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Abstract: High-resolution DEMs can provide accurate geographic information and can be widely 
used in hydrological analysis, path planning, and urban design. As the main complementary means 
of producing high-resolution DEMs, the DEM super-resolution (SR) method based on deep learning 
has reached a bottleneck. The reason for this phenomenon is that the DEM super-resolution method 
based on deep learning lacks a part of the global information it requires. Specifically, the multilevel 
aggregation process of deep learning has difficulty sufficiently capturing the low-level features with 
dependencies, which leads to a lack of global relationships with high-level information. To address 
this problem, we propose a global-information-constrained deep learning network for DEM SR 
(GISR). Specifically, our proposed GISR method consists of a global information supplement mod-
ule and a local feature generation module. The former uses the Kriging method to supplement 
global information, considering the spatial autocorrelation rule. The latter includes a residual mod-
ule and the PixelShuffle module, which is used to restore the detailed features of the terrain. Com-
pared with the bicubic, Kriging, SRCNN, SRResNet, and TfaSR methods, the experimental results 
of our method show a better ability to retain terrain features, and the generation effect is more con-
sistent with the ground truth DEM. Meanwhile, compared with the deep learning method, the 
RMSE of our results is improved by 20.5% to 68.8%. 
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1. Introduction 
DEMs (digital elevation models) can digitally express specific terrain information 

and have been widely used in hydrological analysis and modeling [1–3], path planning 
[4], and urban design [5]. In order to obtain the best results in the above applications, it is 
very important to obtain a high-resolution DEM that can provide more accurate geo-
graphic information. However, the cost, time, and computing power of using a detecting 
instrument (i.e., a laser radar) to produce a DEM increases sharply with the increase in 
product resolution, which makes it difficult to meet the needs of practical production 
tasks [6,7]. Hence, it is necessary to study the methods that can supplement the high-res-
olution DEM data. 

Among the existing DEM data supplement methods, the DEM SR (DEM super-reso-
lution) method is an important approach that can be divided into interpolation-based and 
deep-learning-based methods [6,7]. The former uses the classical interpolation method as 
the interpolation kernel to improve the resolution of the DEM data, whereas the latter uses 
massive homogeneous spatial data to train the corresponding DEM and calls for the well-
fitted model to achieve DEM super-resolution. Different DEM super-resolution 
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mechanisms make the characteristics of these two methods very distinct. Specifically, the 
interpolation-based method depends on the degree of agreement between the interpola-
tion kernel and the global distribution of the DEM in the target region, and it will achieve 
good results when the two are very close [8–10]. The method based on deep learning fo-
cuses on the expression of local features and achieves good results through the multilevel 
aggregation of local features [9,11]. However, due to the complexity of real terrain [12], it 
is difficult for interpolation-based methods to provide interpolation kernels that are sim-
ilar to the terrain distribution rules, and the results often have greater limitations. On the 
contrary, the method based on deep learning has a large number of parameters that can 
capture the terrain distribution law in the training process and thus has greater potential 
in the DEM SR task [6,9,11,13]. 

However, the current deep-learning-based DEM SR method mostly pays attention to 
the extraction of local features and ignores the global information contained in the terrain, 
which creates a bottleneck for the deep-learning-based DEM SR method [14–16]. Specifi-
cally, due to DEMs having a regular grid organization similar to images, scholars tend to 
improve DEM SR performance by migrating to the image SR method but pay little atten-
tion to the significant spatial correlation in the DEM [6,7,17]. In fact, spatial autocorrela-
tion [14,18] is a very common source of global information in the terrain (as shown in 
Figure 1, the global Moran’s I index [12,19] of the target area is 0.999230 and there are 
significant high–high and low–low distribution patterns between elevation points, which 
indicates that the target region has significant spatial autocorrelation), but the feature ex-
traction module (e.g., the CNN (convolutional neural network) module [20,21], ResNet 
(residual network) module [22,23], PixelShuffle module [24], and the deformable convo-
lution module [25,26]) adopted by the existing DEM SR method based on deep learning 
has difficulty capturing sufficient global information. Hence, the lack of necessary global 
information limits the performance of the DEM SR based on deep learning. 

 
Figure 1. The elevation values of the terrain have spatial correlation: (a) is the remote sensing images 
of the region, (b) is the DEM of the region, and (c) is the LISA (local indicators of spatial association) 
map. 

Essentially, due to the limitation of the size of the convolution kernel, the probability 
that the low-level features that are remotely interdependent (global information) in the 
neural network are captured and aggregated into high-level information is very low [27–
29], which explains the loss of global information in traditional networks such as a CNN. 
A feasible solution is to use the spatial autocorrelation of the terrain to supplement the 
global information in the network, which can be mainly thought of in terms of two aspects: 
(1) As a supplement method of DEM SR, the constraints provided by spatial autocorre-

lation can directly provide the DEM SR results with a certain degree of accuracy for 
the model. For example, the Kriging method [30] is used to find the spatial interpo-
lation kernel that conforms to the target region by calculating the relationship 
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between the spatial distance and the semi-variogram, and its interpolation results are 
highly accurate. 

(2) The results generated under the spatial autocorrelation rule are involved in the final 
results of the DEM SR, which is based on constraining the parameter flow direction 
of the learnable convolution kernel throughout the whole network, which indirectly 
supplements the global information for the model. 
Although existing DEM SR methods have a good learning ability, they remain insuf-

ficient for the realistic restoration of terrain features. We argue that the problem arises 
from the lack of global terrain information, and hence, we propose a global-information-
constrained deep learning network for DEM SR (GISR). Our model is designed for the 
purpose of the extraction and supplementation of global information. Specifically, there 
are two modules in the proposed GISR. First, a global information supplement module 
based on the Kriging method adds missing global information, whereas a local feature 
generation module is proposed for terrain feature extraction and recovery. In addition, a 
collaborative loss is adopted to supervise the training process and to optimize the param-
eter learning direction. The main contributions of our paper are summarized as follows: 
• We propose a global-information-constrained deep learning network for DEM SR 

(GISR) that can optimize the DEM SR process toward generating global terrain fea-
tures and achieving advanced results. Specifically, compared with the traditional 
bicubic Kriging interpolation method and existing neural network methods (TfaSR 
[31], SRResNet [32], and SRCNN [33]), the RMSE of our results is improved by 20% 
to 200%, and the MAE of our results is improved by 20% to 300%. 

• We use the Kriging interpolation method, which accounts for spatial autocorrelation, 
to construct the global information supplement module. The module directly fuses 
the global information of the interpolation method and indirectly supplements the 
global information by affecting the loss to generate a DEM more similar to the real 
terrain distribution. 
The rest of this paper is organized as follows: Section 2 is a review of the work related 

to the SR approach. In Section 3, we detail our proposed approach. In Section 4, the design 
of the experimental evaluation is described, and the results and analysis are presented. 
Section 5 is a discussion of the advantages and limitations of the proposed approach. In 
Section 6, we present our conclusions and discuss future work. The source code and data 
we have developed to implement our method are shared on Figshare 
(https://doi.org/10.6084/m9.figshare.21384093, accessed on 30 November 2022). 

2. Related Work 
2.1. Super-Resolution (SR) Based on Traditional Spatial Interpolation Methods 

Spatial interpolation is a traditional SR operation that aims to predict the value at an 
unobserved location given some sampled data at observed locations [34]. Based on differ-
ent hypothesis theories, classical spatial interpolation methods include the distance-
weighted reciprocal method [35], natural nearest neighbor method [36,37], spline interpo-
lation method [38,39], bicubic method [40,41], and Kriging method [10,30,42]. More spe-
cifically, the IDW (inverse distance weighted) interpolation method assumes that each 
sampling point has a certain local influence ability; the natural nearest neighbor method 
assumes that the sample points are unevenly distributed, which makes it an average 
weight algorithm that can be used for DEM SR [31]; spline interpolation [38] assumes that 
the surface attribute is gradual, and that the interpolation is realized by fitting a surface 
with minimum curvature that is valid on the terrain [43]. As a common DEM interpolation 
method [13], the bicubic interpolation method assumes that the change rate of each adja-
cent point value follows a specific distribution, and the corresponding parameters can be 
determined by known data; the Kriging method [30] assumes that the distance and direc-
tion between sample points reflect a spatial relationship that explains the spatial variation. 
Kriging includes many methods that can be divided into methods by characterizing the 



Remote Sens. 2023, 15, 305 4 of 29 
 

 

spatial structural features by estimating the semi-variogram cloud (simple Kriging 
method and ordinary Kriging) and by combining a regression of the dependent variable 
on auxiliary variables with the simple Kriging of the regression residuals (regression 
Kriging and general Kriging) [7]. Among the classical terrain interpolation algorithms 
mentioned above, the Kriging interpolation often performs better than others in situations 
of large-scale complex terrain interpolation because it can determine the interpolation ker-
nel that is closer to the spatial distribution of the target region by finding an appropriate 
distance and semi-variogram. However, considering computational complexity and sta-
bility in practical applications, the bicubic interpolation method is commonly used for 
image super-resolution tasks. 

