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Abstract: The need to protect forests and enhance the capacity of mountain ecosystems is highlighted
in the U.N.’s Sustainable Development Goal (SDG) 15. The worst-hit areas of the 2008 Wenchuan
Earthquake in southwest China were mountainous regions with high biodiversity and the impacted
area is typical of other montane regions, with the need for detecting vegetation changes following
the impacts of catastrophes. While the widely used remotely sensed vegetation indicator NDVI
is available from various satellite data sources, these satellites are available for different monitor-
ing periods and durations. Combining these datasets proved challenging to make a continuous
characterization of vegetation change over an extended time period. In this study, compared with
linear regression, multiple linear regression, and random forest, Convolutional Neural Networks
(CNNs) performed best with an average R2 of 0.819 (leave-one-out cross-validation). Thus, the CNNs
model was selected to establish the map of the overlapping periods of two remote-sensing products:
SPOT-VGT NDVI and PROBA-V NDVI, to reconstruct a SPOT-VGT NDVI for the period from June
2014 to December 2018 in the worst-hit areas of the Wenchuan earthquake. We analyzed the original
and reconstructed SPOT-VGT NDVI in the hard-hit areas of the Wenchuan earthquake from 1999 to
2018, and we concluded that NDVI showed an overall upward trend throughout the study period,
but experienced a sharp decline in 2008 and reached its lowest value a year later (2009). Vegetation
recovery was rapid from 2009 until 2011 after which, it returned to a pattern of slower natural growth
(2012–2018). The Longmenshan fault zone experienced the greatest vegetation damage and initiation
of recovery there has caused the overall regional average recovery to lag by 1–2 years. In areas where
the land was denuded of vegetation (i.e., effectively all vegetation was stripped from the surface)
after the earthquake, the damage exceeded what was experienced anywhere else in the entire study
area, and by 2018 it remained unrestored. In the 15 years since the earthquake, the areas that were
denuded were expected to recover to the level of restoration equivalent with the NDVI of 2007, as
was the case in other earthquake-damaged regions. In addition to the earthquake and the immediate
loss of vegetation, the Chinese government’s Grain for Green Policy, the elevation ranges within the
region, the forest’s phenological conditions, and human activities all had an impact on vegetation
recovery and restoration. The reconstructed NDVI provides a long-term continuous record, which
contributes to the identifying changes that are improving predictive forest recovery models and to
better vegetation management following catastrophic disturbances, such as earthquakes.

Keywords: NDVI reconstruction; Wenchuan earthquake; vegetation recovery; landslides

Remote Sens. 2023, 15, 299. https://doi.org/10.3390/rs15020299 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15020299
https://doi.org/10.3390/rs15020299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9376-3784
https://orcid.org/0000-0002-9497-6658
https://orcid.org/0000-0001-8551-0461
https://orcid.org/0000-0002-6439-6775
https://orcid.org/0000-0001-8156-0875
https://doi.org/10.3390/rs15020299
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15020299?type=check_update&version=1


Remote Sens. 2023, 15, 299 2 of 23

1. Introduction

The United Nations Sustainable Development Goals (SDGs) (https://UNSTATS.UN.
ORG/SDGS/REPORT/2022, accessed on 12 May 2022) call for joint world efforts to protect
the Earth, end poverty, and ensure peace and prosperity for the world’s people. SDG
15 proposed “Protect, restore and promote sustainable use of terrestrial ecosystems, sus-
tainably manage forests . . . and halt and reverse land degradation and halt biodiversity
loss”. Mountain ecosystems are required to be protected by 2030 in order to strengthen the
capacity of mountain ecosystems. However, the health of montane forest ecosystems is not
only affected by climatic conditions, but they are also sensitive to external disturbances,
especially catastrophes [1]. Disturbance and stresses that cause vegetation changes exceed-
ing normal annual or interannual changes and successional patterns creates challenges
for sustainable forest management. With less than 10 years to achieve SDGs, there is an
urgent need to develop long-term indicators that can be used to monitor and evaluate
changes in vegetation conditions caused by different driving forces from weather and
climate conditions to disasters [2,3].

The catastrophic Wenchuan earthquake with a magnitude of MS 8.0 occurred in the
Longmenshan Mountain Range, Sichuan, China on 12 May 2008. It extended 240 km
along the Yingxiu-Beichuan fault and 72 km along the Guanxian-Jiangyou fault [4]. The
earthquake caused devastating damage to the region, with at least 87,000 people dead or
missing and about US$ 130 billion in economic loss [5]. The initial earthquake destroyed
extensive forest (919.9 km2) and shrub (338.6 km2) ecosystems [6], mainly impacting
the mountainous upper reaches of the Yangtze River, an area identified as essential for
ecological preservation in China [7,8]. The earthquake created ecological and physiographic
imbalances that have led to numerous further natural disasters like landslides, debris flows,
and debris flows that are activated by intense summer monsoon rains (May–September).
The 200,000 mass wasting geohazards [9] that have occurred since then have destroyed
large swaths of forest vegetation [10,11] and created a cycle of repeated ecological and
physiographic damage.

