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Abstract: Hyperspectral images contain rich features in both spectral and spatial domains, which
bring opportunities for accurate recognition of similar materials and promote various fine-grained
remote sensing applications. Although deep learning models have been extensively investigated in
the field of hyperspectral image classification (HSIC) tasks, classification performance is still limited
under small sample conditions, and this has been a longstanding problem. The features extracted
by complex network structures with large model size are redundant to some extent and prone to
overfitting. This paper proposes a low-rank constrained attention-enhanced multiple feature fusion
network (LAMFN). Firstly, factor analysis is used to extract very few components that can describe
the original data using covariance information to perform spectral feature preprocessing. Then, a
lightweight attention-enhanced 3D convolution module is used for deep feature extraction, and the
position-sensitive information is supplemented using a 2D coordinate attention. The above widely
varying spatial–spectral feature groups are fused through a simple composite residual structure.
Finally, low-rank second-order pooling is adopted to enhance the convolutional feature selectivity and
achieve classification. Extensive experiments were conducted on four representative hyperspectral
datasets with different spatial–spectral characteristics, namely Indian Pines (IP), Pavia Center (PC),
Houston (HU), and WHU-HongHu (WHU). The contrast methods include several advanced models
proposed recently, including residual CNNs, attention-based CNNs, and transformer-based models.
Using only five samples per class for training, LAMFN achieved overall accuracies of 78.15%, 97.18%,
81.35%, and 87.93% on the above datasets, which has an improvement of 0.82%, 1.12%, 1.67%, and
0.89% compared to the second-best model. The running time of LAMFN is moderate. For example,
the training time of LAMFN on the WHU dataset was 29.1 s, and the contrast models ranged from
3.0 s to 341.4 s. In addition, ablation experiments and comparisons with some advanced semi-
supervised learning methods further validated the effectiveness of the proposed model designs.

Keywords: hyperspectral image classification; factor analysis; attention-enhanced spatial–spectral
feature learning; coordinate attention; low-rank second-order pooling

1. Introduction

Hyperspectral images (HSI) exhibit rich features in the 2D spatial context domain
and the 1D spectral reflectance domain, which support accurate recognition of objects
with similar colors and textures. With the rapid development of portable sensors and
unmanned aerial vehicle (UAV) remote sensing platforms, the acquired hyperspectral
images show remarkable characteristics of high spatial resolution, which further promote
precision agriculture, environmental monitoring, forestry, and other fields [1–3]. Therefore,
hyperspectral image classification (HSIC) is the cornerstone of many fine-grained remote
sensing applications and has received continued attention. However, the fine-grained
classification of HSI still needs to be improved due to inherent data complexity and small
sample dilemma.
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HSIC research spans several decades, and some consensus has been developed on the
difficulties of accurate classification. First, feature extraction and representation are the core
steps since hyperspectral data share high dimensionality and high nonlinearity [4]. Prior
to the dense usage of deep learning methods, HSIC research focused on well-designed
features and machine learning classifiers. Secondly, the artificial fusion of multi-types
of features effectively improves classification accuracy. Introducing spatial contextual
information for an individual pixel can enhance the richness of spatial–spectral features
and boost classification accuracy [5,6]. Finally, hyperspectral data annotation is time-
consuming and laborious, thus HSIC encounters the significant small sample dilemma [7].
In addition, to cope with high data redundancy, dimensionality reduction (DR) methods
have raised considerable concern and become popular feature extraction methods and pre-
processing steps [8]. Principal component analysis (PCA) and its variants, such as kernel
principal component analysis (KPCA), are such traditional DR methods that can filter
data redundancy in the spectral domain [9]. Recently, novel spatial–spectral DR methods
have been paid considerable attention [10,11]. Focusing on the specific high dimensional
data structure, manifold learning-based methods are also investigated to evolve spatial
correlation in the DR process [12]. Shi et al. proposed spatial–spectral multiple manifold
discriminant analysis (SSMMDA) for DR in HSIC tasks, and the multi-manifold structure of
HSI data has been elaborately considered [13]. The above consensus, namely multi-feature
fusion, spatial–spectral joint feature extraction, and various DR methods, are seen as crucial
prior knowledge for HSIC tasks. Due to sufficient experimental verification or a solid
theoretical basis, the above multiple prior knowledge plays an essential role in the HSIC
tasks, which will always be a research hotspot.

Deep learning methods are extensively investigated for HSIC due to their ability to
extract abstract and robust features in a data-driven manner, which can obtain better classi-
fication performance than traditional methods [14]. CNN is one of the mainstream methods
for HSIC due to its inherent applicability to 3D data structures. Continuous, in-depth
and extensive research on CNN-based hyperspectral classification has been performed, in
which 2D-CNN and 3D-CNN are commonly used models for HSIC [15–19]. In particular,
2D-CNN focuses on learning spatial features, while 3D-CNN has a good pertinency for hy-
perspectral data cube [20]. Roy et al. proposed a hybrid convolutional network (HybridSN)
by fusing 3D-CNN and 2D-CNN, which effectively combines the advantages of both types
of networks [21]. Building on 3D-CNN and 3D-2D-CNN, residual learning and dense
connections have been investigated to optimize the network structure and boost the feature
robustness [22,23]. Song et al. proposed cross-layer feature aggregation in a 2D residual
network and verified the effectiveness of composite residual structure for hyperspectral
classification [24]. Feng et al. proposed R-HybridSN, which uses residual connections to
fuse different scales and different types of features and introduces depth-separable convo-
lutions to significantly reduce the number of parameters [25]. Although deep 3D-CNNs can
learn robust features with sufficient training data, they still suffer from overfitting problems
in small sample conditions. Meanwhile, feature redundancy and limited perceptual fields
are inherent limitations of 3D-CNN models in real-world small sample HSIC tasks.

To address the inherent limitations of deep CNN models, the visual attention mecha-
nism was introduced for convolutional feature refinement. Visual attention is a network
resource allocation mechanism that allows the network to focus more on features that are
useful for classification through adaptive weight assignment [26]. Attention-based models,
as a rising network paradigm, have developed gradually deeper integration with CNN
models and received much attention in HSIC [27]. Mou et al. introduced spectral attention
to hyperspectral data before feeding them into the CNN model. Band-wise adaptive calibra-
tion has been performed to improve classification accuracy and model interpretability [28].
Zhu et al. applied spectral–spatial attention to both raw hyperspectral data and residual
modules in the network, which expanded the form of the convolution-attention fusion
pattern and improved the robustness of spatial–spectral features [29]. Zhang et al. proposed
the attention-dense hybrid convolutional network (AD-HybridSN), which introduces chan-
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nel attention after each 3D convolution layer and spatial attention after each 2D convolution
layer to achieve layer-wise spatial–spectral feature refinement [30]. Dong et al. designed
cooperative spectral–spatial attention based on parallel learning of spatial weights and
spectral weights and enhanced the feature expression ability of attention modules with
dense connections [31]. To sum up, the integration of attention modules with CNN models
has experienced three stages, namely simple embedding, stage-wise fusion, and layer-wise
fusion. In addition, attention modules can also be directly used for spatial–spectral feature
extraction [32,33].