2.2. DEM SR Based on Deep Learning Methods 
The DEM SR method based on deep learning obtains the convolution kernel param-

eters closest to the spatial distribution of the target region by training massive homogene-
ous data, which enables it to complete the DEM SR task. This method’s creation cannot be 
separated from the development of deep learning technology in the field of computer vi-
sion. Specifically, the emergence of CNNs [20,21] helped scholars realize the feasibility of 
generating high-level semantic information from low-level features through multilevel 
feature transmission (in a feature extraction and feature recovery manner). However, due 
to the information loss of the pooling layer [44,45] and the mechanism of the full connec-
tion layer [46], the output of the CNN structure at this time is mainly a patch-wise net-
work, which is more useful in scene classification [45,47,48], semantic segmentation 
[49,50], and object detection [51,52]. However, the introduction of FCNs (fully convolu-
tional networks) [53] changed this situation. FCNs replaced pooling and full connection 
layers with convolutional layers, reducing the loss of high-level semantic information, and 
successfully promoting pixel-wise output, which made it possible to use FCNs for SR 
tasks. Inspired by the above network framework, scholars in the field of image super-
resolution have proposed SRCNNs [33] and GANs, which are networks that surpass con-
ventional interpolation methods. Considering the similar organizational structure of 
DEMs and images, scholars introduced SRCNNs [6], D-SRGANs [17], and CEDGANs [7] 
based on analogies and achieved better performances than interpolation-based SR meth-
ods. Limited by the degradation and vanishing gradients of the deep network, the above 
methods can only aggregate limited high-level semantic information through the shallow 
network, and the accuracy bottleneck soon appears. This problem was soon alleviated by 
ResNet [28] in the field of computer vision. Zhou et al. [16] applied this module and pro-
posed an enhanced double-filter deep residual neural network (EDEM-SR) method that 
can capture more DEM features by introducing residual structures to deepen the network 
depth and enhance the ability to capture DEM features. Zhang et al. [12] also verified that 
the deep [23] network with a ResNet structure could achieve better DEM SR performance. 
Furthermore, Zhang et al. [36] considered the characteristics of DEM features and intro-
duced a deformable convolution module, which was a breakthrough with regard to the 
limitation of the convolution kernel morphology and could enhance the ability to capture 
irregular DEM features; thus, the authors proposed that more DEM features could be re-
tained. In addition, some novel DEM SR methods have also emerged. For example, Demi-
ray et al. [54] created a DEM with an SR that was 16 times higher by improving Mo-
bileNetV3; Lin et al. [55] introduced the internally learned ZSSR (zero-shot super-resolu-
tion) method to solve the DEM SR task; Zhang et al. [56] proposed the recursive sub-pixel 
convolutional neural networks (RSPCNs) which have obvious improvements in both ac-
curacy and robustness; and He et al. [57] introduced a Fourier transform as an encoder 
and acquired a good performance, which can enrich the existing DEM SR task encoder. 
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3. Methods 
To further improve the DEM SR performance, we propose the global-information-

constrained deep learning network for DEM super-resolution (GISR). Specifically (see Fig-
ure 2), in this method the LR DEM (low-resolution DEM, 16 × 16) is preprocessed. The size 
of the DEM is expanded to 64 × 64 using systematic sampling [7]. Additionally, the sam-
pling data are changed into input DEM data (64 × 64) through ordinary Kriging interpo-
lation. We used different variogram models (linear, power, gaussian, spherical, and expo-
nential) and selected the best prediction results as samples. The preprocessed DEM is used 
as input for the local feature generation module, and the 64 × 64 DEM is the output at full 
size, which can be obtained through ResNet and PixelShuffle. Next, the 16 × 16 low-reso-
lution DEM is used as input for the global information supplement module. Further, the 
DEMs generated by the global information supplement module and the local feature gen-
eration module are combined to obtain the final result. In addition, the collaborative loss 
is applied to optimize the training director of the model. 

 

 
Figure 2. Overview of the proposed global-information-constrained deep learning network for gen-
erating super-resolution DEMs (GISR). 

3.1. Global Information Supplement Module 
The global information supplement module plays a direct (sampling the smooth 

DEM) and indirect (constraining the corresponding deep learning network parameters) 
role, and thus, it is important to find an interpolation kernel that is very close to the terrain 
law. Among the existing interpolation kernel methods, the Kriging interpolation kernel 
has the best performance. Kriging interpolation [10,30,42] is a classical method based on 
Tobler’s first law of geography [18,58] (geographical objects or attributes are interrelated 
in a spatial distribution, usually called spatial autocorrelation), which makes full use of 
the spatial correlation between the original data of regionalized variables and carries out 
an unbiased optimal estimation for the values of regionalized variables at noncamping 
points. To implement the Kriging interpolation method, we need to define the operations. 
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First, determine the terrain distribution mode in the region. According to the first law 
of geography, there is a relationship between known points. The ordinary Kriging method 
assumes that this relationship can be expressed as a function of distance and semi-vari-
ance between two pairs of known points, where distance represents spatial proximity, and 
semi-variance represents a spatial attribute. By drawing scatter plots of all distances 𝑑𝑑𝑖𝑖𝑖𝑖 
and semi-variances 𝑝𝑝𝑖𝑖𝑖𝑖, the relationships of functions can be fitted, such as linear, quad-
ratic, exponential, and logarithmic relationships. Define the distance formula between the 
known point i (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and the known point j (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗) as follows: 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑((𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗)) = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2   (1) 

The semi-variance formula is as follows [38]: 

𝑝𝑝𝑖𝑖𝑖𝑖 =
1
2
𝐸𝐸 ��ℎ𝑖𝑖 ,ℎ𝑗𝑗�

2� =  𝜎𝜎2 − 𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑖𝑖 ,ℎ𝑗𝑗) (2) 

where ℎ𝑖𝑖  is the elevation value of point i (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), ℎ𝑗𝑗  is the elevation value of point j 
�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�, 𝑐𝑐𝑐𝑐𝑐𝑐�hi, hj� is the covariance of point i (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and point j (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗), 𝜎𝜎2 is variance 
of point i (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and point j (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗). 

The basic formula of Kriging interpolation is: 

ℎ�0 = ∑ 𝜆𝜆𝑖𝑖ℎ𝑖𝑖𝑛𝑛
𝑖𝑖=1   (3) 

where ℎ�0 is the unbiased estimate of the point (𝑥𝑥0,𝑦𝑦0); the 𝜆𝜆𝑖𝑖  weight coefficient is the 
estimated value at the point that can be satisfied, h�0; and the true value ℎ0 is the smallest 
set of optimal coefficients: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑖𝑖
𝑉𝑉𝑉𝑉𝑉𝑉(ℎ�0 − ℎ0)  (4) 

Under the assumption of homogeneous spatial attributes and the premise of unbi-
ased estimation, the cost function of obtaining the optimization objective is 

       𝐽𝐽 = 𝑉𝑉𝑉𝑉𝑉𝑉�ℎ�0 − ℎ0� = 𝑉𝑉𝑉𝑉𝑉𝑉 �� 𝜆𝜆𝑖𝑖ℎ𝑖𝑖 − ℎ0
𝑛𝑛

𝑖𝑖=1
�      (5) 

It is solved by using Lagrange multiplier method, and the solution method is to con-
struct a new objective function: 

𝐽𝐽 + 2𝜙𝜙��𝜆𝜆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 1�         (6) 

where 𝜙𝜙 is the Lagrange multiplier. Solving the parameter set 𝜙𝜙 and 𝜆𝜆𝑖𝑖 that minimize 
the cost function can satisfy the requirement that they minimize J under ∑ 𝜆𝜆𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1  con-
straint:  

      
2𝑝𝑝𝑘𝑘0 −� �𝑝𝑝𝑘𝑘𝑘𝑘 + 𝑝𝑝𝑗𝑗𝑗𝑗�𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1
+ 2𝜙𝜙 = 0; 𝑘𝑘 = 1,2,⋯ ,𝑛𝑛

� 𝜆𝜆𝑖𝑖
𝑛𝑛

𝑖𝑖=1
= 1

 (7) 

After a series of derivations and calculations, the following weight matrix can be ob-
tained: 

         