Vegetation indices, based on the spectral signature of plants, provide a quantitative
and qualitative assessment of vegetation cover by combining the reflectance from spectral
bands using both linear and non-linear methods [12,13]. One of the most widely applied
vegetation indices, the Normalized Difference Vegetation Index (NDVI), calculated from the
visible red and near-infrared bands, has performed better in many cases than other indices.
NDVI is a measure of the “greenness” of the vegetation and is correlated with leaf area,
leaf biomass [14–16], canopy cover [17–20], and chlorophyll content [21–23], and is strongly
related to photosynthetic capacity [24–26], fluorescence [27,28], and Net Primary Produc-
tivity [29–32]. NDVI has been used to describe ecosystem status, condition, disturbance,
and change [33–38]. NDVI can be retrieved from many satellite instruments, including the
Satellite for Observation of Earth VEGETATION (SPOT-VGT), the Moderate Resolution
Imaging Spectroradiometer (MODIS), the Landsat Thematic Mapper (TM), Sentinel 2 Multi-
spectral Instrument (MSI), and the Project for On-Board Autonomy Vegetation (PROBA-V).
The results were dissimilar comparing different NDVI products, and the NDVI products
from the single sensor were often incomplete in measuring vegetation conditions [39–42].
For the worst-hit areas in Wenchuan Earthquake, most of the research on the impact of the
earthquake on vegetation damage and restoration is based on MODIS NDVI [10,43–45].
However, the results based on MODIS NDVI did not show the lag and long-term nature of
vegetation damage (recovered to the pre-earthquake level before 2010), which is different
from that observed in the field. The SPOT-VGT NDVI data can be another important
reference for the vegetation cover change in the worst-hit areas in Wenchuan Earthquake.
Firstly, there was an accurate indication of SPOT-VGT NDVI on evergreen broad-leaved
forest and coniferous forest [46] (consistent with the main vegetation coverage types in the
study area). Secondly, it was reported that the responses of SPOT-VGT NDVI and MODIS
NDVI to the surface vegetation in Southwest China where the study area is located failed
the correlation test [47].

https://UNSTATS.UN.ORG/SDGS/REPORT/2022
https://UNSTATS.UN.ORG/SDGS/REPORT/2022
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The available period of SPOT-VGT NDVI is from April 1998 to May 2014, which has
limitations in the long-term indication of vegetation coverage recovery in the study area.
SPOT-VGT NDVI data reconstruction can break through the shackles of a single NDVI data
source in the study area and support a comparison of the vegetation changes in the past
10 years before and after the earthquake. According to the source of information during
computing, the basic methods of remote-sensing image reconstruction were classified into
two categories: single-source based and multiple-sources based. The single-source-based
methods do not rely on other auxiliary information and fill in missing data based on the
spatiotemporal characteristics of the dataset itself, including filter techniques [48,49], func-
tion fitting [50,51], and temporal deep learning [52]. Multiple-sources-based methods need
to establish a mapping between the main data and auxiliary data, and use the advantages
of auxiliary data sources in data integrity to fill in the lack of main data, which is part of
spatio-temporal data fusion, including function-based [40,41,53,54], spectral-based [55],
and learning-based [56,57]. Data reconstruction from multiple data sources tended to
have better performance and can be the basement of data fusion [58]. Spatio-temporal
fusion, multi-source fusion, and machine-learning have become the trend of NDVI recon-
struction [59]. The remote-sensing data reconstruction methods based on deep learning
have also been successfully used by researchers because of its excellent performance and
transferability [60,61]. Given that the PEOBA-V sensor has similar spectral characteristics to
SPOT-VGT with a small difference between the two in the blue, red, and near-infrared bands
(RMSE = 0.003), PEOBA-V NDVI was selected to assist in reconstructing long-sequence
SPOT-VGT NDVI.

To sum up, in order to fully understand the vegetation changes in the disaster area
in the 10 years before and after the earthquake, the SPOT-VGT NDVI data was selected
for reconstruction and extension because of its superiority in the main vegetation repre-
sentation and long-term sequence in the worst-hit areas in Wenchuan Earthquake. After
the method comparison with linear regression, multiple linear regression, random forest,
Convolutional Neural Networks (CNNs), and CNNs were selected to reconstruct the SPOT-
VGT NDVI data after 2014 based on PROBA-V NDVI. Based on the 1998–2018 NDVI data
composed of original data and reconstructed data, the spatiotemporal change patterns of
vegetation in the worst-hit areas and the impact of earthquake were analyzed. This study
provided a framework for comparison and reconstruction of multi-source (sensor) data,
which improves the comprehensiveness and accuracy of long-term vegetation coverage
understanding in the study area.

2. Data and Methods
2.1. Study Area

The worst-hit areas in Wenchuan Earthquake (Figure 1) cover about 119,056 km2,
including 37 areas designated as worst-hit areas and 10 designated as most severely hit
areas (The Assessment Report of Wenchuan Earthquake Disaster Scope). The worst-hit
areas in Wenchuan Earthquake include a wide range of landforms, e.g., plains, hills,
mountains, and plateaus. The southwest has the highest elevation, forming a narrow buffer
zone against the low-elevation Chengdu Plain [62]. There are a large number of faults in
the study area, so geological movement is active and geological disasters occur frequently.

The forests and other vegetation types vary across the region but generally include
subtropical broadleaf evergreen forests (e.g., Cinnamomum wilsonii, Quercus lanata) that
dominate up to about 1800 m, a mixed broadleaf (e.g., Eucommia ulmoides, Quercus seme-
carpifolia) and conifer forest from 1800 m to about 2200 m, and transition to conifer forests at
higher elevations up to about 3300 m. Shrubs, e.g., Rhododendron arboretum)are common in
the study area between 1800 and3300 m [6]. High-elevation conifer forests are dominated
by cold-tolerant Abies (true fir), Picea (Spruce), Pinus (Pine), and Tsuga (Hemlock) species.
The eastern mountains have abundant Abies, Picea, and Pinus species. while semiarid
shrublands dominate the west. Some areas only receive 600 mm annual precipitation and



Remote Sens. 2023, 15, 299 4 of 23

are dominated by sparse alpine perennial vegetation like grasses, sedges, cushion plants,
etc. Stone deserts are found at 5000 m and higher.
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Figure 1. Study area: The worst-hit areas in the Wenchuan Earthquake.

