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Abstract: A long-wavelength geoidal geometry characterizes the most pronounced features of the
Indian Ocean geoid low and the West Pacific and North Atlantic geoid highs. These large geoid
undulations (globally roughly within ±100 m) are mainly attributed to a deep mantle structure
and large lithospheric density and geometry variations (such as the African superswell), while
maximum geoid modifications by a topographic relief of Himalaya and Tibet are up to ~30 m.
To enhance the mantle signature in a long-wavelength geoidal geometry, gravimetric, isostatic,
and spectral decomposition methods can be applied. In this study, we demonstrate that isostatic
schemes yield isostatic geoid models that closely resemble a long-wavelength geoidal geometry. The
gravimetric method, on the other hand, modifies the mantle geoid significantly. Further modifications
of the mantle geoid by removing gravitational contributions of lithospheric mantle density and
lithospheric thickness variations should (optimally) enhance the signature of the deep mantle in
the sub-lithospheric mantle geoid. Our results confirm this assumption by revealing (large-scale)
positive anomalies in the Central Pacific and along the Atlantic Ocean that are coupled by two
negative anomalies in the East Pacific and South Eurasia. A gravimetric method thus better enhances
the mantle signature in the geoidal geometry than isostatic and spatial decomposition methods.
Nonetheless, our results also indicate the presence of possibly large errors in geoid modelling results
that limit their full implementation in gravimetric studies of the Earth’s mantle density structure
without using tomographic images of the mantle and additional geophysical, geothermal, and
geochemical constraints.

Keywords: isostasy; forward modelling; geoid; mantle convection; lithosphere

1. Introduction

Over the last few decades, remote sensing data acquired from interferometric syn-
thetic aperture radars, satellite altimetry, gravity-dedicated satellite missions, and other
space geodetic techniques have been used to develop global topographic, bathymetric, ice
thickness, and gravitational models. These models have been facilitated in numerous Earth
science applications. Since seismic data coverage is still sparse and uneven in many parts of
the world, these models have also been used in studies of the Earth’s interior. In global and
large-scale regional studies, for instance, the Earth’s external gravitational field derived
from orbital perturbations of satellites and (more recently) directly from gravity-dedicated
satellite missions helped scientists to better understand the mantle structure that mainly
propagates into a long-wavelength geoidal geometry (e.g., [1–11]). These satellite missions
involved the Challenging Mini-satellite Payload (CHAMP) [12], the Gravity Recovery and
Climate Experiment (GRACE) [13], the Gravity field and steady-state Ocean Circulation
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Explorer (GOCE) [14,15], and the GRACE Follow-On (GRACE-FO) [16]. The GOCE pro-
vides information about the external gravitational field with a spatial resolution ~80 km
(in terms of a half-wavelength) that has further been refined by incorporating available
ground-based, air-borne, and sea-borne gravity measurements as well as marine gravity
data derived from processing satellite altimetry observables (e.g., [17]).

In gravimetric studies of the Earth’s interior, gravitational, topographic, bathymetric,
and ice thickness models together with additional geophysical and geological information
are typically used to investigate the lithospheric structure (e.g., [18–26]). To study structures
deeper in the mantle, long-wavelength geoidal undulations are more suitable for this
purpose [27]. The reason is that a geoidal geometry mainly comprises a long-wavelength
signature of the mantle density structure, while a medium-to-higher-frequency part of
the gravity spectrum (largely attributed to lithospheric density and geometry) is to some
extent filtered out in the geoidal geometry. In contrast, the lithospheric signature (including
topographic and ocean floor relief) is better pronounced in the gravity field. This is evident
from the global geoid and free-air gravity maps shown in Figure 1.
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gravimetric interpretation of the Earth’s mantle density structure (controlled mainly by 
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sequent removing of the gravitational signature of lithospheric density and geometry var-
iations in the geoidal geometry. This procedure is applicable only if lithospheric thickness 

Figure 1. Global maps of (a) the geoid heights [m] and (b) the free-air gravity disturbances
[mGal = 10−5 m·s−2] computed with a spectral resolution complete to a spherical harmonic de-
gree of 180 by using the EIGEN-6C4 global gravitational model [28].

As already stated, more detailed features in the geoidal geometry attributed to litho-
spheric density and geometry variations are to some extent filtered out. Nevertheless,
the gravimetric interpretation of the Earth’s mantle density structure (controlled mainly
by mantle convection flow) might be improved by applying forward modelling and the
subsequent removing of the gravitational signature of lithospheric density and geometry
variations in the geoidal geometry. This procedure is applicable only if lithospheric thick-
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ness and density models are sufficiently accurate. Alternatively, an approximate method
might be used that is based on applying a particular isostatic theory. In addition, methods
based on spectral decomposition and filtering techniques have been used to enhance the
long-wavelength signature of deeper sources and to suppress random noise in order to
enhance real signals (or systematic trends) in gravity field quantities (i.e., potential, gravity,
and gravity gradient data).