⎣
⎢
⎢
⎢
⎡
𝑝𝑝11 𝑝𝑝12 ⋯ 𝑝𝑝1𝑛𝑛 1
𝑝𝑝21 𝑝𝑝22 ⋯ 𝑝𝑝2𝑛𝑛 1
⋯ ⋯ ⋯ ⋯ ⋯
𝑝𝑝𝑛𝑛1 𝑝𝑝𝑛𝑛2 ⋯ 𝑝𝑝𝑛𝑛𝑛𝑛 1
1 1 ⋯ 1 0 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝜆𝜆1
𝜆𝜆2
⋯
𝜆𝜆𝑛𝑛
−𝛷𝛷⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑝𝑝10
𝑝𝑝20
⋯
𝑝𝑝𝑛𝑛0
1 ⎦
⎥
⎥
⎥
⎤
 (8) 

To solve for the elevation value of unknown points, first, use the fitting function of 
distance and semi-variance and calculate 𝑝𝑝𝑖𝑖0 according to the distance from the interpo-
lation point to all known points, then inverse the above matrix to obtain all the weight 
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coefficients, and finally, bring back the basic formula of Kriging interpolation,  ℎ�0 =
∑ 𝜆𝜆𝑖𝑖ℎ𝑖𝑖𝑛𝑛
𝑖𝑖=1 . Thus, the elevation value of the interpolation point is obtained. The approximate 

flow of the Kriging interpolation method is shown in Figure 3. 

 
Figure 3. Process steps of Kriging interpolation (the left input is low-resolution DEM, and the right 
output is interpolated high-resolution DEM). 

3.2. Local Feature Generation Module 
The local feature generation module was designed to retain the terrain details and to 

reproduce a more realistic geographical distribution pattern. The local feature generation 
module inputs the 64 × 64 low-resolution DEM generated by the global information sup-
plement module. First, the convolution layer (kernel size = 9, padding = 4, and stride = 1) 
is used based on the relatively large receptive field (9 × 9). The terrain features are ex-
tracted and then activated using the PReLU (parametric rectified linear unit) [53]. Then, 
the extracted features flow into the residual module. Next, the features pass through a 
roll-up layer (kernel size = 3, padding = 1, and stride = 1) and a BN (batch normalization 
layer) [59] again. The features and residual blocks obtained in this step are extracted for 
stacking, and the stacked features flow into the upper sampling module as input. The 
upper sampling module consists of four layers, namely, the convolution layer (kernel size 
= 3, padding = 1, and stride = 1), batch normalization layer (BN), PixelShuffle [24] layer 
(factor = 2), and PReLU activation layer. The feature size passes through the convolution 
layer (kernel size = 9, padding = 4, and stride = 2) and the Tanh [60] layer. 

Among them, the PReLU [53] layer is selected as the active layer because it can adap-
tively learn and correct the parameters of linear units and improve accuracy with negligi-
ble additional computing costs. Additionally, the PReLU can avoid zero gradients, unlike 
the LReLU [61]. The experiment shows that, compared with the ReLU [62], the precision 
of the LReLU is almost not improved. At the same time, PReLU parameters can be learned 
adaptively, which improves the learnability of the network. The PReLU only adds a small 
number of parameters, which means that the calculation amount of the network and the 
risk of overfitting only increase a little, particularly when different channels can use the 
same parameters. In addition, to further optimize the extracted features, we added a full 
convolution network to the network to preserve the terrain details extracted from the re-
ceptive field and constrain the training director of the model. Next, we will introduce the 
relevant concepts of the residual feature extraction module and PixelShuffle in detail. 
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3.2.1. The Concept of the Residual Feature Extraction Module 
With the deepening of the deep learning network, the problems of vanishing gradi-

ents, exploding gradients, and degradation are gradually emerging. The ingenious design 
of the ResNet network effectively alleviates these problems and creates the possibility of 
building a deeper and more complex network [22,23]. ResNet introduces a jump connec-
tion structure, which allows some layers of the neural network to skip the connection be-
tween neurons on the next layer and the current layer, weakening the strong connection 
between each layer. Specifically, it saves the parameter characteristics of the current layer 
before training and transfers these parameters and the data after training the last layer. In 
this way, some of the features of the previous layer are preserved, and convolution train-
ing can also be performed, effectively alleviating the problem of deeper network degra-
dation. The gradient correlation is continuously attenuated with the increase in layers. 
The jumping of ResNet can effectively reduce the attenuation of this correlation, thus al-
leviating the problem of vanishing and exploding gradients [63]. In addition, batch nor-
malization controls exploding gradients by standardizing data distribution to prevent 
vanishing gradients. 

The residual feature extraction module is a sixteen-residual-block (n = 16) network 
module built according to ResNet. Each residual block contains five layers, including two 
convolution layers (kernel size = 3, padding = 4, and stride = 1), two batch normalization 
layers (BN), and a linear correction unit (PReLU) activation layer with parameters. Spe-
cifically, the convolution layer is used to extract terrain features, and the BN layer is used 
to reduce the impact of extreme altitude (for example, very large and very small altitude 
values). It also solves the problem where the deep neural network is more difficult to train 
and converges more slowly as the network deepens. The activation layer is used to im-
prove the stability and nonlinearity of network performance. Therefore, the proposed re-
sidual model can extract useful deep terrain features. The ResNet layer structure is shown 
in Figure 4. 
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Figure 4. The details of residual feature extraction module (Conv 3 × 3 is convolution layer with 
kernel size = 3). 

3.2.2. The Concept of PixelShuffle 
PixelShuffle [24] (sub-pixel convolutional neural network) is used to obtain high-res-

olution feature maps from low-resolution feature maps through sub-pixel convolution 
and multichannel recombination. This paper uses it as a feature up sampling method. 

Assume the feature map 𝐹𝐹𝐿𝐿 of a low-resolution DEM has a size of h × w × c. The 
height and width of the feature map of the reconstructed high-resolution DEM are ex-
panded r times, and the size is h * r × w*r × c. PixelShuffle convolves 𝐹𝐹𝐿𝐿 with a convolution 
kernel of depth c * r² to obtain a feature map of h × w × c * r². Additionally, it is then 
reorganized into h * r × w * r × c by PixelShuffle (PS), which is defined as follows: 

PS(𝑇𝑇)𝑥𝑥,𝑦𝑦,𝑐𝑐 = 𝑇𝑇[𝑥𝑥/𝑟𝑟],[𝑦𝑦/𝑟𝑟],𝐶𝐶∗𝑟𝑟∗𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦,𝑟𝑟)+𝐶𝐶∗𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑟𝑟)+𝑐𝑐 (9) 

where T is the feature map of the input 𝑟𝑟2 channels, each original low-resolution pixel is 
divided into 𝑟𝑟2 smaller grids, and these grids are filled with the values of the correspond-
ing positions of 𝑟𝑟2 feature maps according to a certain rule (C and mod comprise the 
certain rule). The reorganization process is completed by filling the lattice and dividing it 
by each low-resolution pixel according to the same rules. The process of sampling DEM 
with PixelShuffle is shown in Figure 5. 

 
Figure 5. The process of sampling DEM with PixelShuffle: (a) is the input 6 × 6 low-resolution DEM, 
(b) is the 𝑟𝑟2 feature maps extracted from subgraph, and (c) is the 12 × 12 high-resolution result after 
up sampling. 

3.3. Collaborative Loss 
Image SR focuses on the visual perception of the reconstructed image, whereas the 

DEM pays more attention to the reproduction degree of terrain features and elevation 
accuracy [32]. Therefore, considering the extraction effect of terrain features and geo-
graphical rules, we designed a collaborative loss model. Our loss function can be divided 
into two parts: the first is the elevation loss, which is used to constrain the global elevation 
accuracy, and the second is the feature loss, which improves the terrain accuracy and re-
tains the terrain features while accelerating the convergence. We chose L1 loss and RMSE 
loss to comprise the loss function, and the formulas are as follows: 
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  𝐿𝐿1(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�) = 1
𝑁𝑁
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|𝑁𝑁
𝑖𝑖=1   (10) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�) = �1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑁𝑁
𝑖𝑖=1   (11) 

where 𝑦𝑦𝑖𝑖 represents the true elevation value, 𝑦𝑦𝚤𝚤�  represents the predicted elevation value, 
and 𝑁𝑁 represents the number of pixels counted. 