2.2. Data Preparation

The SPOT-VGT NDVI and PROBA-V NDVI products were used as the source data. The
two raw datasets are the composite product of 10-day MVC (Maximum Value Composite)
with a spatial resolution of 1 km, which has been corrected by calibration and cloud
monitoring [46,63–65]. PROBA-V NDVI was resampled to the position corresponding
to SPOT-VGT NDVI image in the same geographic coordinate system (GCS_WGS_1984).
Monthly data were synthesized by MVC to further reduce interference from varying solar
elevation angles, clouds, aerosols, and other atmospheric factors [66]. In order to ensure
sufficient data volume while avoiding model overfitting, the scale of the training data was
set as the entire southwest region but excluding Xizang Province (1,339,647 pixels). The
pixel value of PROBA-V NDVI is the feature variable, and the SPOT-VGT NDVI pixel value
at the same time (2013.11–2014.05) and geographical location are the response variables.
The size of 43 × 43 pixels is a sample and there are 9,377,526 samples in the training dataset.

MODIS NDVI (MYD13A2 and MOD13A2) data were used to check the overall trend of
reconstructed NDVI and compare between different sensors. The descriptions and sources
of the main data are shown in Table 1.

2.3. Convolutional Neural Networks

Deep learning methods can be used to compute and obtain the characteristics found
among nonlinear relationships through data operations, and these are used to achieve pre-
dictive models or classifications. Compared with general machine-learning methods, deep
learning has a more complex structure, which makes its model performance superior in
most cases [67]. As a representative of the class of deep-learning algorithms, convolutional
neural networks (CNNs) have performed well in the processing and analysis of computer
vision, based on its effective algorithms and structures [68]. The features extracted by filters
in CNNs have been nonlinearly transformed by an activation function, which becomes
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the input of the subsequent layer [68–70]. This results in the most valuable features in
the image of the last layer being retained for prediction. In this study, linear regression,
multiple linear regression, Random Forest, and CNNs were compared. The CNNs were
found to have performed best on the training data set with R2 of 0.965 (Table S1). Therefore,
CNNs were selected as the model for NDVI prediction.

Table 1. Description and source of data.

NDVI Dataset Spatial Resolution Time Range Data Type Data Source

Original
SPOT-VGT 1 km 1998.04–2014.05 HDF4

https://www.vito-eodata.be/PDF/portal/
Application.html#Home (accessed on 12
May 2022)

PROBA-V 1 km 2013.11–2018.12 TIFF
https://www.vito-eodata.be/PDF/portal/
Application.html#Home (accessed on 12
May 2022)

MYD13A2 1 km 2003.01–2018.12 HDF https://ladsweb.modaps.eosdis.nasa.gov/
(accessed on 12 May 2022)

MOD13A3 1 km 2003.01–2018.12 HDF https://ladsweb.modaps.eosdis.nasa.gov/
(accessed on 12 May 2022)

To maximize the performance of the model within the available computational re-
sources, the model architecture was defined by adjusting the types and numbers of net-
works through the pre-experiment using different model architectures (Figure 2). The
proposed model consisted of four convolutional layers, four maximum pooling layers,
eight batch normalization layers, five fully connected layers, and four dropout layers, with
activation functions termed ReLU and linear. The numbers of filters in the convolutional
layers were 12, 24, 48, and 96, with the sizes of 9 × 9, 7 × 7, 5 × 5, and 3 × 3, respectively,
containing one channel. Pooling layers took the maximum operator to extract values for a
2 × 2 spatial region, with a stride equal to one. The number of neurons in fully connected
layers equaled 500, 250, 100, 20, and 1, respectively. With regard to dropout layers, the
probability of dropping neurons was set to 25% to prevent overfitting. Considering the
model performance and time cost comprehensively, the batch size was set to 5000. The
ratio of the validation dataset was 0.2 and accounted for 1,875,505 samples. The adaptive
moment estimation (Adam) with the learning rate of 0.001 was selected as an optimizer,
while the loss function was the mean squared error (MSE). The number of iterations was
set to 60 according to the pre-experiment (when the model iterated 60 times, the best
results were found at an earlier iteration), and the best configuration of the training model
was saved.

2.4. Model Evaluation

A training set and a validation set were used in the training process, for adjusting and
initially evaluating the model. The test set was not used in the training or optimization
steps; it was only used to evaluate the generalization ability of the model. The real
performance of the model would generally be overestimated using cross-validation, and if
the data in the test set were not totally independent from the training set, it would lead to
misunderstanding the evaluation as well [71]. A method similar to the leave-one-out cross-
validation method was adopted to estimate the model performance. Data was selected
in any 6 months from the 7 overlapping months to train the model, and the data in the
remaining one month was used as the test set to evaluate the generalization ability of the
model. The number of training sets and test sets was 8,037,882 and 1,339,647, respectively,
in each evaluation.

2.5. Linear Model

In order to test the improvement of the accuracy of the CNNs regression model results,
the results of the linear regression model were used as a benchmark, evaluated by the

https://www.vito-eodata.be/PDF/portal/Application.html#Home
https://www.vito-eodata.be/PDF/portal/Application.html#Home
https://www.vito-eodata.be/PDF/portal/Application.html#Home
https://www.vito-eodata.be/PDF/portal/Application.html#Home
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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same leave-one-out cross-validation method. The expression of a linear regression model is
shown in (1):

yi = ki xi + bi (1)

where i represents the pixel; yi means the reconstructed SPOT-VGT NDVI of pixel i; xi
means the PROBA-V NDVI of pixel i; and ki bi mean the regression parameters of pixel i,
which was obtained by the training process.
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2.6. Linear Regression Trend Analysis

The linear time trend was calculated by regression and generally applied to estimate
the temporal trend of vegetation change on a pixel scale or regional scale [72]. Based on
yearly maximum NDVI on a per-pixel basis, the trends in vegetation from 1999 to 2018
were examined. This expression is shown in (2):

θslope = (n
n

∑
i=1

i × NDVIi −
n

∑
i=1

i
n

∑
i=1

NDVIi)/

n
n

∑
i=1

i2 −
(

n

∑
i=1

i

)2
 (2)

where n represents the duration, i is a sequence starting with 1, NDVIi means the yearly
maximum NDVI in year i, and θslope is the trend of NDVI. The vegetation changes positively
with the value of θslope greater than 0, while θslope less than 0 indicates the degraded trend
of vegetation.