Unlike convolution-attention fusion models, Transformer is a representative pure
attention paradigm that learns global features by stacking self-attention modules. Vision
transformer (VIT) has achieved comparable results with advanced CNN in various image
processing tasks [34]. Recently, transformer-based models have been primarily explored in
HSIC tacks, with a focus on specific data organization and feature fusion patterns. Hong
et al. proposed spectral-former based on VIT. The group-wise embedding was adopted
to strengthen the neighborhood spectral feature learning, and the cross-layer adaptive
fusion module was used to enhance the feature interaction level [35]. Sun et al. proposed
SSFTT by integrating 3D convolution, 2D convolution, and self-attention modules, in which
the features extracted from the convolution layer were used as the prior knowledge for
the self-attention layers [36]. Xue et al. introduced spatial partition restore (SPR) in local
transformer to ensure pixel constraints, which strengthened local spatial dependency [37].
Although transformer-based models can obtain comparable results with advanced CNN
models using sufficient training samples, they usually take longer time to fit the data.
Meanwhile, transformer-based models pay more attention to global feature learning, which
often leads to a large parameter number and overfitting in the small sample classification
tasks. The transformer-based models may be further improved by drawing on some of the
properties of CNNs.

The CNN models are seen as multi-layer local feature learning frameworks, and they
are also benefiting from global feature learning ideas, such as large kernels and graph
learning. First, the inherent limitations have been enhanced with redesigned models
featuring large convolutional kernels and elegant structures, such as ConvNeXt and Re-
pLKNet [38,39]. Second, graph CNN (GCN) has been proposed to combine graph learning
with CNN to learn long-range features. Recently, Zhu et al. proposed a multi-scale short-
and long-range graph convolutional network (MSLGCN) for HSIC. Multi-scale spatial
embeddings and global spectral features are deeply explored by an elegant multi-stage
structure [40]. Third, holistic image representation can be better learned by collecting
second-order statistics of convolutional features. Feng et al. extracted spatial–spectral
features using factor analysis and a cascade feature fusion architecture with parallel convo-
lutional kernels of different sizes. Second-order pooling and L2 normalization are utilized
to exploit the higher-order statistics of features extracted by CNN models [41]. In addition,
the underlying convolution operation is being revisited and improved. Roy et al. designed
a generalized gradient-centered 3D convolution, improving the feature learning power for
HSI from the gradient level [42].

Unsupervised feature learning methods have a good reputation as they are impressive
solutions to small sample HSIC tasks. The core idea of unsupervised learning is to con-
struct additional supervised signals and evolve unlabeled data in the training process [43].
Zhu et al. proposed a self-supervised contrastive efficient asymmetric dilated network
(SC-EADNet) and performed contrastive learning with the help of random crop augmen-
tation [44]. Liu et al. proposed multi-view unsupervised contrastive learning framework
using different PCA-reduced band intervals as contrastive sample pairs [45]. Facing cross-
domain small sample HSIC tasks, Liu et al. proposed deep few-shot learning (DFSL) [46].
The deep residual network is used to learn a metric space in pre-collected datasets, and
then a very small number of samples (five for each class) from the target domain are used
for feature extraction and classification separately. Gao et al. proposed an end-to-end
deep relation network-based few-shot classification (RN-FSC) framework, which can be
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seen as an improved version of DFSL [47]. Recently, an unsupervised metric learning
framework with multi-view constraints was proposed and further promoted cross-domain
HSIC tasks [48]. Most of the above methods are pioneering works that have normalized
the hyperspectral un-supervised learning paradigm to some extent. However, there are
still some shortcomings. For example, unsupervised learning with only several bands does
not excavate the spectral features well in DFSL and RN-FSC. In addition, there is a lack of
research on the applicability of model structure and unsupervised learning.

Facing the difficulties in fine-grained small sample hyperspectral classification, a
framework based on low-rank constrained attention-enhanced multiple spatial–spectral
feature fusion was designed in this paper. The aim of our research is to simplify the existing
complex models, find out useful features with low redundancy, and make the best use of the
extracted spatial–spectral embeddings. The proposed framework and main contributions
are summarized as follows:

1. To fit the small sample dilemma, a few components that can model the hyperspectral
data are first extracted using factor analysis to reduce data redundancy. One single
vanilla 3D convolutional layer is utilized to primarily investigate spatial–spectral
features, and the features are then further refined based on an attention-like manner.

2. Complementary position-sensitive and channel correlation information are provided
by coordinate attention. The multi-level features extracted by 3D convolution and
2D attention are then unified and aggregated by a simple and effective composite
residual structure. Finally, a compact vector of second-order statistics is learned for
each class using low-rank second-order pooling to achieve classification.

3. Extensive experiments have been performed using four representative hyperspectral
datasets with varying spatial–spectral characteristics. Using only five samples of each
class for training, the LAMFN outperforms several recently released well-designed
models with smaller parameter size and shorter running time.

2. Related Research
2.1. Mixed CNN Model

2D convolution is a commonly used feature extraction operator for RGB images.
Assuming that the input feature dimension is H ×W × B and the padding strategy is used,
the output dimension of p 2D convolution kernels will be H ×W × p. Obviously, the
features extracted by each 2D convolution kernel can be regarded as a weighted average of
the B channel features [15]. This manner leads to spectral feature loss and can only highlight
the contributions of different bands using multiple convolution kernels. In contrast, 3D
convolution extends explicit feature extraction to the spectral domain in HSIC tasks. The
p 3D convolutional kernel will output H ×W × B× p feature maps, and each 3D kernel
convolves the input data from three directions [20]. However, when using an equal number
of kernels, the required computational resources by 3D convolution are much larger than
that of 2D convolution. The complexity increase is particularly noticeable when large kernel
sizes are adopted, such as 7× 7× 7.

The single-type CNN models can be improved by using a combination of 3D con-
volution and 2D convolution to form a mixed CNN model [25,30,41]. The basic struc-
ture of a mixed convolutional network can be divided into four basic building blocks,
namely, 3D convolution, reshape, 2D convolution, and fully connected layers [21]. The
3D convolutional layer learns the spatial–spectral features, and the output dimension is
H ×W × B× C, where C is the number of 3D kernels. It should be noted that spectral
features will be preserved and integrated during the 3D convolution process. The reshape
operation reorganizes the four-dimensional tensor into a three-dimensional tensor with
dimensions H ×W × BC, which greatly enhances the spectral feature discriminability. The
2D convolution further learns spatial features, and a fully connected layer is utilized for
classification.

Although the mixed CNN model is a new feature extraction paradigm, its basic
structure has some shortcomings. First, this basic structure is shallow, and the classification
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accuracy significantly degrades when simply increasing the number of CNN layers [18].
Second, the contribution of multi-type convolutional features to the final classification has
not been fully considered. Third, the reshape operation leads to excessive channel number
and feature redundancy. The above problems will be fully considered and investigated in
this paper, and the corresponding solutions will be described in Section 3.

2.2. Attention Mechanism

The attention mechanism is a method designed to adaptively refine the learned features
by various backbone networks in a data-driven manner and is now widely used in many
remote sensing image processing tasks [27]. The basic form of the attention mechanism can
be represented by Equation (1):

Attention(x) = f (g(x), x) (1)

where x denotes the input features; g() is a function that calculates the weights based
on the input features x; and f () represents a function that uses the weights to refine the
input features. According to the processed dimension, attention methods can be broadly
classified as spatial attention, channel attention, and spatial-channel mixed attention [26].
Hyperspectral features extracted by 3D-CNN contain rich spatial and spectral information,
so multiple attention mechanisms can theoretically be used to calibrate which features are
more valuable for classification.