In global and large-scale regional studies, the CRUST1.0 [29] and LITHO1.0 [30] models
can be used to compute and remove the gravitational contribution of lithospheric structures.
These models were derived from tomographic surveys based on the conversion of seismic
wave velocities to rock density values [31]. Both models, however, have limited accuracy
and resolution because a direct relation between seismic velocities and rock densities does
not exist (e.g., [31,32]). Moreover, global seismic data coverage is very irregular, with large
parts of the world not yet surveyed by passive and active seismic methods. In regions with
sparse and irregular seismic data coverage, the CRUST1.0 and LITHO1.0 density models
then rely heavily on the Rayleigh wave group velocities that are not very suitable to recover
density information. In addition, globally averaged datasets from active seismic methods
and deep drilling profiles were used to predict sediment and underlying crustal structures
where no seismic measurements were available (most of Africa, South America, Greenland,
and large parts of the oceanic lithosphere) by a generalization to similar geological and
tectonic settings.

To partially mitigate expected large uncertainties in available global lithospheric
models, additional density information could be used (but only with a very limited impact
on accuracy improvement in global lithospheric models). The UNB_TopoDens global
lateral topographic density model, prepared by Sheng et al. [33], provides information
about the upper continental crustal density. This model was prepared from the Global
Lithology Model (GLiM) by assigning probable surface density values and error estimates
to GLiM lithologies. The GLiM was produced by Hartmann and Moosdorf [34] by merging
various regional data sources from across the globe. Sheng et al. [33] assigned the density
and associated standard deviations to the GLiM lithologies according to results published
by Carmichael [35] and Tenzer et al. [36]. In addition, numerous studies of the lithospheric
density structure conducted in many parts of the world could be used (e.g., [37–41]) in
regional gravity modelling and gravity interpretations.

Different isostatic principles have been proposed to explain a compensation mecha-
nism within the crust. Airy [42] suggested that differences between observed and predicted
values of the deflection of the plumbline found during astro-geodetic observations at the
Himalayan foothills in the 19th century are due to a compensation mechanism based on an
increasing depth of compensation (see also Heiskanen and Vening Meinesz [43]). Pratt [44]
proposed a different hypothesis. He suggested that this compensation is attributed to
crustal density variations (see also Hayford [45] and Hayford and Bowie [46]). Seismic
studies generally affirmed that Airy’s hypothesis better explains an isostatic mechanism
under orogens and large parts of the stable continental crust (such as Archean cratons).
Small variations in the oceanic crustal thickness (5–15 km) [47], on the other hand, suggest
that Pratt’s theory probably better describes an isostatic mechanism of the oceanic litho-
sphere that is mainly controlled by conductive cooling and a subsequent isostatic rebalance
of the oceanic lithosphere, both manifested by an ocean floor (and consequently Moho)
deepening with the increasing age of the oceanic lithosphere. Since the viscoelastic response
of the lithosphere on a load is regional rather than local, Vening Meinesz [48] proposed a
regional flexural isostatic model to explain how large topographic loads, such as seamounts
(e.g., the Hawaiian Islands), could be compensated by a regional displacement of the
lithosphere. Moritz [49] generalized Vening Meinesz’s theory by adopting a global isostatic
compensation mechanism and by applying a spherical approximation to the problem.
Sjöberg [50] reformulated the Moritz problem, called the Vening Meinesz–Moritz (VMM)
inverse problem of isostasy, as that of solving a nonlinear Fredholm integral equation of the
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first kind in order to estimate compensation depth from gravity data (see also Bagherbandi
and Sjöberg [51]).

The applicability of the aforementioned isostatic models alone without using seismic
and other geophysical measurements and geological evidences is obviously restricted to
regions where the isostatic state of the crust is largely governed by a particular compensa-
tion mechanism. This is typically not the case along active divergent continental tectonic
margins (i.e., rift systems) as well as oceanic divergent tectonic margins (i.e., mid-oceanic
ridges). In both examples, mantle upwelling is responsible for extensional tectonism. Con-
sequently, the elevated topography (of a non-orogenic origin) on both sides of continental
rift zones and the elevated ocean floor relief (i.e., abyssal hills) on both sides of mid-oceanic
ridges are better explained by lateral tectonic forces and mantle buoyancy. Rathnayake
et al. [52], for instance, demonstrated the limitations of modelling oceanic crustal thickness
based on applying the Airy, combined Airy–Pratt, and Vening Meinesz–Moritz isostatic
models. The other problem associated with the application of isostatic models is the fact
that they (usually) assume that isostatic balance occurs within the crust. In reality, however,
isostatic balance more likely takes place deeper in the lithospheric mantle [53–56]. Several
authors have argued that isostatic balance is also influenced by the changing rigidity of
crustal plates [18,57], plate flexure [58], plate tectonics, and other geophysical processes
occurring within the lithosphere and deeper mantle.