2.7. Soil Quality Measurement

In order to explore the correlation between soil quality and post-earthquake vegetation
coverage recovery, 8 groups of 16 soil samples in the study area were selected. One of the
sampling points in each group was from the denuded area, and the other was a control
point (non-denuded) close to it. The selection of samples also followed the principles: the
soil was stable with small human disturbance; the soil damage was due to the Wenchuan
earthquake and its secondary disasters. The soil samples in 2011 and 2018 were collected
for laboratory analysis, and the soil moisture, soil bulk density, total nitrogen (Total N)
and available nitrogen, total phosphorus (Total P), available phosphorus (Available P),
total potassium (Total K), available potassium (Available K), and organic matter content
were measured.

2.8. Correlation Measure of Human Activity Intensity and NDVI

To analyze the relationships between vegetation recovery and human activities, the
land use types in the study area were counted for 2018 (excluding areas of water bodies),
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farmland and constructed land were classified as “human-dominated” type, woodland
and grassland as “nature-dominant” type, and the “unused” type that generally refers to
mountain peaks and denuded areas. The area ratios of these three types are counted at
different NDVI slope levels (θslope).

3. Results
3.1. Long-Term Series NDVI Reconstruction
3.1.1. Model Evaluation and Data Reconstruction

Table 2 compares the performance of CNNs and the linear model. The leave-one-out
cross-validation results of CNNs for reconstructing multi-source NDVI were steady across
the months. It demonstrated good predictive performance of the CNNs model, the R2

ranging from 0.776 to 0.884, with a mean of 0.819. CNNs model performed much better
in predicting and generalizing, while the linear regression model was unable to predict
negative NDVI changes. Based on the monthly maximum PROBA-V NDVI from June
2014 to December 2018, the well-trained CNNs model was used to predict the monthly
maximum SPOT-VGT NDVI, which was used to generate the complete SPOT-VGT NDVI
time series from 1999 to 2018. Then the yearly maximum SPOT-VGT NDVI time series was
composited for the study area to understand vegetation changes.

Table 2. Results of leave-one-out cross-validation for CNNs and linear model.

Date
Index Model 2013-11 2013-12 2014-01 2014-02 2014-03 2014-04 2014-05

R2 CNNs 0.884 0.846 0.857 0.790 0.796 0.776 0.781
Linear 0.783 0.756 0.748 0.722 0.714 0.723 0.721

Slope CNNs 0.886 0.889 0.879 0.764 0.899 0.819 0.836
Linear 0.794 0.778 0.764 0.664 0.776 0.780 0.774

Min Bias *
CNNs 0.027 0.048 −0.04 −0.037 0.065 0.02 −0.013
Linear 0.109 0.108 0.106 0.126 0.111 0.070 0.071

Max Bias *
CNNs 0.03 −0.002 −0.056 −0.025 −0.006 −0.079 −0.024
Linear −0.109 −0.106 −0.108 −0.113 −0.092 −0.105 −0.100

* Bias < 0 indicates underestimation: The predicted value is lower than the observed value; Bias > 0 indicates
overestimation: The predicted value is higher than the observed value.

3.1.2. Comparisons to Reconstructed NDVI

There were no large-area devastating disasters that occurred between 2013 and 2018,
thus the intra-annual characteristics of vegetation change are expected to remain similar
during these years. The comparison of NDVI products from different satellites was in-
consistent due to their nonlinear differences. Therefore, the average monthly maximum
SPOT-VGT NDVI in 2013 was selected as a reference to validate the accuracy and continuity
of reconstructed data. We concluded that the intra-annual change in the predicted NDVI
was consistent with the observed NDVI, and the average monthly maximum NDVI be-
tween 2014 and 2018 fluctuated normally compared with the same month in 2013 (Figure 3).
Consequently, it was accepted that the CNNs reconstructed SPOT-VGT NDVI model in the
study area was reliable.

MODIS NDVI has long time spans and multi-sensor data sources. Correlation cal-
culations with MODIS NDVI on Terra and Aqua sensors examined the trend consistency
and local variability of SPOT-VGT NDVI on an interannual scale. Figure 4 compares
reconstructed SPOT-VGT NDVI and MODIS NDVI of different sensor Terra and Aqua
from 2003 to 2018, which avoided possible errors caused by the SPOT satellite VGT sensor
calibration. The values of both resources of MODIS NDVI were higher than SPOT-VGT
NDVI, but the trends were consistent and the NDVI data of each sensor were internally
consistent. The inter-annual trend of reconstructed SPOT-VGT NDVI with MODIS NDVI
(Aqua) had positive correlation with a correlation of 0.656 (99% confidence level) and 0.699
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with MODIS NDVI (Terra), which was in line with the conclusions of previous studies on
the relatively large differences between these two data sources in Southwest China [47].
The local differences between reconstructed SPOT-VGT NDVI and MODIS NDVI were
mainly reflected in 2009, 2012, and 2018. The possible reason is that MODIS sensors tended
to saturate the NDVI of the forest, which is the main cover type in the study area [26,73],
and their higher cloud pollution compared with SPOT-VGT product [36].
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3.2. Spatiotemporal Patterns of Vegetation Change
3.2.1. Temporal Patterns