Feature adaptive selection is commonly performed by attention methods such as
squeeze-and-excitation attention (SE) and convolutional block attention module (CBAM).
SE is a pioneer channel attention method, and the proposed pooling-fully connected
paradigm is widely used and further improved to efficiently learn feature channel
weights [49]. Squeeze-and-excitation attention can be calculated using Equations (2) and (3):

g(x) = FCe
(

FCs
(
GAPspa(x)

))
(2)

SE(x) = g(x)x (3)

where FCe and FCs denote the fully connected layers used to compress and restore the
channel-wise features, respectively; GAPspa represents the global average pooling, which is
performed on the spatial domain. CBAM extends the SE with spatial attention, learning
spatial weights using a 7× 7 convolution and using sequential two attentions to achieve
feature refinement [50]. SE and CBAM, as classical attention methods, regulate the basic
attentional form to some extent. Many improved attention methods since then can be seen
as variants or combinations of SE and CBAM.

Since the receptive field of a single convolutional layer is limited, attention mechanisms
can compensate for the lack of spatial–spectral features by learning global features of a
particular dimension through fully connected layers. In addition, attention and convolution
are often fused with residual structures for end-to-end training [51]. In our proposed model,
the attention-enhanced spatial–spectral features will be extracted in a lightweight manner.
And the complementary position-aware information will be considered and evolved in the
mixed CNN model.

3. Methods
3.1. Network Structure

The hyperspectral classification framework, LAMFN, proposed in this paper is shown
in Figure 1. First, factor analysis is performed to conduct feature transformation and
extract a small number of components that can describe the hyperspectral data in terms
of feature covariance. Second, the joint spatial–spectral features are extracted using two
3D convolutional layers. Meanwhile, the features are refined in a lightweight attention-
enhanced manner (denoted as LA-3D-Conv in Figure 1). Third, the position-sensitive and
direction-aware information are learned using a 2D coordinate attention module. Then, a
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multi-stage feature fusion strategy is adopted through a composite residual structure. One
2D depth separable convolution layer (2D-Sep-Conv) is adopted to integrate the multi-stage
fusion features. Finally, a compact class vector is learned for each class using low-rank
second-order pooling for final classification.
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The classification process of the proposed framework consists of three parts: data
pre-processing, spatial–spectral feature learning, and convolutional feature post-processing.
The effective fusion of multi-type features with sufficient variance and low redundancy
is the key to the proposed LAMFN. The vanilla 3D convolution layers are used to build
a 4D spatial–spectral feature space. The LA-3D-Conv modules are designed to further
integrate the learned features and improve the receptive field. The 3D spatial–spectral
features with a large number of channels can be obtained by reshape operation. The
2D coordinate attention is used to investigate the unconsidered latent in 3D convolution,
namely position-aware information and cross-channel correlation. Based on the effective
fusion of multi-type features, the 2D-Sep-Conv and LRSOP can learn a holistic image
representation.

The parameter settings for each module in LAMFN are shown in Table 1, and the
parameter number takes the Indian Pines (IP) dataset as an example, which will be intro-
duced in Section 4.1: Experimental Datasets. The patch size, the number of bands, kernel
sizes, and other related hyperparameters are set referring to our previous research in the
literature [22,27,35]. Tedious hyperparameter tunning is not considered in this paper. The
details of each module will be described in the following chapters.
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Table 1. The implementation details of LAMFN.

Module Output Shape Kernel Size Filters or Other
Parameter

Input (15, 15, 16, 1)

Stage 1:
Spatial–spectral feature

learning

3D-Conv-BN-Relu (15, 15, 16, 16) (3, 3, 3) 16

LA-3D-Conv (15, 15, 16, 16) (7, 7, 1) × 2
(1, 1, 1) × 1

16 × 2
1

Residual structure and
BN layer (15, 15, 16, 16)

Stage 2:
Spatial–spectral feature

learning

3D-Conv-BN-Relu (15, 15, 16, 16) (3, 3, 3) 16

LA-3D-Conv (15, 15, 16, 16) (7, 7, 1) × 2
(1, 1, 1) × 1

16 × 2
1

Residual structure and
BN layer (15, 15, 16, 16)

Stage 3:
Complementary

position information
embedding

Reshape (15, 15, 256)
Coordinate attention (15, 15, 256) (1, 1) × 3 64, 256, 256

Residual structure and
BN layer (15, 15, 256)

Multi-stage fusion
Concatenation

(Stage 1 and Stage2 also
reshaped)

(15, 15, 768)

Stage 4: Low-rank
constrained

classification based on
second-order features

Sep-Conv-BN-Relu (15, 15, 64) (3, 3) 64
Reshape (225, 64)

Second-order pooling (64, 64)
L2 normalization (64, 64)

Low-rank constrained
classification layer Number of classes rank = 16

Parameter number: 157,826 (takes IP dataset as an example)

3.2. Hyperspectral Data Pre-Processing Based on Factor Analysis

Hyperspectral images have a 3D cube structure and share strong correlations in
both spatial and spectral domains. Hughes phenomenon occurred between the feature
dimension, the number of samples, and the classification accuracy in HSIC tasks. In
other words, under a certain sample size, the classification accuracy will first increase
and then decrease as the feature dimension increases. The above prior knowledge within
hyperspectral data structure provides the feasibility and necessity for dimension reduction
(DR). In addition, recently acquired hyperspectral images exhibit high spatial resolution
and further enhance the texture details, which presents both opportunities and challenges
for HSIC tasks. The literature [41] has validated the effectiveness of factor analysis (FA)
as a DR method using some classical hyperspectral datasets. In this paper, FA will be
adopted on more hyperspectral datasets with high spatial resolution to further validate its
heterogeneous noise modeling capability. Detailed analysis using different components
will also be included.

FA is closely related to PCA in terms of the calculation process. The underlying
difference is that PCA focuses on the total variance of the variables, while FA focuses on the
error covariance [52]. Due to the specific data structure of HSI, using FA as a dimensionality
reduction method is verified helpful in improving inter-class selectivity [41]. Suppose the
hyperspectral image data is represented as X = (x1, x2, . . . , xn)

T . Then, a latent variable
model can be used to express the hyperspectral data mathematically:

X = WH + µ + ε (4)

where H = (h1, h2, . . . , hn)
T is the random hidden variables and called the factors of X;

W represents the coefficient matrix to be estimated, and was known as the factor loading
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matrix; µ = (µ1, µ2, . . . µn)
T is an offset vector that satisfies E(xi) = µi; ε = (ε1, ε2, . . . , εn)

T

is the noise item, which is usually assumed to obey the normal distribution. Suppose the

error variance is expressed as D(ε) = diag
(
σ2

1 , σ2
2 , . . . , σ2

n
) de f→ ψ. If the variance of each

component is equal, i.e., ψ = σ2 I (I is the unit matrix), then the hypothesis will lead to the
probabilistic PCA model [53]; if the variance of each component is not equal, the hypothesis
will lead to the FA model. In summary, FA takes into account the feature variance of
the input data, which can effectively deal with heterogenous noise and help to improve
inter-class differentiability. It is believed that the heterogeneous noise modeling capability
of FA can improve the classification accuracy of HSI with high spatial resolution in complex
scenarios.