As discussed above, the insufficient accuracy of global lithospheric density models is
a major disadvantage of using gravimetric forward modelling to recover the gravitational
signature of mantle density structure. The use of isostatic methods is, on the other hand,
limited mainly by the fact that these theoretical models could not fully describe a real
compensation mechanism within large parts of the lithosphere. An alternative choice of
using commonly applied spectral decomposition and filtering techniques for this purpose
is also somewhat questionable. The reason is that the unique separation of different grav-
itational sources by these (purely mathematical) procedures is not feasible because any
gravitational signal theoretically occupies the entire spectrum of the gravitational field. To
critically examine these aspects, we compared various methods for a possible enhancement
of the mantle signature in the geoidal geometry, particularly by using gravimetric, isostatic,
and spectral decomposition methods. It is worth noting that according to our results (not
presented herein in detail), the application of filtering techniques, particularly by using
the Gauss filter, does not significantly enhance the long-wavelength pattern in the geoidal
geometry. Error analysis of available crustal models and their possible improvement are
out of the scope of this study. Instead, we focused here only on identifying the most
feasible method of enhancing the mantle signature in the long-wavelength geoidal geome-
try. We also checked the possibility of further enhancing a mantle convection pattern by
incorporating available lithospheric mantle density and lithospheric thickness models in
gravimetric forward modelling. The methods applied in this study used existing litho-
spheric density models (in a gravimetric method) and utilized isostatic theories. Direct
gravimetric modelling of the mantle density structure based on converting seismic velocity
anomalies to mass density anomalies under the assumption that the mantle structure is
mainly controlled by its thermal state (rather than its composition) was not applied here.

In the gravimetric approach, we used forward modelling to isolate and subsequently
remove gravitational contributions of crustal (and lithospheric) density and geometry vari-
ations in order to reveal the signature of the mantle (and sub-lithospheric mantle) structure
in the geoidal geometry. In isostatic methods, we compared results obtained by applying
the Airy–Heiskanen, Pratt–Hayford, and Vening Meinesz–Moritz isostatic schemes. In
the spectral decomposition technique, we inspected different spectral resolutions of the
long-wavelength geoidal geometry. All computations were realized globally. The methods
are briefly reviewed in Section 2. Data acquisition is explained in Section 3. The results
are presented and discussed in Sections 4 and 5, respectively. The major findings are
summarized and the study is concluded in Section 6.
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2. Theory

We applied and compared three methods for a possible augmenting of a mantle
signature in the long-wavelength geoidal geometry. The basic principles of these numerical
methods are summarized below.

2.1. Geoid

The geoid height N is defined by (e.g., [59])

N =
T
γ0

, (1)

where the disturbing potential T ([m2·s−2]) is stipulated at the geoid surface, and the normal
gravity γ0 ([m·s−2]) is computed at the ellipsoid surface according to Somigliana–Pizzetti’s
theory of a normal gravity field [60,61].

2.2. Isostatic Geoid

The isostatic geoid N I is computed as follows:

N I = N + Nc (2)

The isostatic compensation correction NC in Equation (2) to the geoid N is defined as
a function of the Bouguer disturbing potential TB and the isostatic compensation potential
Vc in the following form:

NC =
TB

γ0
− Vc

γ0
(3)

The Bouguer disturbing potential TB reads

TB = T −VT −VB −V I −VL (4)

where VT is the gravitational potential of topographic masses (i.e., the topographic po-
tential), VB is the gravitational potential of ocean density contrast (i.e., the bathymetric
potential), V I is the gravitational potential of polar glaciers (i.e., the ice potential), and VL

is the gravitational potential of inland bathymetry (i.e., the lake potential).
The gravitational potentials in Equation (4) were computed by applying methods for

a spherical harmonic analysis and synthesis according to expressions derived by Tenzer
et al. [55,62] and Tenzer et al. [22]. The topographic, ice, and lake potentials were computed
with respect to the reference topographic density ρT . The bathymetric potential was com-
puted with respect to the reference crustal density ρcrust. In other words, the gravitational
potentials of crustal density structures distributed above the geoid were computed for the
reference topographic density, while the reference crustal density was used to compute the
gravitational potentials of crustal density structures below the geoid surface. We, therefore,
computed the bathymetric potential for the ocean density contrast defined as a function
of the seawater density and the reference crustal density. Moreover, we computed the ice
and lake potentials individually for masses above and below the geoid surface because
large parts of the glacial bedrock relief in Antarctica are below the geoid surface. Similarly,
the floor of Baikal Lake reaches depths below the geoid surface. We note that the atmo-
spheric correction to geoidal geometry is completely negligible [63,64]. More details on the
definitions of particular density models are given in Section 3.

