and lacks details.
To summarize, the global information supplement module effectively supplements the
global information lost in the transmission process and also shows the rationality of our
GISR design method.

In addition, in order to further explore the role of the global information supplement
module in modeling long-distance geographic features (i.e., drainage lines), we further
compared the GISR method and the GISR method (RG-GISR) that removes the global
information supplement module in modeling drainage lines. The specific results are
shown in Figure 14. By analyzing Figure 13, we can find that after removing the global
information, RG-GISR overemphasizes local features (generating additional significant
topographic features). On the contrary, GISR can constrain the generated results by
modeling the drainage line through the global information module so that the generated
geographic features are closer to the ground truth in the contour. In a word, more
accurate modeling of long-distance geographic features is an important role of the global
information module.
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5.2.2. Effectiveness of the Collaborative Loss

The loss function is an algorithm used to measure the difference between the real data
and the generated false data, which constrains the direction of model training. Therefore,
we will discuss the role of the collaborative loss model. The collaborative loss in this paper
is composed of elevation loss, LE, and feature loss, LFv and LFc . The effects of only LE, LFc ,
LFv , and the original model were tested.

Table 3 shows the DEM SR results under different loss schemes. Through the analysis
of Table 3, we can find that: (1) the evaluation and slope indicators of LE loss alone perform
best, while the evaluation and slope indicators of LFv and LFc loss alone perform very poorly,
which indicates the importance of elevation loss; and (2) the SSIM indicator performance
of the three loss schemes when they are applied cooperatively is better than that of the
scheme using SSIM loss alone, which indicates that elevation loss and feature loss are two
constraint directions with great difference. In order to further explore the visualization
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effects of different loss schemes, we further display the visualization results of different
loss schemes in Figure 15.
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Figure 14. Global information supplement: (a) is the DEM has global information supplement, (b) is
the DEM has not global information, and (c) is the ground truth (The details in the red box are in the
next row).

Table 3. The accuracy indicators of different loss schemes.

Loss Scheme MAE RMSE
SSIM

LE LFv LFc Elevation Slope Elevation Slope

I
√

× × 4.735 3.826 6.352 4.853 0.914
II ×

√
× 33.594 11.345 40.298 14.180 0.826

III × ×
√

51.082 10.936 62.618 13.686 0.582
IV

√ √ √
6.922 4.303 8.990 5.484 0.951

By analyzing Figure 15, we found that (1) the DEM SR results of elevation loss applied
alone are very smooth, lacking many DEM local features, and that the SSIM is lower than
the SSIM of collaborative loss. This shows that it is difficult to achieve DEM SR tasks
with only elevation loss. (2) The DEM SR results of feature loss alone will produce many
significant pseudo-features, which are far from the ground truth results. This indicates
that the DEM SR task cannot be achieved by a single special loss. (3) The collaborative
application of elevation loss and feature loss can build DEM SR results that are closer to
visual cognition, which shows that the collaborative loss scheme can play the role of feature
loss, and this combination is the best loss scheme at present.



Remote Sens. 2023, 15, 305 22 of 29
Remote Sens. 2023, 15, 305 22 of 29 
 

 

 

Figure 15. Results of different loss schemes: (a) is the DEM SR result, and (b) is the DEM SR 

slope(The details in the red box are in the next row). 

By analyzing Figure 15, we found that (1) the DEM SR results of elevation loss ap-

plied alone are very smooth, lacking many DEM local features, and that the SSIM is lower 

than the SSIM of collaborative loss. This shows that it is difficult to achieve DEM SR tasks 

with only elevation loss. (2) The DEM SR results of feature loss alone will produce many 

significant pseudo-features, which are far from the ground truth results. This indicates 

that the DEM SR task cannot be achieved by a single special loss. (3) The collaborative 

application of elevation loss and feature loss can build DEM SR results that are closer to 

visual cognition, which shows that the collaborative loss scheme can play the role of fea-

ture loss, and this combination is the best loss scheme at present. 