In order to make full use of the joint spatial–spectral features, the spectral vectors
within a specific range neighborhood of the pixel to be classified are extracted to form an
image patch. For each pixel, its neighborhood spectral vector will be extracted to form an
image patch of which dimension is S× S× D, where S is the window size. S and D are set
to 15 and 16 in this paper as a compromise between classification accuracy and complexity.

3.3. Light-Weight Attention-Enhanced Spatial–Spectral Feature Learning

There are two drawbacks to 3D convolution. On the one hand, the commonly used
convolution kernel size, such as 3× 3× 3, has a limited field of perception. On the other
hand, the four-dimensional tensor extracted by 3D convolution demands high computa-
tional resources. To further refine the features extracted by 3D convolution, the lightweight
attention-enhanced 3D convolution (LA-3D-Conv) structure is proposed.

Let the hyperspectral image dimension be H ×W × B, where H and W are spatial
dimensions, and B is the spectral dimension. First, a vanilla 3D convolution layer is adopted
to primarily investigate the joint spatial–spectral features and build 4D spatial–spectral
feature space, F3D, with dimension H ×W × B× C. It should be noted that the 4D feature
space is essential since the spectral dimension is preserved, which is the main difference
between 3D convolution and 2D convolution. To achieve lightweight feature refinement,
the average pooling is performed along the channel dimension, and the pooled feature
dimension is H ×W × B × 1. The spatial features are refined using two convolutional
layers with kernels size 7× 7× 1, and spectral features are further integrated. Zero padding
is adopted to keep the feature dimension constant, and ReLU is served as the activation
function. The feature map dimension is adjusted to H×W× B× 1 using one convolutional
layer with kernel size 1× 1× 1, and the sigmoid function is adopted to map the learned
features to (0, 1) as weights. The final refined features will be obtained by broadcast
multiplication between F3D and spatial–spectral feature weight. The above operation can
be expressed by the following equation:

Attention(F3D) = f111

(
f771

2(GAPC(F3D))
)

(5)

Fre f ined = F3D
⊗

Attention(F3D) (6)

where Fre f ined represents the final refined features;
⊗

represents tensor multiplication with
a broadcast mechanism. The complete LA-3D-Conv structure is shown in Figure 2. To make
the network training smooth, a residual structure is adopted to fuse the original features
and the features refined by LA-3D-Conv, which is shown in Figure 1. In addition, a batch
normalization layer is added after the residual structure to improve the feature robustness.

Our proposed lightweight attention-enhanced 3D convolution will facilitate
spatial–spectral feature learning in two aspects. First, the dimensionality of the 3D convolu-
tional feature map is reduced from H ×W × B× C to H ×W × B× 1 so that channel-wise
redundancy has been filtered. Second, global spatial features are enhanced, and spectral
features are further integrated during attention weight generation.
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3.4. Spatial Feature Refinement Based on Coordinate Attention

The 4D spatial–spectral features extracted by 3D convolution in a mixed CNN model
are reshaped into 3D tensors and contain feature groups with large differences, which
cannot be effectively explored by vanilla 2D convolution. Aiming at the above problems, a
spatial feature refinement unit based on coordinate attention (CA) is adopted. The original
coordinate attention is proposed in the literature [54] and is aimed to enhance mobile
network design by supplying direction-aware and position-sensitive attention maps. In
this paper, we apply CA to obtain long-range dependencies across the restructured channel
dimension and positional information, which are difficult to capture by 3D convolution
with limited kernel size. It should be noted that BN is not adopted within CA in this paper.
The coordinate attention schematic is shown in Figure 3.
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The 3D convolution extracts features of dimension H ×W × BC after reshaping. In
order to introduce coordinate information, the feature map is pooled in both X-direction
and Y-direction with two pooling kernels of (1, W) and (H, 1), respectively. The pooling
layers yield features of dimensions H × 1× BC and 1×W × BC. To further learn the
channel importance, the two sets of features are aligned and connected to obtain a fused
feature of dimension (W + H)× 1× (BC). The channel dimension is then reduced, and the
position information is embedded. The process of feature concatenation and dimensionality
reduction is shown in Equation (7):

fdr = act
(

F1×1([ew, eh])) (7)

where fdr represents the dimension reduced features, and the channel dimension is reduced
to (BC)/k; F1×1 represents the 1× 1 convolution; act() represents the non-linear activation
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function, and H-Swish is adopted according to the literature [55]. It should be noted that
the feature interaction in different directions is achieved since each spatial feature map
of dimension (W + H)× 1 shares convolution weights. Before the channel dimension is
recovered, fdr is separated into f w and f h along the spatial dimension, with dimensions
W × 1× (BC)/r and H × 1× (BC)/r, respectively. The dimension of f w is adjusted to
1×W × (BC)/r, keeping the same order as the initial pooling dimension. The f w and f h

were then restored to their initial dimensions using two 1× 1 convolution layers, and the
feature values were mapped to (0, 1) using the sigmoid activation function as the attention
weights. The above calculation process is shown in the following equation:

gw = s(Fw( f w)) (8)

gh = s
(

Fh

(
f h
))

(9)

where gw and gh are the X- and Y-direction attention weights with dimensions 1×W× (BC)
and H × 1× (BC), respectively; s() is the sigmoid function. The refined spatial–spectral
features are obtained by tensor multiplication of gw, gh, and the input features.

Through coordinate attention, the global dependencies of spectral-channel features
can be fully explored, and the position-sensitive information is embedded, which facilitates
the network to find the spatial locations and valuable band intervals that are important for
HSIC.

3.5. Low-Rank Constrained Second-Order Pooling for Final Classification

Compared to the commonly used fully connected (FC) layer or global pooling, second-
order pooling can provide global image representation by computing the inner product of
all given feature pairs. As for diverse spatial–spectral feature groups extracted by LA-3D-
Conv and coordinate attention, all pairwise interactions among the multi-stage features
can be considered. However, this second-order manner produces a high-dimension feature
vector, which brings large parameter numbers and increases computational resources. In
fact, it is found that in a high-dimensional feature space built by CNN models, less than 5%
of the total features are informative [56].

Inspired by the literature [57,58], this paper introduces a simple low-rank constraint
on the spatial–spectral features. A compact low-dimension vector will be learned for each
category based on the second-order features. The adopted low-rank constraint method can
be seen as a simplification of the method in the literature [58], and the diagram is shown in
Figure 4.
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Suppose the dimension of the multi-stage spatial–spectral features, which is denoted
as Fmul , is Sh × Sw ×M. First, a depth separable convolutional layer is adopted for low-
dimension feature projection. Depth separable convolution is divided into depth-wise
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convolution and point-wise convolution. Depth-wise convolution can learn the unique
spatial features of each channel without any interaction between channels. Point-wise
convolution acts as a learnable nonlinear position-wise feature embedding tool. Let the
embedded feature dimension be Sh × Sw × C, which is represented by Fss. By comput-
ing the inner product of each spatial location feature vector of Fss, which is denoted as
xi ∈ RC(1 ≤ i ≤ Sh × Sw), and its transposed vector, the second-order feature representa-
tion, Fsop, with dimension C× C can be obtained. The above calculation process can be
expressed succinctly in matrix form as follows:

Fsop = FT
ssFss (10)

To enhance the feature robustness, L2 normalization is adopted after the second-order
feature calculation.