3.3.1. Elevation Loss 
In work that applies DEM SR, elevation accuracy is very important, which is different 

from paying attention to the visual effects of general natural images. Therefore, elevation 
loss is added to improve the accuracy of the global terrain. In practical works, people often 
use the RMSE to measure DEM accuracy; thus, the RMSE is used here to represent eleva-
tion loss. The specific formula is as follows: 

𝐿𝐿𝐸𝐸 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�ℎ𝑖𝑖 ,ℎ𝚤𝚤� �  (12) 

where ℎ𝑖𝑖 is the original high-resolution DEM, and ℎ𝚤𝚤�  is a high-resolution DEM gener-
ated by the residual module. 

3.3.2. Feature Loss 
The loss function is an algorithm used to measure the feature gap between real data 

and generated false data, which constrains the direction of model training. The relevant 
formulas are as follows: 

𝐿𝐿𝐹𝐹𝑣𝑣 = 𝐿𝐿1(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝚤𝚤�)  (13) 

𝐿𝐿𝐹𝐹𝑐𝑐 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐼𝐼,𝐶𝐶)  (14) 

where 𝑣𝑣𝑖𝑖 is the terrain feature extracted from the original high-resolution DEM through 
the VGG [64] module, 𝑣𝑣𝚤𝚤�  is the terrain feature extracted from the high-resolution DEM 
generated by the residual module through the VGG module, 𝐼𝐼 is the matrix with all val-
ues of one, and 𝐶𝐶 is the feature extracted from the high-resolution DEM generated by the 
residual module through the full convolution module [32]. 

The loss of topographic features is composed of two parts, namely, 𝐿𝐿𝐹𝐹𝑣𝑣  and 𝐿𝐿𝐹𝐹𝑐𝑐: 

𝐿𝐿𝐹𝐹 = 𝐿𝐿𝐹𝐹𝑣𝑣 + 𝛽𝛽𝐿𝐿𝐹𝐹𝑐𝑐 (15) 

The loss function directly determines the direction of network optimization and af-
fects the quality of final DEM generation. Therefore, multiple loss function collaborative 
constraints are designed. The collaborative loss is a combination of elevation accuracy loss 
and terrain feature loss, as shown below: 

𝐿𝐿𝐶𝐶 = 𝛼𝛼𝛼𝛼𝐸𝐸 + 𝐿𝐿𝐹𝐹  (16) 

Among them, 𝛼𝛼 and 𝛽𝛽 are the weight coefficients. 

4. Experiments 
4.1. Experimental Setup 

This section describes the experimental setup, including datasets, parameters, se-
lected comparison methods, and terrain indicators. First, we selected DEMs with complex 
terrain distribution (seen in Figure 6) to test the generalization of the proposed method. 
The resolution of the DEMs is 30 m, and the study area size is 7201 × 7201. It can be seen 
from the figure that the terrain elevation values range from 304 m to 2335 m, which is 
much larger than the range from 0 to 255 in the image field. The study area has a wide 
range of slopes, with the highest slope approaching 80 degrees and being mostly concen-
trated at 0–40 degrees. The area includes complex terrain features, such as ridges, valleys, 
rivers, cliffs, etc. 
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Figure 6. Study area and its elevation and slope parameters: (a) is the DEM of the study area, (b) is 
the elevation distribution of the study area, and (c) is the slope distribution of the study area. 

The terrain will change over time due to external effects; thus, it is a challenge to 
simultaneously obtain DEMs with different resolutions in the same area. Considering the 
experimental setup’s rationality and the experimental data’s availability, we need to con-
duct down sampling processing on the high-resolution DEM to obtain the corresponding 
low-resolution DEM. The down sampling factor was designed at 4, which is a commonly 
used target scale. Since the experimental setting is a 1:1 super-resolution, we need to re-
store the downsampled DEM to its original size. We used the Kriging method to complete 
the size restoration. The large DEM was cut into non-overlapping 64 × 64 single-channel 
small DEMs randomly, and 12,544 DEM fragments were obtained. To avoid overfitting 
the model, the DEM was uniformly extracted from each region using systematic sampling. 
The volume ratio of the training set and test set was 8:2, which means that 10,035 DEMs 
were sampled as training data and 2509 DEMs as test data. To enhance the persuasiveness 
of the experiment, we selected four different types of areas in the test set for the test 
demonstration. Specifically, Figure 7contains raw DEM data, elevation statistics, slope sta-
tistics, and horizontal and vertical drop distributions. Using the DEM parameter infor-
mation in Figure 7, we can intuitively find the difference between them: The overall ele-
vation (about 600–1000 m) and elevation range (about 500 m) of R1 and R2 are roughly 
similar, but the terrain distribution of R1 is slightly flatter than R2 (the R1 slope is concen-
trated at 0–10 degrees, and R2 at 10–30). The overall elevation of R3 is the smallest (about 
100–700 m), the elevation range is close to R1R2 (513 m), and the topographic relief is 
large. The overall elevation of R4 is close to that of R1R2 (about 600–1000 m), but the ele-
vation difference is the smallest (171 m), and the slope is also concentrated at 0–10 degrees, 
which is a relatively smooth area. 
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Figure 7. Detailed DEM parameters for each of the four test regions: (a) is the DEM of the study 
region, (b) is the elevation distribution of the study region, (c) is the elevation drop in the vertical 
direction of the study region, (d) is the statistics of elevation drop in the vertical direction of the 
study region, (e) is the slope distribution of the study region, (f) is the statistics slope distribution of 
the study region, (g) is the elevation drop in the horizontal direction of the study region, and (h) is 
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the statistics of elevation drop in the horizontal direction of the study region. The horizontal direc-
tion is the elevation difference between the left and right adjacent pixels, and the vertical direction 
is the elevation difference between the up and down adjacent pixels. 

To shorten the test time, we chose the 64 × 64 small-sized DEM, but this does not 
mean that our model can only be effective for this size. We used the PyTorch platform to 
train and test the network and the Adam optimizer (with a batch size of 16) to replace the 
classical random gradient descent method to update the network weight more effectively 
[65]. The learning rate for backpropagation was set as 0.0002, and the network was trained 
with 100 epochs. The weights of loss were set as α = 1 and β = 0.01 to balance out their 
value scales. 

Then, to evaluate our network’s effectiveness, we compared it with several common 
DEM super-resolution methods, including classical interpolation methods and deep 
learning network methods. The commonly used classical interpolation methods include 
nearest neighbor interpolation, bilinear interpolation, bicubic interpolation, cubic B-spline 
interpolation, etc. The research of Han et al. showed that bicubic interpolation produces 
the best image effect, and it is usually used as a baseline to evaluate the effect of the SR 
method; therefore, we chose the bicubic [8], Kriging [42], SRResNet [32], TfaSR [31], and 
SRCNN [6] methods to test the deep learning network. 

This paper evaluates the results of DEM super-resolution based on three indicators: 
elevation [56], slope [31,66], and SSIM (structure similarity index measure) [67]. The cal-
culation formulas for the slope (Formulas (17)–(19)) and SSIM (Formulas (20)–(22)) are as 
follows: 

𝑑𝑑𝑑𝑑 = ��𝑒𝑒𝑖𝑖−1,𝑗𝑗+1+2𝑒𝑒𝑖𝑖,𝑗𝑗+1+𝑒𝑒𝑖𝑖+1,𝑗𝑗+1�−�𝑒𝑒𝑖𝑖−1,𝑗𝑗−1+2𝑒𝑒𝑖𝑖,𝑗𝑗−1+𝑒𝑒𝑖𝑖+1,𝑗𝑗−1��
8×𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

  (17) 

𝑑𝑑𝑑𝑑 = ��𝑒𝑒𝑖𝑖+1.𝑗𝑗−1+2𝑒𝑒𝑖𝑖+1,𝑗𝑗+𝑒𝑒𝑖𝑖+1,𝑗𝑗+1�−�𝑒𝑒𝑖𝑖−1,𝑗𝑗−1+2𝑒𝑒𝑖𝑖−1,𝑗𝑗+𝑒𝑒𝑖𝑖−1,𝑗𝑗+1��
8×𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

  (18) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2  (19) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝐶𝐶1
𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝐶𝐶1

∙ 2𝜎𝜎𝑥𝑥𝑥𝑥+𝐶𝐶2
𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝐶𝐶2

  (20) 

𝐶𝐶1 = (𝑘𝑘1𝐿𝐿)2 𝑘𝑘1 = 0.01  (21) 

𝐶𝐶2 = (𝑘𝑘2𝐿𝐿)2 𝑘𝑘2 = 0.03  (22) 

In Formulas (17)–(19) [31,66], 𝑒𝑒𝑖𝑖,𝑗𝑗 denotes the elevation of the cell (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒 
denotes the resolution of the DEM, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 denotes the slope of the DEM. In Formula 
(20) [67], 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦 are the mean of x and y, respectively; 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the standard 
deviation of x and y, respectively; 𝜎𝜎𝑥𝑥𝑥𝑥 is the covariance of x and y; and 𝐶𝐶1 and 𝐶𝐶2 are 
fixed parameters used to maintain the stability of Formulas (21) and (22) [67], where L is 
the maximum value of the pixel (L ≈ 255, due to normalization).  