Expressions for computing the isostatic compensation potentials according to the Airy–
Heiskanen, Pratt–Hayford, and Vening Meinesz–Moritz isostatic schemes are summarized
in Appendices A–C.

2.3. Sub-Lithospheric Mantle Geoid

In the gravimetric forward modelling scheme, the gravitational contribution of litho-
spheric density heterogeneities is subtracted from the geoid in order to enhance the gravita-
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tional signature of the sub-lithospheric mantle density structure. This procedure yields the
sub-lithospheric mantle geoid NSM. Hence, we write

NSM = N − TSM

γ0
(5)

The computation of the sub-lithospheric mantle disturbing potential TSM in Equation (5)
is realized in the numerical steps explained next.

2.3.1. Crust-Stripped Disturbing Potential

The gravitational potentials of sediments VS and consolidated crust VC are computed
and subsequently subtracted from the Bouguer disturbing potential TB. This procedure
yields the crust-stripped disturbing potential TCS [54]

TCS = TB −VS −VC, (6)

where the density contrasts of sediments and consolidated crust are defined with respect to
the reference crustal density.

2.3.2. Mantle Disturbing Potential

When disregarding errors due to crustal density model uncertainties, the crust-
stripped disturbing potential should comprise a gravitational signature of Moho geometry,
lithospheric mantle, and deeper mantle structures within the asthenosphere (e.g., [65]),
mantle transition zone (e.g., [66]), and lower mantle (e.g., [67]) including the (Gutenberg)
core–mantle boundary zone (e.g., [68–72]). To reveal a gravitational signal that is attributed
to a mantle density structure, the Moho signature has to be subtracted from the crust-
stripped disturbing potential. This procedure yields the mantle disturbing potential. In
this study, the mantle disturbing potential was computed according to a method proposed
by Tenzer et al. [22]. They applied this method to compile the global mantle gravity map.
The computation of the mantle disturbing potential TM is then realized by subtracting
the gravitational potential of Moho geometry VM,∆ρc/m

from the crust-stripped disturbing
potential TCS. We then write

VM,∆ρc/m
= TSC −VM,∆ρc/m

(7)

2.3.3. Lithosphere-Stripped Disturbing Potential

The mantle disturbing potential TM optimally comprises a gravitational signal of
the whole mantle. Depending on available mantle density models, additional corrections
could be applied to reveal the gravitational signature of a particular mantle structure.
Following this principle, the lithospheric mantle gravitational potential VLM is computed
and subtracted from the mantle disturbing potential TM in order to remove the gravitational
signature of density heterogeneities within the lithospheric mantle. This procedure yields
the lithosphere-stripped disturbing potential TCL, so

TCL = TM −VLM (8)

2.3.4. Sub-Lithospheric Mantle Disturbing Potential

The computation of the lithosphere-stripped disturbing potential TCL should theoreti-
cally enhance the signature of the lithosphere–asthenosphere boundary (LAB). To enhance
the gravitational signature of the sub-lithospheric mantle, the gravitational signal of the
LAB geometry has to be removed. By analogy with the computation of the mantle disturb-
ing potential (in Section 2.3.2), this numerical procedure is realized by stripping the whole
lithosphere with respect to the density contrast between the reference lithospheric density
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and the asthenosphere density in order to obtain the sub-lithospheric mantle disturbing
potential. The sub-lithospheric mantle disturbing potential TSM is then computed as

TSM = TCL −VLAB (9)

2.4. Spectral Decomposition

We investigated different degrees of geoidal spherical harmonics to enhance a mantle
signature in the geoidal geometry.