The commonly used parameterization of the multiclass output layer with softmax
activation function is known as Y = so f tmax(FOWO + bO), where FO represents the ex-
tracted high-level features; WO and bO are the corresponding weight and bias of the output
layer. Second-order pooling describes inter-channel correlation in detail and inevitably
introduces redundant channels. Therefore, a low-rank constraint is introduced to learn a
compact low-dimensional vector for each class. Let the parameters to be learned for each
class based on second-order features be the weights W and biases b, where W ∈ RC×C and
corresponds to the dimensions of Fsop. Suppose W∗ is the optimal parameter matrix. The
literature [57] has proved that W∗ is a symmetric matrix, and the eigen-decomposition of
W∗ can be expressed in the following formula:

W∗ = ΨΣΨT = Ψ+Σ+ΨT
+ −Ψ−|Σ−|ΨT

− (11)

where Σ+ and Σ− are diagonal matrices containing positive and negative eigenvalues,

respectively; Ψ+ and Ψ− are the corresponding eigenvectors. Denote U+ = Ψ+Σ
1
2
+ and

U− = Ψ−|Σ−|
1
2 , and then the above decomposition can be written as follows:

W∗ = U+UT
+ −U−UT

− (12)

Equation (12) indicates that W∗ may have a low-rank decomposition. Suppose the
matrix rank of W∗ is r and satisfies rank(W) = r � C, i.e., U+ ∈ RC×r/2, U− ∈ RC×r/2,
then W∗ can be approximated by two low-rank matrices. In this case, only U+ and U−
need to be parameterized and serve as the weights in the output layer, not the original
weight matrix W.

HSIC tasks are fine-grained classification problems, thus N classes need to learn N
sets of weights W and biases b. The low-rank weight parameter matrix of the ith class
can be obtained from Equation (12) as Wi = u+iu+

T
i − u−iu−T

i , where Wi ∈ RC×C. The
probability value of each class can be calculated by the following formula:

P = so f tmax
(
vec
(

Fsop
)
vec(W) + b

)
(13)

where P = [p1, p2, . . . , pN ] is the probability of each category; W = [W1, W2, . . . , WN ] is the
sparse low-rank weight parameter matrix list computed through Wi = u+iu+

T
i − u−iu−T

i ;
b = [b1, b2, . . . , bN ]; vec() represents vectorization operations. The classification result is
obtained by Equation (13), and the parameter number will be CrN. Since r � C, the
parameter number and the computation burden can be remarkably reduced. Considering
the balance of model size and classification accuracy, r is set to 16 in the proposed LAMFN.

4. Experimental Results and Analysis
4.1. Experimental Datasets

To verify the effectiveness and generalization of the proposed method for different
types of HSI datasets, four challenging hyperspectral datasets with various spatial and spec-
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tral resolutions were used for classification experiments. The experimental datasets include
classical and widely adopted Indian Pines (IP), Pavia Center (PC), Houston (HU), and the
latest released WHU-HongHu (WHU) dataset with high spatial resolution. The detailed
information of the experimental datasets is shown in Table 2, and the brief introduction is
as follows:

1. IP is a classical dataset that is widely used to evaluate HSIC algorithms. Since its
spatial resolution is low and many mixed pixels exist, the IP dataset can test the
effectiveness of the algorithm in extracting robust features. The remaining three
datasets have large image sizes and high spatial resolution.

2. PC has an original size of 1096× 1096. However, some areas have no information
and they have been discarded. The processed PC dataset still has a large image size,
which is 1096× 715. This scene contains many objects with similar textures and colors
that often appear in urban areas.

3. The HU dataset was originally released during the 2013 Data Fusion Contest by the
Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and
Remote Sensing Society, so it is also named “2013_IEEE_GRSS_DF_Contest”. This
dataset is challenging due to its large image size and sparse distribution of available
samples.

4. The WHU dataset is a recently released hyperspectral dataset collected by unmanned
aerial vehicles (UAVs) with extremely high spatial resolution [59]. The ground objects
include 22 plant species with similar colors and textures, which greatly challenges the
classification algorithm.

Table 2. Detailed information of the experimental datasets.

IP PC Houston WHU

Spectral Range (µm) 0.4–2.5 0.43–0.86 0.38–1.05 0.4–1.0
Number of Bands 200 102 144 270

Data Size 145 × 145 1096 × 715 349 × 1905 940 × 475
Spatial Resolution (m) 20 1.3 2.5 0.043

Number of Classes 16 9 15 22
Number of Labeled Data 10,249 148,152 15,029 386,693
Number of Training Data 80 45 75 110

To sum up, the experimental datasets are mainly hyperspectral datasets with high
spatial resolution. The ground objects include artificial objects in urban areas and various
crops and plants in rural areas. In the following experiments, only five samples of each
class were randomly selected for model training. The generalization of the proposed model
for small sample HSIC tasks will be fully validated in different hyperspectral scenes.

4.2. Contrast Models

In order to assess the effectiveness of the proposed model, several advanced deep
learning models published in recent years were used as contrast models, including R-
HybridSN [25], MSSFN [41], A2S2K-ResNet [60], AD-HybridSN [30], SSFTT [36], and
SPRLT [37]. The above contrast models can be broadly classified into three categories and
will be briefly described as follows:

1. R-HybridSN and MSSFN are both residual CNN models, which are focused on small
sample HSIC tasks. R-HybridSN adopts residual learning and depth separable convo-
lution to refine the feature learning process. MSSFN further improves the classification
accuracy using cascaded feature fusion patterns and second-order pooling.

2. A2S2K-ResNet and AD-HybridSN are two convolution-attention fusion models. AD-
HybridSN is a mixed CNN model. Attention modules are inserted after each convolu-
tional layer to achieve spatial–spectral feature refinement. A2S2K-ResNet adopted
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selective kernel attention in the first layer and efficient channel feature attention in
the successive layers.

3. SSFTT and SPRLT are two very recently proposed transformer-based HSIC models.
SPRLT adopts a spatial partition restore (SPR) module that is designed to split the
input patch into several overlapping continuous sub-patches as sequential. SSFTT use
3D convolution and 2D convolution to build prior spatial–spectral feature space for
subsequent transformer block. Both of them improve the applicability of transformer
block in HSIC tasks by designing a novel feature organization approach.

4.3. Experimental Setup

The experimental hardware environment is computer equipped with an Intel i9-11900K
CPU, an RTX 3090 GPU, and the RAM is 128G. The main experimental environment is
Python 3.7, Tensorflow 2.8, and Pytorch 1.8. The model in this paper is based on Keras,
which is a high-level deep learning framework running on top of Tensorflow.

LAMFN adopts Adam as the optimizer. The learning rate is set to 0.001, and the
number of training epochs is set to 100. It should be noted that we found that LAMFN can
obtain better results in the four datasets by monitoring training loss instead of training
accuracy. In addition, almost the same experimental results can be obtained by directly
testing the model obtained in the last epoch.

As for the contrast models, the patch size, dimension reduction setting, number of
bands, optimizer, and learning rate are set according to the original papers. The training
and testing process of SSFTT, SPRLT, and A2S2K-ResNet is completed on Pytorch deep
learning framework. In our experiments, we used some open-source codes to process
experimental data, train and test the contrast models, and the codes can be found at https:
//github.com/zgr6010/HSI_SSFTT and https://github.com/ZhaohuiXue/SPRLT-Net
(accessed on 1 October 2022).