The specific evaluation methods include the mean absolute error (MAE) and the root 
mean square error (RMSE), and the formulas are as follows [13,68]: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ �ℎ𝑖𝑖 − ℎ𝚤𝚤� �𝑁𝑁
𝑖𝑖=1   (23) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ �ℎ𝑖𝑖 − ℎ𝚤𝚤� �

2𝑁𝑁
𝑖𝑖=1   (24) 

where N denotes the number of pixels in the test samples, ℎ𝑖𝑖 denotes the values in the 
original high-resolution DEM, and ℎ𝚤𝚤�  denotes the values in the reconstructed high-reso-
lution DEM. 

4.2. Training 
This section details the training process. The training details shown in Figure 8 rep-

resent the variation in the average global elevation accuracy (RMSE-elevation). The 
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abscissa is the epoch, and the ordinate is the loss value (Km). By observing the curve, we 
found that: 
① Figure 8 shows a downward trend, which decreases rapidly in the early stage and 

gradually flattens in the late stage. This phenomenon shows that our model can ef-
fectively capture the depth of the spatial terrain characteristics of the samples. 

② During the whole training process, the loss fluctuates up and down. At the initial 
stage of training, the initial waveform fluctuates greatly. When the training epoch 
increases, the performance of the DEM generation tends to be stable, and the fluctu-
ation amplitude becomes smaller. There are two reasons for loss fluctuation: (1) In 
the training process, the randomly selected samples come from different regions, and 
their elevation drop and terrain complexity are different, leading to the instability of 
loss. (2) The preprocessing effect of some regions with too complex terrain is not good 
(Figure 9), resulting in a large loss value of the generated results, which makes the 
loss fluctuate. It is proved by experiments that the results of training after removing 
the problematic samples from the preprocessing are almost the same as those of train-
ing with all samples. 

 
Figure 9. Unsatisfactory interpolation sample. 

Next, Figure 10 shows the effect of the model terrain generation over different train-
ing periods. It is observed that that the terrain recovery degree gradually improves during 
the whole training process. After 5 epochs of training, the overall effect of the DEM was 
restored, and as the training continues, the generated DEM had more fine details as it 
reached 10 epochs. After 40 epochs, the model had reproduced most of the topographic 
features and geographical spatial patterns. By the 70th epoch, the visual effect of the gen-
erated DEM was no different from that of the real high-resolution DEM, and the super-
resolution task was completed. After that, the effect of training was improved with little 
effect. 
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Figure 10. The performance of the proposed GISR during the training process using DEM data 
(The contents of the solid wireframe are the enlarged details of the dotted wireframe). 

5. Results and Discussions 
5.1. Results 

In this section, we will use untrained samples as test data to test the effect of our 
proposed network. For a more objective explanation, we use classical interpolation meth-
ods (bicubic interpolation and Kriging interpolation) and deep learning networks (SRRes-
Net and TfaSR) to conduct a comparative experimental analysis with our proposed model. 
The deep learning networks and our model are trained for 100 epochs to ensure fairness. 
The overall accuracy, visual effect, and terrain feature retention will be comprehensively 
compared and explained. 

5.1.1. Overall Accuracy 
In this section, we evaluate the overall accuracy. We compare the bicubic interpola-

tion, Kriging interpolation, SRResNet, TfaSR, and SRCNN, with our methods in two dif-
ferent test areas to prove the effectiveness of our proposed model. A series of indicators 
reflect the elevation and slope, and the MAE and RMSE are used to measure the accuracy, 
whereas the SSIM is used to measure the structural similarity. 

It can be seen in Table 1 that: (1) In the test regions R1, R2, R3, and R4, the perfor-
mance of the GISR method proposed in this paper is superior to the compared methods 
in elevation, slope, and SSIM. (2) In the traditional interpolation method, Kriging’s evalu-
ation indices in this section are better than the bicubic ones. It is easy to understand be-
cause the Kriging method considers the global spatial autocorrelation better, whereas the 
bicubic method only establishes relationships with a few points around the mapping point 
(see Section 3 for details). Although the net result of SRCNN is simple, it is superior to 
TfaSR, SRResNet, and other deep learning networks with complex structures in some test 
regions. 
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Table 1. The accuracy indicators of different methods. 

Region Method 
MAE RMSE 

SSIM 
Elevation Slope Elevation Slope 

R1 

Bicubic [40] 14.958 6.405 21.120 8.547 0.789 
Kriging [42] 9.870 6.310 13.143 8.163 0.851 

SRResNet [32] 7.493 5.124 10.165 6.684 0.890 
SRCNN [6] 7.560 5.235 9.926 6.971 0.859 
TfaSR [31] 10.730 6.565 13.908 8.665 0.793 

GISR  6.365 4.503 8.236 5.824 0.919 

R2 

Bicubic 25.064 8.289 35.994 11.374 0.835 
Kriging 11.546 6.562 16.193 8.831 0.913 

SRResNet 8.553 5.235 11.630 6.665 0.927 
SRCNN 9.221 5.644 12.728 7.225 0.945 
TfaSR 12.578 6.773 16.598 8.587 0.905 
GISR  6.232 4.424 8.364 5.581 0.971 

R3 

Bicubic 22.462 7.148 27.365 9.165 0.847 
Kriging 13.217 7.884 17.526 8.981 0.872 

SRResNet 16.568 6.825 25.054 8.919 0.901 
SRCNN 11.343 6.181 14.379 7.839 0.935 
TfaSR 14.122 7.041 17.449 8.763 0.908 
GISR  7.785 4.628 9.865 5.910 0.956 

R4 

Bicubic 11.002 5.460 14.577 7.118 0.705 
Kriging 9.276 6.659 12.153 7.885 0.676 

SRResNet 7.146 5.029 9.606 6.439 0.791 
SRCNN 8.151 6.048 10.438 7.684 0.770 
TfaSR 10.840 6.675 14.017 8.551 0.548 
GISR  4.871 3.854 6.316 4.951 0.885 

In conclusion, the results show the effectiveness of the proposed GISR method, as it 
has a good performance in regard to the DEM SR tasks in complex regions. 

5.1.2. Visual Assessment 
From the perspective of quantitative evaluation, GISR is superior to other methods 

where visual evaluation is required because, in many cases, images with better quantita-
tive indicators have poor visual perception. The high numerical accuracy of a DEM does 
not mean better quality. A DEM that is too smooth often performs well in numerical ac-
curacy, but the cost of smoothing is the loss of terrain details. Therefore, to evaluate the 
quality of a DEM, it is necessary to evaluate the degree of detail retention of topographic 
features. 

In Figure 11, it can be seen that the TfaSR results show excessive smoothness that is 
even worse than that of the traditional bicubic interpolation method, which performs 
poorly with regard to precision numerical values. The Kriging method, which reflects the 
global terrain features, presents the phenomena of overall smoothness and the loss of ter-
rain details. However, it is worth noting that there is an abrupt change in elevation be-
tween the known sample data points and the surrounding interpolation estimation points, 
resulting in a discontinuous visual terrain. Similar to the numerical accuracy results, 
SRCNN and SRResNet perform satisfactorily in detail retention. The experimental results 
show that our GISR method retains more terrain details in the test regions than other 
methods and restores the terrain distribution law of the real DEM. 
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Figure 11. The DEM SR results of different methods in four test regions: (a–d) are the test regions 
R1, R2, R3, and R4, respectively (The contents of the solid wireframe are the enlarged details of the 
dotted wireframe). 

5.1.3. Terrain Parameter Maintenance 
The slope is an important indicator when measuring the terrain features. We use the 

slope to further evaluate the feature retention of the generated DEM. The comparison with 
the slope of the real terrain shows the ability of different methods to maintain the terrain 
features. 

In Figure 12, the restoration of terrain features by different methods is shown. The 
window frame phenomenon appears on the edge of SRCNN and SRResNet. The over-
smoothing of terrain features with TfaSR is particularly evident in the slope. The abrupt 
change between the Kriging data point and the interpolation point shows that the data 
point is similar to the noise point in the slope. The experimental results show that in the 
test area, our method retains more details of the terrain features (slope) than other meth-
ods and is closer to the terrain distribution of the real DEM. 
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Figure 12. The DEM SR slope results for four different methods: (a–d) are the test regions R1, R2, 
R3, and R4, respectively (The contents of the solid wireframe are the enlarged details of the dotted 
wireframe). 