3. Data Acquisition

We first computed the geoid from the EIGEN-6C4 [28] gravitational coefficients cor-
rected for the GRS80 [73] normal gravity component. We then computed the Bouguer
disturbing potential (Equation (4)) by subtracting (from the disturbing potential) the gravi-
tational potentials of topography, bathymetry, ice, and lakes. The topographic potential
was computed individually for a uniform and variable anomalous topographic density.
The gravitational potential of uniform topographic density was computed for the average
topographic density 2670 kg·m−3 [74,75]. The gravitational potential of variable anomalous
topographic density was computed by using the UNB_TopoDens topographic density
model [33]. The anomalous topographic density was taken with respect to the average
topographic density 2670 kg·m−3. The same density was adopted to define the density
contrasts of lakes and ice above the geoid surface. A freshwater density of 997 kg·m−3

was used to define the density contrast of lakes. A glacial density of 917 kg·m−3 [76]
was used to define the ice density contrast. For glacier and lake masses below the geoid
surface, the ice and freshwater density contrasts were defined with respect to the reference
crustal density of 2900 kg·m−3. The bathymetric potential was computed (with respect
to the reference crustal density of 2900 kg·m−3) by using the depth-dependent seawater
density model developed by Gladkikh and Tenzer [77]; see also Tenzer et al. [78]. These
gravitational potentials were computed by using the Earth2014 [71] datasets of topographic
heights, bathymetric depths, inland bathymetry, and glacial bedrock relief.

The gravitational potentials of sediments and consolidated crust were computed from
the CRUST1.0 model that was updated for the sediment and crustal layers of the Antarctic
lithosphere according to Baranov et al. [79]. In addition to the CRUST1.0 sediment data, we
used a density model of marine sediments [80–82] in combination with 5 × 5 arc-min data
of the total sediment thickness for the world’s oceans and marginal seas [72] to improve
the accuracy of the gravitational potential of marine sediments. The sediment and consoli-
dated crust density contrasts were defined with respect to the reference crustal density of
2900 kg m−3. The gravitational potentials of sediments and consolidated crust were
subtracted from the Bouguer disturbing potential in order to obtain the crust-stripped
disturbing potential (Equation (6)). We then computed the mantle disturbing potential by
subtracting the gravitational potential of Moho geometry from the crust-stripped disturbing
potential (Equation (7)). This gravitational potential was computed by using the CRUST1.0
Moho depth data. The variable Moho density contrast was computed from the LITHO1.0
uppermost mantle density data with respect to the reference crustal density of 2900 kg·m−3.
For this reference crustal density, the Moho density contrast varies from 110 to 560 kg·m−3.
We clarify here that the Moho density contrast could not be computed as the difference
between the LITHO1.0 uppermost mantle and the CRUST1.0/LITHO1.0 lower crustal
layer because crustal density heterogeneities with respect to the reference crust density of
2900 kg·m−3 were already considered in the computation of the crust-stripped disturbing
potential. The use of the same density value of 2900 kg·m−3 for the continental and oceanic
crust (below the geoid surface) does not have any impact on qualitative interpretations
of geoidal maps [23], provided that the average densities of the lower continental and
oceanic crust are quite similar (see estimates by Carlson and Raskin [83]; Christensen and
Mooney [32]; Tenzer and Gladkikh [80]; or Chen and Tenzer [84]). We further computed
the lithosphere-stripped disturbing potential (Equation (8)) by subtracting the lithospheric
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mantle gravitational potential from the mantle disturbing potential. The LITHO1.0 up-
permost mantle density and LAB geometry datasets were used in this numerical step.
The Moho depth was again considered from the CRUST1.0 model. Finally, we removed
the gravitational signature of the LAB geometry from the lithosphere-stripped disturbing
potential (Equation (9)). The sub-lithospheric mantle disturbing potential was then used
to compute the corresponding sub-lithospheric mantle geoid model (Equation (5)). In the
absence of reliable information about a lateral density distribution within the astheno-
sphere, this computation was realized based on the principle of minimizing the spatial
correlation between the sub-lithospheric mantle disturbing potential and the LAB geometry.
The LAB density contrast was defined with respect to the lithospheric mantle density of
3200 kg·m−3 that is typically used. It is worth noting that Griffin et al. [85] reported values of
3300–3400 kg·m−3 based on petrological evidence.

The Airy–Heiskanen and Pratt–Hayford isostatic compensation potentials were com-
puted according to the parameters given in Appendices A and B. The Vening Meinesz–
Moritz compensation potential was computed according to the expressions given in Ap-
pendix C by using the CRUST1.0 Moho data and adopting a constant value of the Moho
density contrast of 480 kg·m−3 [31]. The isostatic disturbing potentials were scaled by the
normal gravity values computed on the ellipsoid surface in order to obtain the correspond-
ing isostatic geoid models (Equation (3)). Finally, we applied spectral decomposition to
compute long-wavelength geoid models for the maximum degrees 5, 10, 15, 20, and 25 of
spherical harmonics [86].