To ensure that the models can be well trained, the training epochs of A2S2K-ResNet
and SPRLT are set to 200, and the training epochs of other contrast models are set to 100.
The experimental datasets were randomly divided into a training set and a testing set using
the same random seed in all experiments to guarantee a fair comparison. To be specific, we
use Numpy library to divide training and testing samples randomly, and the seed number
was set to 0. In all the experiments, five samples of each class are selected to train the
model.

4.4. Comparison with the Contrast Models

In order to verify the effectiveness of the proposed method, classification experiments
are performed using the IP, PC, HU, and WHU datasets. The contrast methods cover the
advanced models proposed in recent years. The experiments were run continuously ten
times, and the average values were taken as the experimental result. The accuracy of each
class, OA, AA, and kappa, which are commonly used in hyperspectral classification, are
used to measure the classification performance. The standard deviation of the last three
statistics was given after ± to measure the accuracy fluctuation degree. Tables 3–6 show
the experimental results of IP, PC, HU, and WHU datasets, respectively.

By analyzing the quantitative experimental results from Tables 3–6, the following
findings can be drawn:

1. Various methods show distinct generalization properties for different datasets. For
example, the experimental results of R-HybridSN and SPRLT with larger model sizes
are not ideal for the four datasets, which indicates the over-fitting phenomenon is
prominent. On the contrary, MSSFN and SSFTT performed relatively better. It is
believed that the parameter number is the superficial reason, while the real reason is
the difference in feature extraction ability and parameter redundancy caused by the
model structure.

2. Two transformer-based models, SSFTT and SPRLT, can achieve comparable results
with other models in PC and WHU, but the results in IP and HU are not ideal. Since

https://github.com/zgr6010/HSI_SSFTT
https://github.com/zgr6010/HSI_SSFTT
https://github.com/ZhaohuiXue/SPRLT-Net


Remote Sens. 2023, 15, 304 14 of 24

patch-based structures are adopted, the global feature learning ability of the self-
attention module is limited to a large extent. Therefore, the VIT-based approaches
may consider continued improvements in data organization.

3. Quantitative experimental results demonstrate the effectiveness of LAMFN. In the
four datasets, the proposed method achieved the highest OA and kappa. Compared
with the second-best model, MSSFN, the OA of LAMFN has improved by 0.82%,
1.12%, 1.67%, and 0.89% in IP, PC, HU, and WHU datasets, respectively. The AA value
of LAMFN was slightly lower than MSSFN in the WHU dataset.

4. Although the LAMFN achieved the best OA value in four datasets, it achieved the
lowest standard deviation in only two datasets, namely PC and WHU. The stability of
the LAMFN for some datasets needs to be further improved.

Table 3. Classification results (%) of different models in IP dataset.

No.

Residual CNN Attention-Based CNN Transformer Models Proposed

R-
HybridSN MSSFN A2S2K-

ResNet
AD-

HybridSN SSFTT SPRLT LAMFN

1 96.10 99.76 96.34 98.05 98.29 96.83 98.78
2 50.39 69.28 40.77 54.34 49.09 59.72 64.40
3 48.62 67.14 48.17 69.02 56.28 60.40 66.02
4 80.43 93.45 81.42 82.24 90.39 93.06 90.95
5 75.25 82.43 69.27 76.46 75.67 81.80 83.37
6 92.87 96.47 88.84 94.44 92.76 95.90 96.72
7 100.00 100.00 99.13 100.00 100.00 100.00 99.57
8 96.00 98.20 86.17 95.52 95.50 92.09 99.70
9 100.00 99.33 99.33 100.00 100.00 98.67 100.00
10 63.42 69.60 56.85 55.18 72.03 68.79 74.01
11 55.03 63.98 45.03 47.78 57.29 54.36 67.36
12 53.74 67.11 52.13 47.79 49.88 66.89 80.43
13 99.65 99.55 97.90 99.25 98.50 99.35 98.55
14 81.13 95.02 84.69 84.65 84.38 89.32 93.01
15 76.30 92.41 79.97 79.48 82.26 92.34 86.90
16 98.64 98.86 96.93 96.82 90.91 99.32 98.30

Kappa 62.32 ± 2.53 74.58 ± 3.21 57.05 ± 6.73 62.62 ± 2.85 64.86 ± 3.64 68.70 ± 2.49 75.41 ± 3.44
OA 66.34 ± 2.42 77.33 ± 2.89 61.35 ± 6.28 66.40 ± 2.79 68.68 ± 3.46 71.95 ± 2.37 78.15 ± 3.14
AA 79.22 ± 1.44 87.04 ± 1.59 76.43 ± 5.32 80.06 ± 1.92 80.83 ± 1.93 84.30 ± 1.13 87.38 ± 1.55

Table 4. Classification results of different models in PC dataset.

No.

Residual CNN Attention-Based CNN Transformer Models Proposed

R-
HybridSN MSSFN A2S2K-

ResNet
AD-

HybridSN SSFTT SPRLT LAMFN

1 98.00 99.40 99.14 99.52 98.37 99.16 99.60
2 79.98 84.07 84.66 84.61 81.79 84.58 84.73
3 87.49 81.90 96.05 87.06 88.28 83.06 88.96
4 86.09 98.61 93.13 97.93 95.81 72.31 95.24
5 80.53 82.87 88.70 84.80 88.93 85.93 90.47
6 86.43 91.71 96.06 93.88 83.48 87.62 98.41
7 90.03 91.08 83.36 91.08 91.09 87.93 89.72
8 94.52 98.38 96.77 96.79 98.64 95.71 98.78
9 77.07 86.12 98.03 88.44 92.01 91.89 91.59

Kappa 90.69 ± 2.55 94.44 ± 1.82 94.49 ± 1.71 94.42 ± 1.28 93.68 ± 1.64 92.40 ± 2.78 96.01 ± 0.84
OA 93.34 ± 1.91 96.06 ± 1.30 96.09 ± 1.23 96.04 ± 0.92 95.51 ± 1.17 94.59 ± 2.03 97.18 ± 0.60
AA 86.68 ± 1.07 90.46 ± 2.85 92.88 ± 1.47 91.57 ± 1.45 90.93 ± 2.12 87.58 ± 3.64 93.05 ± 1.12
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Table 5. Classification results of different models in HU dataset.

No.