From 1999 to 2018, NDVI in the worst-hit areas of the Wenchuan earthquake showed
an increasing trend, but had obvious decreases in 2000 and 2008 (Figure 5). The Grain
for Green Project, a program to reduce forest removal and return cultivated land on steep
slopes (≥25◦) to forestlands in the upper Yangtze River Basin started in the study area in
1999. While still in the early stage of the project at the time of the earthquake, the large
surface disturbances in areas with low forest cover caused intensified soil erosion and a
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decrease in vegetation cover. Afterward, trees grew and the land surface recovered, leading
to an increase in NDVI in subsequent years [74,75]. In addition to the positive effects of
returning farmland by natural succession to forest, the large increase in NDVI from 2002 to
2003 seen in Figure 5 appear to be affected by the difference in spectral response functions
between SPOT VGT-1 and VGT-2. This sensor difference caused a reflectance difference of
2.1% and 6.3% respectively for B2 (red band) and B3 (near-infrared band), resulting in an
increase of 3.4% in the observed NDVI (NDVI > 0.3) [47,76]. In the period before and after
the earthquake (2003–2011), the NDVI changes show three obvious phased characteristics.
The Natural Succession stage (2003–2007, P1): The vegetation during this period was not
subject to a significant destructive disturbance event, and thus the interannual trend in
NDVI increased. The Continuous Degradation stage (2007–2009, P2): During this phase,
the rate of degradation exceeded the increasing rate of NDVI from the previous pattern of
normal succession. The Wenchuan earthquake in 2008 caused severe surface disturbances
and serious damage to surface vegetation, leading to a significant reduction in NDVI. Due
to secondary disasters like landslides and debris flows, the NDVI across the whole region
showed greater degradation in 2009 than in 2008. The negative effect of the earthquake
on vegetation is persistent and shows a pattern of hysteresis in recovery [77,78]. In the
Rapid Recovery stage (2009–2011, P3): Vegetation cover recovered, with a steeper rate
of growth than the succession before the earthquake, up to about the value that would
have intersected the earlier slope of increasing NDVI before the earthquake. Destruction
and rapid recovery were common occurrences in the study area after the earthquake.
As shown in the maps in Figure 5, unlike the relatively balanced NDVI increased and
decreased areas in P1, the degradation in P2 and the increasing in P3 had wider areas,
which were 70% area in P2 and 85% in P3, respectively. From 2009 to 2010, the increment of
NDVI increase was relatively small, but by 2010, succession and recovery of the damaged
vegetation occurred along with increased soil stability and soil water-holding capacity
as vegetation cover increased, showing a significantly greater rate of growth in the late
stage of recovery (2010–2011). Vegetation showed fluctuations dominated by phenological
factors in 2012–2018. NDVI reached its maximum value in 2013 and then decreased, which
is related to the sudden increase in temperature and precipitation in 2013 (Figure S1). The
correlation between NDVI, annual total precipitation, and annual mean temperature in this
period was higher than that of other periods, which are 0.635 and 0.602 (90% confidence
level), respectively. While NDVI is a good indicator of a change in vegetation greenness, it
generally does not provide enough information to identify the cause of change and it has
limited capacity to identify changes in species composition without field data. Because
we lacked data to document changes in species composition, we did not specify changes
in species distribution. It is likely that the enhanced growth observed in the 2010–2013
period is partly or strongly related to colonization by early successional species, including
invasive species, in the previously denuded hill slopes. These species are expected to
be gradually replaced over a few years by the native tree and shrub species, if no new
severe disturbances reset the recovery. The decreased NDVI after 2013 may indicate such a
transition has started, independent of the impact of the less favorable weather at this time.

3.2.2. Spatial Distribution of Vegetation Cover

Although the average NDVI of the entire study area showed an upward trend from
1998 to 2018, the characteristics of vegetation cover changes varied in spatial distribution.
(Figure 6a). The areas where vegetation improved, was maintained, or degraded in the
study area accounted for 48.06%, 47.72%, and 4.22% of the total area, respectively. The
vegetation improved across most of the northeast, and the slope was more positive in the
southwest than in the core area, and the positive evolution of the vegetation in the Jialing
River Basin was strongest. Degradation of vegetation mainly occurred in three regions:
(1) The high mountain areas of Northeast China, especially the junction of Minjiang River
Basin and Dadu River Basin. This area has a high elevation (>4000 m), and its ability to
support rapid growth of vegetation is limited. Therefore, from 1999 to 2018, the NDVI of
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the high-elevation area at the boundary of the two watersheds had maintained a low value
and even showed a trend of degradation. (2) The epicenter and surrounding fault zone. The
huge power released in the seismic wave destroyed extensive surface structures including
both vegetation, buildings, roads, and other structures, triggering massive landslides
and rock avalanches as well as impounded rivers, which was followed on hillslopes by
water loss and soil erosion that further decreased vegetation growth and plant cover,
and facilitated its re-destruction by secondary disasters like debris flows and landslides.
(3) Residential and farming areas, primarily in the southeastern region, such as near
Chongzhou and Pengzhou. Urban settlements, agricultural construction, cultivation, and
other human activities were significantly impacted, and an impermeable soil layer often
replaced the original vegetation and soil cover that were lost after the earthquake.
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In order to better represent the impact of the earthquake on vegetation growth,
the vegetation growth trend of the study area is divided into 10 years before the earth-
quake (1999–2007, Figure 6b) and 10 years after the earthquake for comparison (2009–2018,
Figure 6c). Before the earthquake, vegetation in most parts of the study area generally
showed growth, especially in the Longmen Mountain area (epicenter and surrounding fault
zone) and the northeast area. However, after the earthquake, there appeared contiguous
areas of degraded vegetation that were not there before; Figure 6. Two regions: the alpine
high-elevation region in the northeast, and the residential and farming areas, primarily in
the southeast, showed negative growth in both periods of 1999 to 2007 and 2009 to 2018,
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which are the same as the trend in the whole study period. The regions of the epicenter
and surrounding fault zone had the fastest growth rate after the earthquake. This is in line
with the curve of the rapid Recovery Period in Figure 2. However, the boundary regions of
the Dadu River basin, Minjiang River Basin, and Fujiang River basin performance became
worse in vegetation growth after the earthquake, especially in Wenchuan, Lixian, and
Pingwu. According to Duan et al. [1], who researched the ecosystem service based on Net
Primary Productivity (NPP), the changes in ecosystem services in Wenchuan and Lixian
were climate-dominated, while Pingwu was dominated by mixed factors (climate, disasters,
and human activities). Referring to the change of its driving force, the declines of NDVI
in Wenchuan and Lixian (vegetation continued to be destroyed or recovered slowly) were
mainly dominated by climate factors. Minjiang River Basin contains a large number of
high-elevation areas and dry-hot valley areas, and these two were the key factors that cause
frequent debris flows and landslides [79,80]. Therefore, after the earthquake disturbance,
this area is more likely to experience re-damage, which further hinders the post-earthquake
recovery of vegetation. For Pingwu, it was the high proportion of cash crops was con-
sidered [81]. The recovery of the economic crop was closely related to human activities
and quite different from natural succession, which may be the reason for the hindered
restoration of NDVI.
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3.3. Vegetation Recovery Patterns after the Earthquake
3.3.1. Year of Initiation of Recovery