5.2. Discussion 
5.2.1. The Impact of the Global Information Supplement Module 

Since the nature of terrain evolution is affected by long-term geological processes 
such as erosion and landslides, it has spatial autocorrelation. The Kriging interpolation 
algorithm takes spatial autocorrelation into account. We used this feature to design a 
global information supplement module to supplement certain transmission loss infor-
mation and global information while taking spatial autocorrelation into account. In this 
section, we discuss the effectiveness of the global information supplement module. 

It can be seen from Table 2 that the elevation accuracy of our GISR method (including 
the global information supplement module) is higher than that of the experimental group 
without this module and is also higher than that of the Kriging interpolation method. This 
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shows that the overall network architecture we designed is reasonable, and the addition 
of the global information supplement module improved the elevation accuracy of the 
DEM. In addition, the analysis of the Kriging interpolation elevation accuracy shows that 
the results are not as good as our GISR method’s results. This may be due to the fact that 
the Kriging method takes spatial autocorrelation into account to give the DEM global fea-
tures, but it lacks detailed terrain features and cannot restore the terrain undulation of the 
real DEM. The slope and elevation accuracy follow the same rule, which will not be re-
peated here. When the global information supplement module is removed, the slope di-
rection accuracy is the highest. The RMSE is more sensitive to extreme values, and the 
MAE tends to describe the average state. The emphasis of the two is different, and there-
fore, the problems reflected are also different. 

Table 2. The accuracy indicators of ablation experiments to remove different modules (GISR is a 
method in this paper, RG-GISR means removing the global information supplement module, 
Kriging as control method). 

  GISR RG-GISR Kriging 

MAE Elevation 6.250 8.432 7.521 
Slope 4.845 5.010 5.873 

RMSE 
Elevation 8.178 10.387 10.121 

Slope 6.148 6.411 7.550 

It can be seen from Figure 13 that our GISR method (including the global information 
supplement module) is more similar to the real terrain in terms of DEM and slope. The 
experimental group without this module will have incorrect feature information, and 
some features will not be recovered. As with the control group, the Kriging method’s 
overall terrain distribution still shows excessive smoothness and lacks details. To summa-
rize, the global information supplement module effectively supplements the global infor-
mation lost in the transmission process and also shows the rationality of our GISR design 
method. 
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Figure 13. Visualization results of the role of different modules: (a) is the DEM SR result, and (b) is 
the DEM SR slope (RG-GISR means the global information supplement module was removed; The 
details in the red box are in the next row). 

In addition, in order to further explore the role of the global information supplement 
module in modeling long-distance geographic features (i.e., drainage lines), we further 
compared the GISR method and the GISR method (RG-GISR) that removes the global in-
formation supplement module in modeling drainage lines. The specific results are shown 
in Figure 14. By analyzing Figure 13, we can find that after removing the global infor-
mation, RG-GISR overemphasizes local features (generating additional significant topo-
graphic features). On the contrary, GISR can constrain the generated results by modeling 
the drainage line through the global information module so that the generated geographic 
features are closer to the ground truth in the contour. In a word, more accurate modeling 
of long-distance geographic features is an important role of the global information mod-
ule. 
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Figure 14. Global information supplement: (a) is the DEM has global information supplement, (b) 
is the DEM has not global information, and (c) is the ground truth (The details in the red box are in 
the next row). 

5.2.2. Effectiveness of the Collaborative Loss 
The loss function is an algorithm used to measure the difference between the real 

data and the generated false data, which constrains the direction of model training. There-
fore, we will discuss the role of the collaborative loss model. The collaborative loss in this 
paper is composed of elevation loss, 𝐿𝐿𝐸𝐸 , and feature loss, 𝐿𝐿𝐹𝐹𝑣𝑣  𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐹𝐹𝑐𝑐. The effects of only 
𝐿𝐿𝐸𝐸, 𝐿𝐿𝐹𝐹𝑐𝑐  , 𝐿𝐿𝐹𝐹𝑣𝑣, and the original model were tested. 

Table 3 shows the DEM SR results under different loss schemes. Through the analysis 
of Table 3, we can find that: (1) the evaluation and slope indicators of 𝐿𝐿𝐸𝐸 loss alone per-
form best, while the evaluation and slope indicators of 𝐿𝐿𝐹𝐹𝑣𝑣  𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐹𝐹𝑐𝑐  loss alone perform 
very poorly, which indicates the importance of elevation loss; and (2) the SSIM indicator 
performance of the three loss schemes when they are applied cooperatively is better than 
that of the scheme using SSIM loss alone, which indicates that elevation loss and feature 
loss are two constraint directions with great difference. In order to further explore the 
visualization effects of different loss schemes, we further display the visualization results 
of different loss schemes in Figure 15. 

Table 3. The accuracy indicators of different loss schemes. 

 
Loss Scheme MAE RMSE 

SSIM 
𝑳𝑳𝑬𝑬 𝑳𝑳𝑭𝑭𝒗𝒗 𝑳𝑳𝑭𝑭𝒄𝒄 Elevation Slope Elevation Slope 

Ⅰ √ × × 4.735 3.826 6.352 4.853 0.914 
Ⅱ × √ × 33.594 11.345 40.298 14.180 0.826 
Ⅲ × × √ 51.082 10.936 62.618 13.686 0.582 
Ⅳ √ √ √ 6.922 4.303 8.990 5.484 0.951 
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Figure 15. Results of different loss schemes: (a) is the DEM SR result, and (b) is the DEM SR 
slope(The details in the red box are in the next row). 

By analyzing Figure 15, we found that (1) the DEM SR results of elevation loss ap-
plied alone are very smooth, lacking many DEM local features, and that the SSIM is lower 
than the SSIM of collaborative loss. This shows that it is difficult to achieve DEM SR tasks 
with only elevation loss. (2) The DEM SR results of feature loss alone will produce many 
significant pseudo-features, which are far from the ground truth results. This indicates 
that the DEM SR task cannot be achieved by a single special loss. (3) The collaborative 
application of elevation loss and feature loss can build DEM SR results that are closer to 
visual cognition, which shows that the collaborative loss scheme can play the role of fea-
ture loss, and this combination is the best loss scheme at present. 

To better analyze the impact of different loss function weight schemes, we further 
tested the performance of parameters α and β in different orders of magnitude. Specifi-
cally, the values of α and β are adjusted to make the impact of 𝐿𝐿𝐸𝐸 and 𝐿𝐿𝐹𝐹 clear, and the 
results are listed in Table 4. First, it can be observed that a less value of β can obtain a 
better result. Furthermore, a larger value of α can obtain a better performance. It is ob-
served that when the ratio of α and β is in the same order of magnitude, the effect of loss 
on the model is approximately similar. Moreover, after making the impact of  𝐿𝐿𝐸𝐸  and 
𝐿𝐿𝐹𝐹 clear, users can choose different types of parameter settings by considering their spe-
cific terrain product demands. 
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Table 4. Results of our method (GISR) with different parameter settings (baseline: α =1 and β = 
0.01). 

α β 
MAE RMSE 

SSIM 
Elevation Slope Elevation Slope 

1 0.1 6.729 6.060 8.446 7.712 0.904 
1 0.01 5.702 5.797 7.333 7.302 0.934 
1 0.001 4.926 5.059 6.438 6.441 0.913 

0.1 0.01 7.437 6.030 9.069 7.549 0.903 
1 0.01 5.702 5.797 7.333 7.302 0.934 

10 0.01 5.240 5.050 6.789 6.413 0.914 

By analyzing Table 4 and Figure 16, we found that different weight combination 
schemes of α and β will produce different results. Specifically, when the value of α is kept 
unchanged, the higher the value of β, the better the elevation and slope of the correspond-
ing result; when the value of β is kept unchanged, the higher the value of α, the worse the 
elevation and slope of the corresponding result. However, the SSIM does not conform to 
this change rule that reaches the maximum at α = 1 and β = 0.01. Therefore, in a practical 
application, we recommend that the corresponding relationship between α and β is about 
100 times, which can make the evaluation indicators and visual results more balanced. 
Therefore, in Section 5.1, we used the parameters α = 1 and β = 0.01, to make the model 
perform better. 

 
Figure 16. DEM and slope of our method (GISR) with different parameter settings. 

5.2.3. The Application of Other Dataset 
In order to evaluate the adaptability of our GISR method to different datasets, we 

selected the datasets provided by TfaSR [31] (the elevation value of this data set ranges 
from 0.5 m to 3741 m, and the elevation value of the data set in Section 4.1 ranges from 
304 m to 2335 m) for verification. Since the TfaSR method provides a trained model, we 
directly use its open model for testing, and the training parameters of the remaining meth-
ods are all those mentioned in Section 4.1. The specific results are as follows.  