Residual CNN Attention-Based CNN Transformer Models Proposed

R-
HybridSN MSSFN A2S2K-

ResNet
AD-

HybridSN SSFTT SPRLT LAMFN

1 72.05 84.91 82.10 77.44 76.37 86.93 86.89
2 78.49 84.45 78.59 81.68 81.00 80.32 83.96
3 91.45 98.03 88.15 97.12 98.24 99.54 98.37
4 79.48 88.35 90.66 81.44 81.32 86.19 90.40
5 89.30 92.78 79.89 96.98 98.01 99.69 98.48
6 88.38 85.09 77.03 88.38 88.22 93.47 86.97
7 41.76 70.89 62.91 67.17 66.80 56.35 71.10
8 52.46 52.97 45.81 49.50 42.99 58.07 54.87
9 47.89 69.03 59.37 61.11 50.22 37.67 67.64
10 58.36 76.38 41.87 63.53 62.12 62.52 73.40
11 57.83 73.72 47.46 70.67 74.19 64.67 84.37
12 68.45 74.90 45.82 71.95 65.13 57.56 73.08
13 87.78 82.50 90.91 94.70 90.60 67.89 92.72
14 100.00 100.00 97.07 99.93 99.76 100.00 100.00
15 99.05 96.41 92.41 99.88 98.09 99.53 96.05

Kappa 67.18 ± 1.90 78.04 ± 2.19 65.47 ± 3.94 74.50 ± 2.95 72.20 ± 2.46 70.97 ± 2.09 79.84 ± 2.82
OA 69.56 ± 1.77 79.68 ± 2.03 68.01 ± 3.63 76.35 ± 2.75 74.26 ± 2.29 73.11 ± 1.95 81.35 ± 2.61
AA 74.18 ± 1.49 82.03 ± 1.69 72.00 ± 3.77 80.10 ± 2.31 78.20 ± 1.90 76.69 ± 1.71 83.89 ± 2.17

Table 6. Classification results of different models in WHU dataset.

No.

Residual CNN Attention-Based CNN Transformer Models Proposed

R-
HybridSN MSSFN A2S2K-

ResNet
AD-

HybridSN SSFTT SPRLT LAMFN

1 83.77 75.44 73.07 80.63 82.23 81.02 85.62
2 57.62 75.88 68.98 80.79 71.03 67.99 73.99
3 75.19 81.19 81.64 75.22 83.52 77.88 83.27
4 86.41 94.92 69.54 91.49 84.56 79.06 95.71
5 60.50 93.54 68.35 86.23 78.71 74.74 92.79
6 90.24 93.03 86.38 89.97 89.12 78.05 93.61
7 51.49 66.98 40.20 63.94 46.70 42.38 68.29
8 60.11 62.97 37.14 66.06 58.84 28.80 56.19
9 93.01 92.89 90.29 92.75 90.60 92.36 94.21
10 42.60 83.75 65.16 66.84 47.48 52.29 80.02
11 57.00 73.57 46.42 59.18 43.88 26.08 74.74
12 44.28 74.67 60.33 52.24 49.06 52.68 73.47
13 43.62 57.55 52.50 52.48 49.24 44.83 62.05
14 77.41 83.49 71.25 88.72 65.27 60.21 86.35
15 96.04 99.71 91.35 95.88 98.77 86.61 98.01
16 84.32 95.58 82.85 86.34 89.98 76.09 95.13
17 86.42 90.99 77.52 77.88 83.36 69.19 89.62
18 91.74 97.83 87.08 95.80 89.78 58.14 95.87
19 82.70 92.61 78.80 87.64 73.48 47.68 85.53
20 80.82 95.99 77.49 88.50 59.88 79.99 93.66
21 75.28 97.43 78.16 89.52 83.08 67.69 97.30
22 76.49 94.62 86.33 86.78 85.59 87.03 94.14

Kappa 71.88 ± 2.62 83.84 ± 2.12 64.27 ± 4.13 78.47 ± 2.69 71.16 ± 3.98 64.05 ± 5.56 84.90 ± 1.82
OA 77.06 ± 2.23 87.04 ± 1.79 69.71 ± 3.98 82.61 ± 2.26 76.38 ± 3.68 70.07 ± 5.17 87.93 ± 1.49
AA 72.59 ± 2.28 85.21 ± 1.29 71.40 ± 2.74 79.77 ± 2.71 72.92 ± 1.44 65.03 ± 3.59 84.98 ± 1.31

Figures 5–8 show the predicted maps for all models, which can be seen as a visual
reference to model performance assessment. The areas obtained by LAMFN with less
noise have been highlighted to show the effectiveness of our proposed model. Overall,
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the proposed LAMFN has fewer misclassifications and omissions and generalizes well to
different datasets with only five samples per class.
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4.5. Running Time Analysis

In this paper, the algorithm complexity has been paid considerable concern at the
beginning of the model design. Table 7 lists the input data size, parameter number (takes
IP dataset as an example), training time, and testing time of LAMFN and all the contrast
models. The WHU dataset with the largest data size is selected for running time display.

Table 7. Running related parameters of the LAMFN and the contrast models.

Model R-
HybridSN MSSFN A2S2K-

ResNet
AD-

HybridSN SSFTT SPRLT LAMFN

Input size 15 × 15 × 16 15 × 15 × 16 9 × 9 × 200 15 × 15 × 16 13 × 13 × 30 9 × 9 × 200 15 × 15 × 16
Parameter 719,112 159,012 373,184 366,662 148,488 839,728 157,826
Training
Time (s) 16.6 24.8 341.4 20.0 3.0 239.3 29.1

Testing
Time (s) 49.2 60.7 116.0 76.5 16.9 184.0 103.9

The model in this paper has good lightweight characteristics. First, the proposed model
is comparable to MSSFN and SSFTT in terms of parameter number, while its accuracy
exceeds those two models. This phenomenon indicates that our model can learn more
robust HSI features with lower parameter redundancy. In terms of running time, the
shorter running time indicates that fewer computational resources are required. The
running time of A2S2K-ResNet is significantly longer than the other models since many 3D
convolutional layers arranged in complex structures are used to extract features directly
from hyperspectral images. The proposed model has moderate running time compared to
the contrast models.
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5. Discussion
5.1. Model Design Analysis of LAMFN

The overall effectiveness of the proposed method is verified in Section 4.4: Comparison
with the Contrast Models. In order to further evaluate the detailed designs in LAMFN for
small sample HSIC tasks, ablation experiments were conducted to test the improvement of
FA, LA-3D-Conv, CA, and low-rank SOP on each dataset.

For FA, PCA was used for contrast experiments, and the other settings remained
the same. For SSF, two-layer 3D convolution with residual structure was used to build a
contrast model. The number of convolution kernels is consistent with the method in this
paper, and the size of convolution kernels is set as 3× 3× 3. For CA, blank control was
performed, which means CA will be removed from LAMFN. For LRSOP, global average
pooling (GAP) and original second-order pooling (SOP) will be used for comparison. Other
experimental settings are consistent with the experiments in Section 4.4: Comparison with
the Contrast Models, and the OA results are shown in Table 8.
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Table 8. OA results (%) of ablation model experiments.

Model Description IP PC Houston WHU

LAMFN proposed 78.15 97.18 81.35 87.93
C1 Replacing FA with PCA 74.74 97.27 81.14 84.36

C2 Replacing LA-3D-Conv with
residual 3× 3× 3 3D-Conv 77.07 96.98 80.23 87.02

C3 Without CA 77.06 97.05 80.94 86.96
C4 Replacing LRSOP with GAP 77.39 95.66 79.01 87.67
C5 Replacing LRSOP with SOP 77.35 96.99 80.87 86.56

The effectiveness of FA has been verified through the comparison between the results
of LAMFN and C1. In order to further explore the influence of the number of bands on
PCA and FA, a more detailed comparative experiment was conducted, with the number of
bands ranging from 12 to 28. The experimental results are shown in Table 9. In addition,
there is a big difference between FA and PCA in terms of dimensionality reduction time.
Taking the WHU dataset as an example, Table 10 shows the running time of PCA and FA
with different number of bands.

Table 9. OA results (%) of different band number using FA and PCA.