To better analyze the impact of different loss function weight schemes, we further 

tested the performance of parameters α and β in different orders of magnitude. Specifi-

cally, the values of α and β are adjusted to make the impact of �� and �� clear, and the 

results are listed in Table 4. First, it can be observed that a less value of β can obtain a 

better result. Furthermore, a larger value of α can obtain a better performance. It is ob-

served that when the ratio of α and β is in the same order of magnitude, the effect of loss 

on the model is approximately similar. Moreover, after making the impact of  �� and 

�� clear, users can choose different types of parameter settings by considering their spe-

cific terrain product demands. 

  

Figure 15. Results of different loss schemes: (a) is the DEM SR result, and (b) is the DEM SR slope(The
details in the red box are in the next row).

To better analyze the impact of different loss function weight schemes, we further
tested the performance of parameters α and β in different orders of magnitude. Specifically,
the values of α and β are adjusted to make the impact of LE and LF clear, and the results
are listed in Table 4. First, it can be observed that a less value of β can obtain a better result.
Furthermore, a larger value of α can obtain a better performance. It is observed that when
the ratio of α and β is in the same order of magnitude, the effect of loss on the model is
approximately similar. Moreover, after making the impact of LE and LF clear, users can
choose different types of parameter settings by considering their specific terrain product
demands.

Table 4. Results of our method (GISR) with different parameter settings (baseline: α =1 and β = 0.01).

α β
MAE RMSE

SSIM
Elevation Slope Elevation Slope

1 0.1 6.729 6.060 8.446 7.712 0.904
1 0.01 5.702 5.797 7.333 7.302 0.934
1 0.001 4.926 5.059 6.438 6.441 0.913

0.1 0.01 7.437 6.030 9.069 7.549 0.903
1 0.01 5.702 5.797 7.333 7.302 0.934

10 0.01 5.240 5.050 6.789 6.413 0.914
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By analyzing Table 4 and Figure 16, we found that different weight combination
schemes of α and β will produce different results. Specifically, when the value of α is kept
unchanged, the higher the value of β, the better the elevation and slope of the corresponding
result; when the value of β is kept unchanged, the higher the value of α, the worse the
elevation and slope of the corresponding result. However, the SSIM does not conform to
this change rule that reaches the maximum at α = 1 and β = 0.01. Therefore, in a practical
application, we recommend that the corresponding relationship between α and β is about
100 times, which can make the evaluation indicators and visual results more balanced.
Therefore, in Section 5.1, we used the parameters α = 1 and β = 0.01, to make the model
perform better.
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5.2.3. The Application of Other Dataset

In order to evaluate the adaptability of our GISR method to different datasets, we
selected the datasets provided by TfaSR [31] (the elevation value of this data set ranges from
0.5 m to 3741 m, and the elevation value of the data set in Section 4.1 ranges from 304 m to
2335 m) for verification. Since the TfaSR method provides a trained model, we directly use
its open model for testing, and the training parameters of the remaining methods are all
those mentioned in Section 4.1. The specific results are as follows.

Table 5 and Figure 17 show the results of different methods on the dataset disclosed
by TfaSR. By analyzing Table 5 and Figure 17, we can draw the following conclusions:
(1) The GISR method we proposed has the best quantitative indicators, followed by the
Kriging method, SRResNet, SRCNN, TfaSR, and bicubic. (2) In terms of visual cognition,
our GISR can roughly restore the complex ground truth DEM; the results generated by
bicubic and Kriging are very smooth, and many local details are lost; SRResNet and
SRCNN have incorrect recovery of some details; the result of the TfaSR method is very
special. The DEM generated by the TfaSR method has more pseudo-features. Although
it produces more seemingly real features, it makes the result more deviated from the
ground truth. To sum up, the GISR method proposed in this paper is well qualified
for the dataset disclosed by TfaSR, which fully demonstrates that the GISR method has
strong data adaptability.
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Table 5. Comparisons among different methods on the TfaSR dataset.