4. Results

The gravitational potentials computed and applied to obtain the sub-lithospheric man-
tle gravity disturbances are plotted in Figure 2, with the statistical summary of individual
results given in Table 1. The isostatic compensation potentials are shown in Figure 3, with
their statistics in Table 2. The statistics of the sub-lithospheric mantle disturbing potential
values and intermediate results are summarized in Table 3. The sub-lithospheric mantle
geoid together with intermediate results are presented in Figure 4, and their statistical
summary is given in Table 4. Since the spatial patterns of disturbing potential values and
corresponding geoid models are basically the same, only geoid models are visualized. In
addition, the corresponding gravity maps are plotted in Figure 5 (with statistics in Table 5)
for a comparative interpretation of geoidal and gravity maps. The isostatic geoid models are
shown in Figure 6, with the statistics given in Table 6. For comparison, the corresponding
isostatic gravity maps are also plotted in Figure 7, and their statistics are summarized in
Table 7. The long-wavelength geoid models computed by using different degrees of the
EIGEN-6C4 spherical harmonics are presented in Figure 8, with their statistics in Table 8.

Table 1. Statistics of the gravitational potentials of lithospheric structure. For the notation used, see
the legend in Figure 2.

Gravitational
Potential Min [m2·s−2] Max [m2·s−2] Mean [m2·s−2] STD [m2·s−2]

VT 2226 8494 3589 1114
V I −3472 −312 −731 729
VL −6 0 −0.2 0.2
VB −28,533 −16,402 −22,386 3185
VS −3862 −1937 −2719 444
VC 11,529 25,075 15,661 2741

VM,∆ρc/m −69,885 −46,423 −55,734 5832
VLM 174,276 262,661 213,366 17,795
VLAB −244,558 −168,987 −203,311 16,194
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Table 2. Statistics of the isostatic compensation potentials. For the notation used, see the legend in
Figure 3.

Isostatic
Potential Min [m2·s−2] Max [m2·s−2] Mean [m2·s−2] STD [m2·s−2]

Vc,AP −26,859 −9411 −19,264 3905
Vc,PH −26,347 −9529 −18,977 3791

Vc,VMM −26,860 −9406 −19,264 3910

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 29 
 

 

 

 

 

 

 

 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. Cont.



Remote Sens. 2023, 15, 4845 10 of 29Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 29 
 

 

  
(g) (h) 

 
(i) 

Figure 2. Global maps of the gravitational potentials of: (a) topography 𝑉 , (b) ice 𝑉 , (c) lakes 𝑉 , 
(d) bathymetry 𝑉 , (e) sediments 𝑉 , (f) consolidated crust 𝑉 , (g) Moho geometry 𝑉 , ⁄ , (h) 
lithospheric mantle 𝑉 , and (i) LAB geometry 𝑉 . 

Table 2. Statistics of the isostatic compensation potentials. For the notation used, see the legend in 
Figure 3. 

Isostatic Potential Min [m2·s−2] Max [m2·s−2] Mean [m2·s−2] STD [m2·s−2] 𝑉 ,  −26,859 −9411 −19,264 3905 𝑉 ,  −26,347 −9529 −18,977 3791 𝑉 ,  −26,860 −9406 −19,264 3910 
 

  
(a) (b) 

 

Figure 2. Global maps of the gravitational potentials of: (a) topography VT , (b) ice V I , (c) lakes
VL, (d) bathymetry VB, (e) sediments VS, (f) consolidated crust VC, (g) Moho geometry VM,∆ρc/m

,
(h) lithospheric mantle VLM, and (i) LAB geometry VLAB.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 28 
 

 

 
(i) 

Figure 2. Global maps of the gravitational potentials of: (a) topography 𝑉 , (b) ice 𝑉 , (c) lakes 𝑉 , 
(d) bathymetry 𝑉 , (e) sediments 𝑉 , (f) consolidated crust 𝑉 , (g) Moho geometry 𝑉 , ⁄ , (h) 
lithospheric mantle 𝑉 , and (i) LAB geometry 𝑉 . 

Table 2. Statistics of the isostatic compensation potentials. For the notation used, see the legend in 
Figure 3. 

Isostatic Potential Min [m2·s−2] Max [m2·s−2] Mean [m2·s−2] STD [m2·s−2] 𝑉 ,  −26,859 −9411 −19,264 3905 𝑉 ,  −26,347 −9529 −18,977 3791 𝑉 ,  −26,860 −9406 −19,264 3910 
 

  
(a) (b) 

 
(c) 

Figure 3. Global maps of the isostatic compensation potentials: (a) Airy–Heiskanen 𝑉 , , (b) Pratt–
Hayford 𝑉 , , and (c) Vening Meinesz–Moritz 𝑉 , . 