Band
IP PC Houston WHU

FA PCA FA PCA FA PCA FA PCA

12 77.70 72.62 97.18 97.27 81.18 80.31 87.27 84.08
16 78.15 74.74 97.18 97.27 81.35 81.14 87.93 84.36
20 77.63 71.87 96.86 97.24 81.77 80.89 86.80 83.80
24 78.07 73.00 97.07 96.83 80.59 81.16 87.06 84.16
28 77.41 72.47 96.94 96.56 80.49 79.87 86.73 86.14

Table 10. Running time (second) of PCA and FA with different number of bands in WHU dataset.

12 16 20 24 28

PCA 3.0 3.0 3.7 5.0 4.0
FA 34.8 31.0 49.0 64.8 63.9

By analyzing the experimental results in Tables 9 and 10, three conclusions can be
drawn as follows:

1. When the number of bands is 16, FA achieves the overall best accuracy (measured in
average) in the four datasets. By increasing the number of bands, only the accuracy in
the IP data set continues to improve, while the accuracy of the other datasets tends
to decrease. Compared with PCA, the FA dimension reduction method achieves the
optimal factor number earlier.

2. FA significantly outperforms the PCA method when the number of bands is 16. In
both IP and WHU datasets, FA has an absolute advantage. However, FA achieves
slightly lower accuracy in the PC dataset than using PCA. As the number of bands
increases, the accuracy obtained by PCA improves significantly in IP and to a lesser
extent in other datasets. Overall, there is a large gap between PCA and FA methods.

3. PCA significantly outperforms FA in terms of resolving time. When the band number
is 16, the resolving time of FA is 28.0 s slower than that of PCA. When the number of
bands is taken as 24, the gap increases to 59.8 s. The slowdown is due to the fact that
the FA takes into account the covariance of all input pixels. The extended solution time
when the number of bands is taken as 16 is acceptable, given the resulting accuracy
improvement.

Through the above analysis, the effectiveness and applicability of FA in hyperspectral
small sample classification is further validated. On the one hand, the data covariance can
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effectively utilize the sample information and improve classification accuracy. On the other
hand, for the trade-offs of resolving time, classification accuracy, and memory occupation,
FA is sufficient to keep a small number of factors in the classification task.

The results in Table 8 completely verified all the refined designs for small sample
HSIC tasks. The comparison between LAMFN, C2, and C3 demonstrates the improvements
of lightweight SPS and CA modules. The comparison between LAMFN, C4, and C5
verified the improvement of low-rank second-order pooling compared to first-order pooling
and direct second-order pooling. It should be noted that the LRSOP and SOP share one
limitation compared to the GAP. When adopted for feature extraction, the dimension of
the feature vector extracted by GAP will be much smaller than that of SOP or LRSOP since
the explicit second-order feature calculation would square the channel number. Therefore,
when being used for unsupervised feature extraction, such as in contrastive learning tasks,
the number of channels needs to be further reduced. And this can be flexibly achieved by
changing the kernel number of the 2D-Sep-Conv layer.

The motivation of LAMFN is to minimize the repetition of various features and
reduce network redundancy. Multi-feature fusion is a widely adopted network design
principle, but one of the key points may be ignored, namely, feature redundancy caused by
the repetition of feature types. The concise feature extraction module with considerable
variance is of great help to improve the classification accuracy. Based on this idea, LA-
3D-Conv is designed to extract spatial–spectral features in a lightweight attention-based
manner. CA is used to supplement positional information and cross-channel features
ignored by 3D convolution. Then, different types of features are aggregated in a composite
residual structure. In terms of feature utilization, LRSOP introduces low-rank constraints
to reduce the number of parameters in the output layer while maintaining the selectivity
advantage of the second-order features on different feature channels.

5.2. Comparison with Advanced Semi-Supervised Methods

In order to further verify and position the superiority of the proposed method, we
compared LAMFN with some advanced semi-supervised methods proposed in recent
years. Methods used for comparison include DFSL [46], DMVL [45], UM2L [48], and SC-
EADNet [44]. The above methods include unsupervised feature learning and supervised
fine-tunning, and they are briefly described below.

1. The DFSL is a cross-domain meta-learning method. Firstly, the model is pre-trained
in the source domain dataset to obtain the metric space. Then, the well-trained model
extracts robust features, and the final classification can be achieved by a simple linear
classifier using very few samples.

2. The DMVL is a contrastive learning method. The two successive spectral vectors
within each pixel are used for generating positive and negative samples for contrastive
pretraining.

3. The UM2L is an end-to-end cross-domain meta-learning method. The pretraining
phase was performed in an unsupervised manner with multi-view constrained con-
trast learning.

4. SC-EADNet combines contrastive learning with well-designed multiscale residual
depth-separable convolutional networks.

The comparison results are shown in Table 9 (blank indicates that the dataset is not
included in the above papers). For all the models, five samples from each class were
selected to supervise the model training or fine-tuning process to ensure a fair comparison.

The comparison results in Table 11 show that, as a supervised learning method, the
classification performance of LAMFN has exceeded several advanced semi-supervised
algorithms, such as DFSL, DMVL, and UM2L. Since simple residual backbones, such as
ResNet-50 and its variants, are used to conduct semi-supervised learning in the above
three frameworks, the good performance of LAMFN should be attributed to the superiority
of the proposed model structure. The OA of SC-EADNet is better than our method in
the IP dataset and lower in the HU dataset, which also shows that the well-designed
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network can better learn spatial–spectral features in unsupervised manners. However,
which kind of combination of model structure and semi-supervised strategy contributes
more to semi-supervised hyperspectral classification has no prior knowledge and needs
further study.

Table 11. Comparison results with several advanced semi-supervised methods.

Model IP PC Houston

LAMFN 78.15 97.18 81.35
DFSL 63.11 94.90 69.29

DMVL 78.01 78.55
UM2L 72.09 94.27

SC-EADNet 82.69 80.89

6. Conclusions

To boost the classification performance for small sample HSIC tasks, the LAMFN
classification framework was derived from dimension reduction, spatial–spectral feature
extraction, and convolution feature post-processing. The effective fusion of multi-type
features with sufficient variance and low redundancy is the core idea of the proposed
LAMFN. Firstly, FA is used to reduce the dimensionality of hyperspectral data, and the
spectral features are pre-learned from the perspective of data covariance. The attention-
enhanced feature learning unit, LA-3D-Conv, is used to further refine the hyperspectral
features. The LA-3D-Conv can effectively map the dimensionally reduced hyperspectral
data to the four-dimensional feature space and highlight the valuable spatial–spectral
feature intervals for classification in a lightweight manner. Then, coordinate attention
is used to extract direction-sensitive and channel-aware information from the reshaped
3D features. A composite residual structure is used to aggregate the features learned by
different stages. Finally, the classification is realized by using second-order pooling with
low-rank constraints to learn compact class vectors for each class.

Extensive classification and module ablation experiments are carried out using four
hyperspectral datasets with large differences, namely, IP, PC, HU, and WHU. In the experi-
ments, the proposed method achieves the highest classification accuracy, and the running
time is moderate, which verifies the effectiveness of the proposed method. In addition, we
will try to combine the method in this paper with the idea of contrastive learning to enhance
the method’s applicability in more scenarios. Due to the highly modular network design
principle, we hope our model can promote the small sample hyperspectral classification
research and also benefit other types of remote sensing image processing tasks.
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