Table 5 and Figure 17 show the results of different methods on the dataset disclosed 
by TfaSR. By analyzing Table 5 and Figure 17, we can draw the following conclusions: (1) 
The GISR method we proposed has the best quantitative indicators, followed by the 
Kriging method, SRResNet, SRCNN, TfaSR, and bicubic. (2) In terms of visual cognition, 
our GISR can roughly restore the complex ground truth DEM; the results generated by 
bicubic and Kriging are very smooth, and many local details are lost; SRResNet and 
SRCNN have incorrect recovery of some details; the result of the TfaSR method is very 
special. The DEM generated by the TfaSR method has more pseudo-features. Although it 
produces more seemingly real features, it makes the result more deviated from the ground 
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truth. To sum up, the GISR method proposed in this paper is well qualified for the dataset 
disclosed by TfaSR, which fully demonstrates that the GISR method has strong data 
adaptability. 

Table 5. Comparisons among different methods on the TfaSR dataset. 

Method 
MAE RMSE 

SSIM 
Elevation Slope Elevation Slope 

Bicubic [46] 11.108 0.468 14.679 0.635 0.8268 
Kriging [49] 4.552 0.350 5.932 0.478 0.9480 

SRResNet [37] 4.731 0.349 7.799 0.495 0.9344 
SRCNN [38] 6.194 0.350 7.873 0.477 0.9399 
TfaSR [36] 9.070 0.535 11.758 0.758 0.8956 

GISR 4.372 0.315 5.866 0.439 0.9561 

 
Figure 17. Results of different DEM SR methods on TfaSR dataset (The details in the red box are in 
the next row). 

5.2.4. The Impact of the Different Down sampling Factors 
In this section, the effectiveness of our method based on the different down sampling 

factors d of training data is investigated. The experimental settings are the same as the 
experiment in Section 4.1 except for the down sampling factor d. 

As shown in Table 6 and Figure 18, when d is two, the DEM reconstructed from the 
model is closest to the original DEM. This is because with the increase of d, the low-reso-
lution pixel data becomes less, and more limited information is obtained. When d is six, 
more local features will be lost, and only the basic terrain feature contour can be recon-
structed. This is because the down sampling factor is too large, and fewer known features 
bring great challenges to DEM reconstruction. To sum up, our GISR method can recon-
struct DEMs that are very close to the ground truth under conditions that use different 
down sampling factors, which fully demonstrates that the GISR method can be widely 
used for DEM SR tasks with different down sampling factors. 
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Table 6. The results of DEM reconstructed with the down sampling factor d of two, four, and six. 

Scale 
Elevation 

SSIM 
MAE RMSE 

2 4.434 5.701 0.935 
4 5.702 7.333 0.913 
6 7.147 8.976 0.874 

 
Figure 18. DEM SR results for different down sampling factors (The details in the red box are in 
the next row). 

5.2.5. Limitations 
In the proposed GISR method, the global information supplement module is used to 

supplement certain transmission loss information and global information by considering 
spatial autocorrelation to reproduce a more realistic geographical distribution pattern. 
The Kriging interpolation method accounts for spatial autocorrelation, which can provide 
global terrain information; thus, we designed our modules based on it. In this way, the 
interpolation effect of the Kriging method directly affects the effectiveness of the GISR 
method. For some regions with complex terrain, the Kriging method will fail to interpo-
late; therefore, the quality of the DEM generated by our method will be greatly reduced. 
In our follow-up work, we will try to introduce the idea of a transformer [27] into the DEM 
SR process to achieve the acquisition of global information from the underlying network 
architecture. 

6. Conclusions 
This paper proposes a global-information-constrained depth learning network for 

digital elevation model super-resolution (GISR). The global information supplement mod-
ule, which can reflect spatial autocorrelation, is designed based on the Kriging method in 
order to supplement some transmission loss information and global information through 
the consideration of spatial autocorrelation. In the test area with different terrain complex-
ities, GISR performs well in regard to elevation accuracy and terrain maintenance com-
pared with other classical interpolation methods (bicubic interpolation and Kriging inter-
polation) and deep learning networks (SRResNet, TfaSR, and SRCNN). The DEM gener-
ated by this method is closer to the real terrain, and compared with the deep learning 
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method, the RMSE of our results is improved by 20.5% to 68.8%. The GISR method can be 
widely used for DEM SR tasks with different down sampling factors and has strong data 
adaptability. 

The results show that the proposed global information supplement module based on 
terrain spatial autocorrelation can be embedded into other terrain generation tasks. Ulti-
mately, our work reveals the feasibility of studying terrain models from the perspective 
of network transmission and information supplementation, which, to some extent, en-
hances the interpretability of the DEM super-resolution network and provides a new idea 
for completing high-precision DEM generation tasks. 
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DEM digital elevation model 
LR DEM low-resolution digital elevation model 
HR DEM high-resolution digital elevation model 
SR super-resolution 
DEM SR digital elevation model super-resolution 
RMSE root means square error 
MAE mean absolute error 
CNN convolutional neural network 
SRCNN super-resolution convolutional neural network 
SRResNet super-resolution residual network 
TfaSR terrain feature-aware super-resolution model 
GISR global-information-constrained digital elevation model super-resolution 
LISA local indicators of spatial association 
IDW inverse distance weighted 
FCN fully convolutional networks 
CEDGANs conditional encoder-decoder generative adversarial neural networks 
EDEM-SR enhanced double-filter deep residual neural network 
PReLU parametric rectified linear unit 
ReLU rectified linear unit 
LReLU leaky rectified linear unit 
BN batch normalization 
ResNet residual network 
PS  Pixelshuffle 
VGG visual geometry group 
RG-GISR GISR of removing the global information supplement module  
SSIM structure similarity index measure 
RSPCN recursive sub-pixel convolutional neural networks 
ZSSR zero-shot super-resolution 

  



Remote Sens. 2023, 15, 305 27 of 29 
 

 

References 
1. Passalacqua, P.; Tarolli, P.; Foufoula-Georgiou, E. Testing space-scale methodologies for automatic geomorphic feature extrac-

tion from lidar in a complex mountainous landscape. Water Resour. Res. 2010, 46. https://doi.org/10.1029/2009WR008812 
2. Kenward, T.; Lettenmaier, D.P.; Wood, E.F.; Fielding, E. Effects of digital elevation model accuracy on hydrologic predictions. 

Remote Sens. Environ. 2000, 74, 432–444. 
3. Huang, C.; Chen, Y.; Wu, J. DEM-based modification of pixel-swapping algorithm for enhancing floodplain inundation map-

ping. Int. J. Remote Sens. 2014, 35, 365–381. 
4. Kellndorfer, J.; Walker, W.; Pierce, L.; Dobson, C.; Fites, J.A.; Hunsaker, C.; Vona, J.; Clutter, M. Vegetation height estimation 

from shuttle radar topography mission and national elevation datasets. Remote Sens. Environ. 2004, 93, 339–358. 
5. Chen, D.; Zhong, Y.; Zheng, Z.; Ma, A.; Lu, X. Urban road mapping based on an end-to-end road vectorization mapping network 

framework. ISPRS J. Photogramm. Remote Sens. 2021, 178, 345–365. 
6. Chen, Z.; Wang, X.; Xu, Z. CONVOLUTIONAL NEURAL NETWORK BASED DEM SUPER RESOLUTION. Int. Arch. Photo-

gramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 247–250. 
7. Zhu, D.; Cheng, X.; Zhang, F.; Yao, X.; Gao, Y.; Liu, Y. Spatial interpolation using conditional generative adversarial neural 

networks. Int. J. Geogr. Inf. Sci. 2020, 34, 735–758. 
8. Han, D. Comparison of commonly used image interpolation methods. In Proceedings of the Conference of the 2nd International 

Conference on Computer Science and Electronics Engineering (ICCSEE 2013), Paris, France, 22–23 March 2013; pp. 1556–1559. 
9. Zhang, Y.; Yu, W. Comparison of DEM Super-Resolution Methods Based on Interpolation and Neural Networks. Sensors 2022, 

22, 745. 
10. Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and 

impact factors. Ecol. Inform. 2011, 6, 228–241. 
11. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. 
12. Musakwa, W.; Van Niekerk, A. Monitoring urban sprawl and sustainable urban development using the Moran Index: A case 

study of Stellenbosch, South Africa. Int. J. Appl. Geospat. Res. (IJAGR) 2014, 5, 1–20. 
13. Zhou, A.; Chen, Y.; Wilson, J.P.; Su, H.; Xiong, Z.; Cheng, Q. An Enhanced Double-Filter Deep Residual Neural Network for 

Generating Super Resolution DEMs. Remote Sens. 2021, 13, 3089. 
14. Knudsen, E.I. Fundamental components of attention. Annu. Rev. Neurosci. 2007, 30, 57–78. 
15. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-attention with relative position representations. arXiv 2018, arXiv:1803.02155. 
16. Pashler, H.; Johnston, J.C.; Ruthruff, E. Attention and performance. Annu. Rev. Psychol. 2001, 52, 629. 
17. Demiray, B.Z.; Sit, M.; Demir, I. D-SRGAN: DEM super-resolution with generative adversarial networks. SN Comput. Sci. 2021, 

2, 48. 
18. Getis, A. Spatial autocorrelation. In Handbook of Applied Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 255–

278. 
19. Chen, T.-J.; Chuang, K.-S.; Wu, J.; Chen, S.C.; Hwang, M.; Jan, M.-L. A novel image quality index using Moran I statistics. Phys. 