  

Figure 3. Global maps of the isostatic compensation potentials: (a) Airy–Heiskanen Vc,AP,
(b) Pratt–Hayford Vc,PH , and (c) Vening Meinesz–Moritz Vc,VMM.



Remote Sens. 2023, 15, 4845 11 of 29

Table 3. Statistics of the topography-corrected TT , the topography- and bathymetry-corrected TTB,
Bouguer TB, crust-stripped TCS, mantle TM, lithosphere-stripped TCL, and sub-lithospheric mantle
TSM disturbing potential values. The statistics of the disturbing potential values T used to compute
the geoid in Figure 1a are also given.

Disturbing
Potential Min [m2·s−2] Max [m2·s−2] Mean [m2·s−2] STD [m2·s−2]

T −1036 833 −8 284
TT −8824 −1701 −3595 1215

TTB 8589 26,406 18,793 3873
TB 11,746 28,869 22,245 3491
TCS −13,311 17,086 6584 6177
TM 56,568 64,854 62,316 1262
TCL 235,290 325,580 275,670 17,985
TSM 63,164 82,212 72,370 3652

Table 4. Statistics of the geoid models. For the notation used, see the legend in Figure 4.

Refined Geoid Min [m] Max [m] Mean [m] STD [m]

N −106 85 −1 29
NB 1198 2946 2269 356
NCS −1358 1743 671 630
NM 5772 6617 6358 128
NCL 24,009 33,222 28,130 1835
NSM 6445 8388 7384 372

Table 5. Statistics of the gravity disturbances. For the notation used, see the legend in Figure 5.

Gravity
Disturbances Min [mGal] Max [mGal] Mean [mGal] STD [mGal]

δgFA −310 287 −1 30
δgB −492 743 329 225
δgCS −994 712 189 316
δgM 393 1521 1011 125
δgCL −7024 −949 −3216 1262
δgSM 754 4611 1548 196

Table 6. Statistics of the isostatic geoid models. For the notation used, see the legend in Figure 6.

Isostatic Geoid Min [m] Max [m] Mean [m] STD [m]

N I,AH −108 74 −8 30
N I,PH −76 113 27 33

N I,VVM −108 75 −8 30

Table 7. Statistics of the isostatic gravity disturbances. For the notation used, see the legend in
Figure 7.

Isostatic
Gravity Data Min [mGal] Max [mGal] Mean [mGal] STD [mGal]

δgI,AH −267 227 −2 28
δgI,PH −232 190 2 32

δgI,VVM −260 221 −2 28
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Table 8. Long-wavelength geoid models computed up to a maximum degree (5, 10, 15, 20, and 25) of
spherical harmonics.

Maximum Degree of Geoid Min [m] Max [m] Mean [m] STD [m]

5 −78 74 −1 27
10 −102 75 −1 29
15 −103 76 −1 29
20 −105 77 −1 29
25 −103 78 −1 29

The global geoidal geometry (Figure 1a) is characterized by relatively small fluctua-
tions, mostly within ±100 m. The largest variations have a long-wavelength spatial pattern
that is attributed to large-scale structures within the mantle and the crust (such as the
African superswell). More localized geoidal undulations attributed mainly to topographic
and ocean floor relief are, on the other hand, less pronounced. Nevertheless, we could
recognize a signature of large orogens and partially also the ocean floor relief (such as some
oceanic subductions, mid-oceanic ridges, and major volcanic islands). The topographic
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signature of the Andes is particularly well pronounced. The topographic signature of
the Himalayas and Tibet is also clearly manifested, with relatively large geoidal modi-
fications up to ~30 m along the Himalayan foothills. The spatial pattern in the free-air
gravity map (Figure 1b) is characterized by relatively small gravity fluctuations, mostly
within the interval ±100 mGal. A long-wavelength pattern due to (large-scale) mantle and
crustal density structures is still recognized, but this signature is much less pronounced
in the gravity map than in the geoidal geometry. In contrast, the lithospheric density and
geometry signature are more clearly exhibited in the free-air gravity map. Nevertheless,
since most of the major topographic features and large lithospheric density structures are
in an isostatic equilibrium, the largest gravity variations (roughly within ±300 mGal) mark
mainly uncompensated or overcompensated structures along active convergent tectonic
margins.
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The most pronounced feature over continents in the Bouguer gravity map (Figure 5a)
is the isostatic signature of major orogens, while the offshore gravity pattern is dominated
by a gravitational signature of the ocean floor relief. In the corresponding Bouguer geoid
(Figure 4a), this pattern is almost absent. Instead, we see a prevailing long-wavelength
pattern with maxima in the Central Pacific and minima in Central Eurasia.