Vegetation recovery is the process of natural succession after the destruction caused
by the earthquake and the following geohazards. Although the vegetation recovered in
most parts of the worst-hit areas of the Wenchuan Earthquake and was even better than it
was in 1998, the earthquake caused a lag in the vegetation growth in the core area, relative
to the surrounding area. In order to evaluate the patterns of vegetation recovery on a pixel
scale, the initiation of vegetation recovery was calculated on a pixel scale. The initiation of
vegetation recovery is the year corresponding to the first time the pixel reached or exceeded
the 2007 level after the earthquake. The baseline for restoration is the vegetation coverage
level before the earthquake (NDVI2007). Specifically, for pixel A, its NDVI2008 ≥ NDVI2007,
then the initiation of vegetation recovery of A is 2008, and the degradation time is 0, which
means that the vegetation has not been significantly damaged, or the damage has been
restored in the same year. Analogously, for pixel B, if its NDVI2009 ≥ NDVI2007 > NDVI2008,
then the initiation of vegetation recovery of pixel B is 2009 and the degradation time is
1, which means that the vegetation coverage after the earthquake showed degradation
in 2008 and improved for the first time in 2009. However, due to the phenomenon of
“damage, recovery, re-damage, recovery” in some landslides and debris flow area, the
recovery initiation in this study is the first year that reaches or exceeds NDVI2007, and the
subsequent years will not be repeated statistics. Affected by finer-scale secondary disasters
and human activities, the vegetation recovery characteristics had obvious temporal and
spatial differences (Figure 7), which also shows its environmental vulnerability. The
earthquake caused a decrease in vegetation cover over 51.66% of the study area, while
the rest of the area (48.35% of total, part of them recovered in 2008) had NDVI values
consistent with 2008 vegetation levels in the region. The NDVI in the northwest and
southeast were degraded for only a short period, and the vegetation restoration lagged by
1 year (2009). The regions with a lag of 2–3 years are concentrated in Longmen Mountain
seismic fault zone and other fault zones. These regions have active geological movements
and complex topography and not only did they suffer the greatest impact in the 2008
Wenchuan Earthquake but are also most prone to multiple secondary disasters. As a result,
the surface was repeatedly damaged, hindering the recovery of vegetation restoration,
which may cause these sites to undergo an ecosystem shift and enter a degraded alternate
state. Most of the southeast basin where NDVI levels recovered later are close to urban and
agricultural sites and other human activities, suggesting interference may be another main
reason for the slow recovery of vegetation cover. The statistical percentage clearly shows
that greater than 48% of pixels (greatest area) showed recovery that began in 2008. By 2011
and after, only about 5% of the area remained to initiate recovery, which is less than 1% of
the whole study area.

3.3.2. Recovery in the Decade after the Earthquake

The earthquake caused a massive disturbance in local ecosystems, especially within
the fault zone. The vegetation level in the Longmen Mountain area dramatically decreased
in 2008 and did not recover to the level of surrounding pixel values (Figure S2). As
shown in Figure 6c, the Longmen Mountain area had the fastest growth rate after the
earthquake, but the rapid growth of NDVI represents recovery from severe damage rather
than restoration to pre-earthquake levels or restoration to pre-earthquake forest species
composition. Figure 8 shows the results of NDVI values in 2018 minus NDVI values in
2007 (the last year before the earthquake). It is worth noting that the NDVI of the Longmen
Mountain fault zone had not recovered to the pre-earthquake level of 2007 by 2008, even
though this area had the fastest recovery rate (Figure 6c). In this situation, it is necessary
to fully consider the denuded area caused by multiple geological disasters for vegetation
restoration planning.
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3.3.3. Obstructed Recovery in Denuded Area