Method
MAE RMSE

SSIM
Elevation Slope Elevation Slope

Bicubic [46] 11.108 0.468 14.679 0.635 0.8268
Kriging [49] 4.552 0.350 5.932 0.478 0.9480

SRResNet [37] 4.731 0.349 7.799 0.495 0.9344
SRCNN [38] 6.194 0.350 7.873 0.477 0.9399
TfaSR [36] 9.070 0.535 11.758 0.758 0.8956

GISR 4.372 0.315 5.866 0.439 0.9561
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5.2.4. The Impact of the Different Down Sampling Factors

In this section, the effectiveness of our method based on the different down sampling
factors d of training data is investigated. The experimental settings are the same as the
experiment in Section 4.1 except for the down sampling factor d.

As shown in Table 6 and Figure 18, when d is two, the DEM reconstructed from
the model is closest to the original DEM. This is because with the increase of d, the low-
resolution pixel data becomes less, and more limited information is obtained. When d
is six, more local features will be lost, and only the basic terrain feature contour can be
reconstructed. This is because the down sampling factor is too large, and fewer known
features bring great challenges to DEM reconstruction. To sum up, our GISR method can
reconstruct DEMs that are very close to the ground truth under conditions that use different
down sampling factors, which fully demonstrates that the GISR method can be widely
used for DEM SR tasks with different down sampling factors.
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Table 6. The results of DEM reconstructed with the down sampling factor d of two, four, and six.

Scale
Elevation

SSIM
MAE RMSE

2 4.434 5.701 0.935
4 5.702 7.333 0.913
6 7.147 8.976 0.874
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5.2.5. Limitations

In the proposed GISR method, the global information supplement module is used to
supplement certain transmission loss information and global information by considering
spatial autocorrelation to reproduce a more realistic geographical distribution pattern.
The Kriging interpolation method accounts for spatial autocorrelation, which can provide
global terrain information; thus, we designed our modules based on it. In this way, the
interpolation effect of the Kriging method directly affects the effectiveness of the GISR
method. For some regions with complex terrain, the Kriging method will fail to interpolate;
therefore, the quality of the DEM generated by our method will be greatly reduced. In
our follow-up work, we will try to introduce the idea of a transformer [27] into the DEM
SR process to achieve the acquisition of global information from the underlying network
architecture.

6. Conclusions

This paper proposes a global-information-constrained depth learning network for dig-
ital elevation model super-resolution (GISR). The global information supplement module,
which can reflect spatial autocorrelation, is designed based on the Kriging method in order
to supplement some transmission loss information and global information through the
consideration of spatial autocorrelation. In the test area with different terrain complexities,
GISR performs well in regard to elevation accuracy and terrain maintenance compared
with other classical interpolation methods (bicubic interpolation and Kriging interpolation)
and deep learning networks (SRResNet, TfaSR, and SRCNN). The DEM generated by this
method is closer to the real terrain, and compared with the deep learning method, the
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RMSE of our results is improved by 20.5% to 68.8%. The GISR method can be widely used
for DEM SR tasks with different down sampling factors and has strong data adaptability.

The results show that the proposed global information supplement module based
on terrain spatial autocorrelation can be embedded into other terrain generation tasks.
Ultimately, our work reveals the feasibility of studying terrain models from the perspective
of network transmission and information supplementation, which, to some extent, enhances
the interpretability of the DEM super-resolution network and provides a new idea for
completing high-precision DEM generation tasks.
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Abbreviations

DEM digital elevation model
LR DEM low-resolution digital elevation model
HR DEM high-resolution digital elevation model
SR super-resolution
DEM SR digital elevation model super-resolution
RMSE root means square error
MAE mean absolute error
CNN convolutional neural network
SRCNN super-resolution convolutional neural network
SRResNet super-resolution residual network
TfaSR terrain feature-aware super-resolution model
GISR global-information-constrained digital elevation model super-resolution
LISA local indicators of spatial association
IDW inverse distance weighted
FCN fully convolutional networks
CEDGANs conditional encoder-decoder generative adversarial neural networks
EDEM-SR enhanced double-filter deep residual neural network
PReLU parametric rectified linear unit
ReLU rectified linear unit
LReLU leaky rectified linear unit
BN batch normalization
ResNet residual network
PS Pixelshuffle
VGG visual geometry group
RG-GISR GISR of removing the global information supplement module
SSIM structure similarity index measure
RSPCN recursive sub-pixel convolutional neural networks
ZSSR zero-shot super-resolution
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