Med. Biol. 2003, 48, N131. 
20. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. 

ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. 
21. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; 

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 
8, 1–74. 

22. Targ, S.; Almeida, D.; Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv 2016, arXiv:1603.08029. 
23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–19 June 2016; pp. 770–778. 
24. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video 

super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, Seattle, WA, USA, 17–19 June 2016; pp. 1874–1883. 

25. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE 
International Conference on Computer Vision, Seoul, Republic of Korea, 20–23 June 2017; pp. 764–773. 

26. Thomas, H.; Qi, C.R.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. Kpconv: Flexible and deformable convolution 
for point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 17 
October 2019; pp. 6411–6420. 

27. Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 15908–
15919. 

28. Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Shazeer, N.; Ku, A.; Tran, D. Image transformer. In Proceedings of the Inter-
national Conference on Machine Learning, Baltimore, MD, USA 17–23 July 2018; pp. 4055–4064. 

29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. 
Adv. Neural Inf. Process. Syst. 2017, 30. 



Remote Sens. 2023, 15, 305 28 of 29 
 

 

30. Cressie, N. The origins of kriging. Math. Geol. 1990, 22, 239–252. 
31. Zhang, Y.; Yu, W.; Zhu, D. Terrain feature-aware deep learning network for digital elevation model superresolution. ISPRS J. 

Photogramm. Remote Sens. 2022, 189, 143–162. 
32. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-realistic 

single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, Seattle, WA, USA, 18–22 June 2017; pp. 4681–4690. 

33. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. 
Intell. 2015, 38, 295–307. 

34. Atkinson, P.M.; Lloyd, C.D. Geostatistics and spatial interpolation. In The SAGE Handbook of Spatial Analysis; SAGE: Newcastle 
upon Tyne, UK, 2009; pp. 159–181. 

35. Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM na-
tional conference, New York, NY, USA, 27–29 August 1968; pp. 517–524. 

36. Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A brief review of nearest neighbor algorithm for learning and classification. In 
Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 
May 2019; pp. 1255–1260. 

37. Bhatia, N. Survey of nearest neighbor techniques. arXiv 2010, arXiv:1007.0085. 
38. McKinley, S.; Levine, M. Cubic spline interpolation. Coll. Redw. 1998, 45, 1049–1060. 
39. Wahba, G. Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat. Comput. 1981, 2, 5–16. 
40. Gao, S.; Gruev, V. Bilinear and bicubic interpolation methods for division of focal plane polarimeters. Opt. Express 2011, 19, 

26161–26173. 
41. De Boor, C. Bicubic spline interpolation. J. Math. Phys. 1962, 41, 212–218. 
42. Wackernagel, H. Ordinary kriging. In Multivariate Geostatistics; Springer: Berlin/Heidelberg, Germany, 2003; pp. 79–88. 
43. Hutchinson, M.; Gessler, P. Splines—More than just a smooth interpolator. Geoderma 1994, 62, 45–67. 
44. Sun, M.; Song, Z.; Jiang, X.; Pan, J.; Pang, Y. Learning pooling for convolutional neural network. Neurocomputing 2017, 224, 96–

104. 
45. Yu, D.; Wang, H.; Chen, P.; Wei, Z. Mixed pooling for convolutional neural networks. In Proceedings of the International Con-

ference on Rough Sets and Knowledge Yechnology, Shanghai, China, 24–26 October 2014; pp. 364–375. 
46. Tang, J.; Xia, H.; Zhang, J.; Qiao, J.; Yu, W. Deep forest regression based on cross-layer full connection. Neural Comput. Appl. 

2021, 33, 9307–9328. 
47. Boutell, M.R.; Luo, J.; Shen, X.; Brown, C.M. Learning multi-label scene classification. Pattern Recognit. 2004, 37, 1757–1771. 
48. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–

1883. 
49. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International 

Conference on Computer Vision, Beijing, China, 17–21 October 2015; pp. 1520–1528. 
50. Zhao, Z.-Q.; Zheng, P.; Xu, S.-t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 

2019, 30, 3212–3232. 
51. Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. arXiv 2019, arXiv:1905.05055. 
52. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, Seattle, WA, USA, 19 June 2015; pp. 3431–3440. 
53. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 

In Proceedings of the IEEE International Conference on Computer Vision, Beijing, China, 17–21 October, 2015; pp. 1026–1034. 
54. Demiray, B.Z.; Sit, M.; Demir, I. DEM Super-Resolution with EfficientNetV2. arXiv 2021, arXiv:2109.09661,. 
55. Lin, X.; Zhang, Q.; Wang, H.; Yao, C.; Chen, C.; Cheng, L.; Li, Z. A DEM Super-Resolution Reconstruction Network Combining 

Internal and External Learning. Remote Sens. 2022, 14, 2181. 
56. Zhang, R.; Bian, S.; Li, H. RSPCN: Super-Resolution of Digital Elevation Model Based on Recursive Sub-Pixel Convolutional 

Neural Networks. ISPRS Int. J. Geo-Inf. 2021, 10, 501. 
57. He, P.; Cheng, Y.; Qi, M.; Cao, Z.; Zhang, H.; Ma, S.; Yao, S.; Wang, Q. Super-Resolution of Digital Elevation Model with Local 

Implicit Function Representation. In Proceedings of the 2022 International Conference on Machine Learning and Intelligent 
Systems Engineering (MLISE), Seoul, Korea, 8–11 November 2022; pp. 111–116. 

58. Koenig, W.D. Spatial autocorrelation of ecological phenomena. Trends Ecol. Evol. 1999, 14, 22–26. 
59. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceed-

ings of the International Conference on Machine Learning, Baltimore, MD, USA 17–23 July 2015; pp. 448–456. 
60. Fan, E. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 2000, 277, 212–218. 
61. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th 

International Conference on Machine Learning 2013; p. 3. 
62. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the International Con-

ference on Machine Learning, 2010. 



Remote Sens. 2023, 15, 305 29 of 29 
 

 

63. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings 
of the Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010; pp. 249-
256. 

64. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. 
65. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. 
66. Bolstad, P.V.; Stowe, T. An evaluation of DEM accuracy: Elevation, slope, and aspect. Photogramm. Eng. Remote Sens. 1994, 60, 

1327–1332. 
67. Wang, S.; Rehman, A.; Wang, Z.; Ma, S.; Gao, W. SSIM-motivated rate-distortion optimization for video coding. IEEE Trans. 

Circuits Syst. Video Technol. 2011, 22, 516–529. 
68. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in 

the literature. Geosci. Model Dev. 2014, 7, 1247–1250. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


	1. Introduction
	2. Related Work
	2.1. Super-Resolution (SR) Based on Traditional Spatial Interpolation Methods
	2.2. DEM SR Based on Deep Learning Methods

	3. Methods
	3.1. Global Information Supplement Module
	3.2. Local Feature Generation Module
	3.2.1. The Concept of the Residual Feature Extraction Module
	3.2.2. The Concept of PixelShuffle

	3.3. Collaborative Loss
	3.3.1. Elevation Loss
	3.3.2. Feature Loss


	4. Experiments
	4.1. Experimental Setup
	4.2. Training

	5. Results and Discussions
	5.1. Results
	5.1.1. Overall Accuracy
	5.1.2. Visual Assessment
	5.1.3. Terrain Parameter Maintenance

	5.2. Discussion
	5.2.1. The Impact of the Global Information Supplement Module
	5.2.2. Effectiveness of the Collaborative Loss
	5.2.3. The Application of Other Dataset
	5.2.4. The Impact of the Different Down sampling Factors
	5.2.5. Limitations


	6. Conclusions
	Abbreviations
	References