After the Wenchuan earthquake, a large number of debris flows and landslides oc-
curred annually in the affected area during the annual monsoon period (June to September),
which caused the re-activation and migration of surface sources [9]. A total of 879 denuded
areas (S ≥ 80,000 m2, Figure 9) were selected as typical disturbance examples based on
remote-sensing images and data resolution [44,83]. Eight groups of soil quadrats were
sampled for soil quality monitoring (Figure 9) and each group of soil quadrats contained
soil samples from denuded areas and non-denuded areas in both 2011 and 2018.
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The change in NDVI in the denuded area showed three stages that were similar to
patterns in the larger study area: natural succession, continuous degradation, rapid initial
recovery, and the after earthquake recovery hysteresis. Compared to the overall changes
in the study area, natural succession recovered relatively better than in the denuded
areas kLP1: 0.0060 > kP1: 0.0042). In the more severe areas of vegetation degradation
(kLP2: 0.0893 < kP2: 0.0105), the worst areas are located where more significant geological
disasters occurred and where the recovery was more rapid (kLP1kLP3: 0.0401 < kP3: 0.0161).
However, by 2018, NDVI had not fully recovered to its pre-earthquake level (Figure 10).
Compared with areas that did not experience subsequent severe disturbances, areas that
had multiple denuding events had a greater decline in NDVI, a longer recovery time, and a
delayed start in vegetation recovery by several years (Table S2).
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represent three periods of pre-earthquake natural succession, post-earthquake declines, and recovery
of NDVI in the denuded (landslides) areas, respectively. The corresponding k refers to the slope of
the NDVI linear fit within the period.

Comparing the soil quality between 2011 and 2018 at the same location, Figure 11
showed that soil quality in the non-denuded impacted area was generally better than in the
denuded area, especially the availability of essential macronutrients, and characteristics
generally indicating better soil health. The decrease in soil quality in the denuded areas
may reduce survival in these areas for species with slower growth rates.
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The areas that retained the topsoil and surface structure have significantly higher
total nitrogen, available nitrogen and potassium, and organic matter compared to areas
impacted by destructive geological disasters. They also retain higher soil moisture and
lower bulk density. Altogether, these soil patterns are found in areas that did not experience
secondary destructive geo-hazards and are associated with better growth and more rapid
vegetation recovery.

In order to improve vegetation management for the denuded areas, we calculated
the vegetation recovery time based on the NDVI regression model (Figure 6c) after the
earthquake starting with the lowest value of NDVI (2009). In the denuded areas, the average
recovery time was 10 years with a standard deviation of 10 years. These results indicate that
without active restoration: (1) part of the vegetation in the denuded area started recovery
soon after the earthquake; (2) most of the denuded vegetation (67.12% of the total denuded
area) recovered by 2018; (3) the 10-year standard deviation plus the average indicates that
the vegetation is expected to take 20 years to return to the pre-earthquake (2007) levels.

3.4. Relationship with Vegetation Change and Other Factors
3.4.1. Vegetation Changes in Elevation Belts

The parts of the study area with low-NDVI and declining rates of vegetation growth
are in both high-elevation and low-elevation areas, so NDVI was evaluated by an elevation
belt (Figure 12). Overall, vegetation showed the highest levels of NDVI at elevations
between 800 to 1550 m, and lower NDVIs (0.65 to 0.80) at lower elevations (below 800 m),
which were negatively affected by human habitation and farming. It can be seen from
Figure 1 that the low elevation areas are mainly distributed in the southeastern part of the
study area, especially in the southern areas with many cities close to the Chengdu Plain.
Strong human activities in these low-elevation areas made the NDVI of urban land and
farmland lower than NDVI of middle-elevation forests, and it could be supported by the
long-term annual NDVI values (Figure S2) and low growth rates of NDVI in a human-
dominant area (Figure 13). At extremely high elevations, alpine vegetation has low stature
dwarf shrubs with low canopy cover, which relates to the poor soil, short growing season,
extremely cold winters, and frequent cloud cover reducing sunlight intensity. It is worth
noting that the earthquake caused the vegetation level to dramatically decrease across most
elevations in 2009, and vegetation in most elevations started recovering within 1–2 years
after the Wenchuan Earthquake, which is confirmed by the pixel scale analysis shown
in Figure 7. In addition, the vegetation level benefited from increased precipitation for a
longer period, with a continuous NDVI increase, especially in 2013 when the precipitation
conditions were the highest (Figure S1).

3.4.2. Vegetation Change in Different Land Use Types

The other region that demonstrated decreasing vegetation cover is in the low-elevation
regions of the Mingjiang River watershed and the Tuojiang watershed, which is close to
Chengdu, the capital of Sichuan Province. This region has been impacted by the expansion
of the city of Chengdu, with low-elevation land use changing from farming to construction.
There are other small towns that have also contributed to the land cover change. Correlation
analysis between land use types and NDVI changes can reveal the impact of human activity
intensity on vegetation cover. It can be seen in Figure 13 that the regions with the most
negative θslope NDVI have the least in the human-dominant land type. A positive trend
in NDVI always exists in regions with a significant nature-dominant land ratio. Unused
land throughout the region has a negative trend in NDVI, which is located primarily in
high-elevation regions.
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4. Discussion

The research on vegetation restoration after disturbance is diverse, and the vegetation
recovery model includes a restoration trend, restoration starting point, restoration predic-
tion, and so on. According to the results of our vegetation recovery in this study, 48% of
damaged areas with loss of vegetation cover showed that the initiation of revegetation and
recovery was after 1 year, in 2008, and by 2013 more than 99% of the severely damaged
land had started recovery. Liu et al. [84] investigated vegetation recovery and found that it
started soon after the earthquake crosse the entire affected area, and areas with greatest
damage had recovered to 84% and 87% after 1 and 2 months later, respectively. Typically,
these are early successional species that exhibit rapid seed sprouting, like grasses and herbs,
species that can regrow from rhizomes, or woody species that stump sprout. Most mid-
and upper-elevation forest species have a seed pool in the soil that sprout in spring, and
thus are likely delaying germination until 2009 or later. Jiang et al. [81] concluded that it
took until 2013 for 41% to be restored to the level before the earthquake. These differences
are due to the different definitions of recovery and the conditions of the specific study
area. It must be noted that identical NDVIs only indicate that similar amounts of green
vegetation were present in the two time periods. It does not report whether the composition
of prior forests or shrublands had been restored. Jiang et al. [81] used the NDVI from 2013
compared to 2008 and estimated a recovery ratio much lower than that reported for this
study (using the year when the NDVI value was first greater than or equal to the value in
2007 as the starting point for recovery). The difference expressed the fracture of NDVI after
the initiation of recovery, caused by phenological conditions or geo-hazards.

The regions of repeated geo-hazards show an unhealthy trend of vegetation cover.
Geo-hazards caused by earthquakes have been demonstrated to have an increasing negative
impact on ecosystems by the vicious circle observed in the Wenchuan earthquake area.
Damage to the ground structure during the earthquake destroys the habitat for vegetation
and increases water loss and soil erosion caused by vegetation degradation and loss, which
leads to further ecosystem function decline [10,85]. Yang et al. [86], Yunus et al. [44], and
Chen et al. [87] predicted that the impact on regional post-seismic landslide frequency
will disappear within 20, 18, and 25 years after the Wenchuan earthquake, respectively.
The NDVI trend in the denuded area and our soil investigation showed the challenge to
vegetation recovery in the secondary-disaster area. NDVI in some denuded areas (32.88% of
the total in this study) had not recovered to the pre-earthquake level by 2018 (10 years after
the earthquake). Zhong et al. [88] showed a similar conclusion of vegetation recovery (about
60% recovered in ten years) and full recovery is forecast for 20 years after the earthquake.

As a natural disturbance, the earthquake did not completely destroy the growth of
vegetation; factors that affect phenological conditions (temperature and precipitation)
should be taken into consideration as drivers of primary productivity in the model for
vegetation growth and recovery [89]. The NDVI value rapidly increased across the whole
study area in 2013, even the denuded area showed the increasing trend, which reversed
trends in 2012. In addition, NDVI had recovered to the level before the earthquake based
on the initiation of vegetation recovery (Figure 4). Weather differences are the basic reason
when compared with the temperature and precipitation of the previous year; the weather
conditions in 2013 were more suitable to vegetation growth. Moreover, the geo-hazards
were concentrated in isolated spots after 2013 [90], which helped vegetation recovery
over the whole study area. However, NDVI shows a relative decrease from 2014 to 2018
compared to what it was in 2013, which is due to the decreases of the temperature and
precipitation in these years. High-elevation areas maintained low NDVI levels and a
negative growth trend during the study period, and this trend became more obvious after
the earthquake, especially in the high elevation Minjiang River Basin. A large number
of landslides occurred after the earthquake. In addition, the occurrence of drought and
fire after the earthquake also increased the risk of regional debris flows, especially in
areas where the soil was soft due to the earthquake [79,91], repeating the vicious circle
of damaged–recovered–damaged, which prevents or inhibits vegetation restoration. The
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unfavorable conditions for vegetation growth in the Minjiang River valley expanded after
the earthquake, making it difficult for vegetation to recover. This is an indirect impact of the
earthquake causing long-term damage to an ecologically fragile area. This study considered
the NDVI recovery results 10 years after the earthquake and the first recovery year, but
the detailed discussion on the “re-damage and re-recovery” scenario and corresponding
driving force needs more attention.

Additional challenges result because the vegetation index does not show the reality of
other aspects of vegetation, such as species composition, biomass, and its 3-dimensional
structure, which are essential for it to maintain its ecosystem service. Therefore, field
observations are an essential component of meeting the U.N.’s Sustainable Development
Goal 15. Fieldwork, such as a solid investigation of forest components provides evidence
of vegetation growth and ecosystem health, which will help identify the choice of remote-
sensing data needed [36]. Soil monitoring is used in this study to characterize the damage
by the landslides to the soil surface and the soil environment required for plant growth.
However, more sites and more multi-period vegetation sampling data should be used in
future research to complement remote-sensing data and reflect accurate assessments of
vegetation recovery.

5. Conclusions

The heterogeneous NDVI dataset was reconstructed by the CNNs model and used
to analyze long-term vegetation changes in the worst-hit areas of the Wenchuan earth-
quake. Vegetation in the study area showed an overall upward trend before the earthquake,
with 48.06% improved, 47.72% maintained, and 4.22% degraded. However, the vegeta-
tion experienced a dramatic decline because of the earthquake, which followed a sharp
degradation stage (2008–2009), rapid recovery stage (2009–2011), and fluctuation stage
after repeated disasters, e.g., landslides and debris flows (2012–2018). Post-earthquake
vegetation restoration patterns varied with environmental conditions at the local area,
including geological disasters, elevation and mountainous terrain, human activities, and
weather-related phenology. Among them, geological disasters have a considerable negative
impact on vegetation restoration. NDVI in the denuded areas did not recover until 2018
and are only expected to reach the level of the pre-earthquake (2007) vegetation condition
20 years after the earthquake. NDVI change patterns showed the characteristics of vegeta-
tion under different environmental conditions and provided the reference for vegetation
protection and management.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15020299/s1, Table S1: The fitting results of convolutional neural
networks and other methods for reconstructing heterogenous NDVI; Figure S1: The characteristics of
annual mean temperature and annual total precipitation in the study area; Figure S2: Annual NDVI
for years 2007 to 2018 from the MVC analysis. The full images are shown for the first seven years
to illustrate the continuity of NDVI across the Longmenshan fault boundary with vegetation in the
surrounding area; Table S2: Statistics showing the beginning of vegetation recovery for pixels in areas
experiencing large numbers of large landslides (S ≥ 80,000 m2).
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