The crust-stripped gravity map (Figure 5b) largely mimics a Moho geometry. The
contrast between a thin oceanic crust and a much thicker continental crust is manifested
by mostly positive gravity disturbances over oceans that are coupled by negative gravity
disturbances over continents. The largest negative values correspond to a maximum Moho
deepening under orogens of the Himalayas, Tibet, and the Andes (e.g., [54]). A relatively
vague manifestation of the isostatic signature in the Rocky Mountains was explained by
their formation attributed to a flat-slab subduction of the Pacific Ocean plate underneath
the North American plate (e.g., [87]). The crust-stripped geoidal geometry (Figure 4b) to a
large extent resembles the Bouguer geoid (Figure 4a).

The mantle gravity pattern (Figure 5c) reflects significant lateral density variations
within the lithospheric mantle that are mainly attributed to its thermal state (especially
under oceans). Mantle gravity lows mark volcanically and seismically active convergent
tectonic margins (in the Pacific, Mediterranean, and Caribbean). Mantle gravity lows along
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mid-oceanic spreading ridges increase with the ocean floor’s age. This prevailing trend was
explained by an increasing density due to a conductive cooling of the oceanic lithosphere.
Tenzer et al. [55] demonstrated that the mantle gravity disturbances increase nonlinearly
with the ocean floor’s age. They also identified an additional systematic trend between
the mantle gravity disturbances and the ocean floor depth that was explained by thermal
lithospheric contraction (due to conductive cooling) that is isostatically compensated by
ocean floor deepening. For more information about the oceanic lithospheric structure and
its relation with ocean floor depth and age as well as gravity changes, we refer readers
to theoretical and numerical studies by Davis and Lister [88], Sclater et al. [89], Parsons
and Sclater [90], Parsons and McKenzie [91], Richter and McKenzie [92], Houseman and
McKenzie [93], Robinson and Parsons [94], Phipps and Smith [95], Stein and Stein [96],
Shoberg et al. [97], DeLaughter et al. [98], Huang and Zhong [99], Hillier and Watts [100],
Doin and Fleitout [101], Crosby et al. [102], Tenzer et al. [22], and references therein. The
mantle gravity pattern over continents is more complex, reflecting the lithospheric mantle
composition governed by a tectonic province configuration and its age (e.g., [103–106]).
Gravity lows mark active continental divergent margins [23], while a thermal signature
along transform faults is mostly missing. Old, cold, tectonically stable cratonic formations
are typically characterized by mantle gravity highs [107].

Whereas a spatial pattern in the mantle gravity map reflects mainly the lithospheric
mantle structure and its thermal state, the mantle geoidal geometry (Figure 4c) exhibits both
lithospheric mantle as well as deep mantle signatures. This is evident, for instance, in the
Pacific, where we see not only the signature of a large low-shear-velocity province (LLSVP)
in the Central Pacific, but also the lithospheric mantle signature of mid-oceanic ridges in
the Southeast Pacific. We could recognize the thermal signature of the oceanic lithospheric
mantle in the mantle geoid, even if it is much less consistent than in the corresponding
mantle gravity map. The thermal signature of the continental lithospheric mantle is much
less pronounced in the mantle geoidal geometry. We could partially recognize a contrast
between younger orogenic lithospheric structures under the Rocky Mountains compared
to the older cratonic formations of the North American Craton. Similarly, smaller mantle
geoid heights along the East African Rift System and along the Red Sea Rift are coupled by
larger values over cratonic formations that form most of West Africa. Moreover, mantle
geoid lows along the Alpine-Himalayan orogenic belt are coupled to the north by larger
values over cratonic formations in North Eurasia. These findings indicate that the thermal
signature of the lithospheric mantle is still more or less superimposed over the mantle
convection signature in the mantle geoid pattern.

The lithospheric thickness variations are the most pronounced features in the lithosphere-
stripped gravity (Figure 5d) and geoid (Figure 4d) maps. Similarities in both spatial
patterns are explained by the relatively deep location of the LAB. Nevertheless, the LAB
geometry is obviously still slightly more pronounced in the lithosphere-stripped gravity
map. As stated above, the lithosphere-stripped gravity and geoid maps exhibit a very
similar spatial pattern attributed to the lithosphere–asthenosphere boundary. Contrary
to this finding, the spatial patterns in the sub-lithospheric mantle gravity (Figure 5e) and
geoid (Figure 4e) maps completely differ. In the former, gravity lows to some extent mark
mantle upwelling currents under mid-oceanic spreading ridges. Tenzer and Chen [23]
explained this finding by the existence of a molten asthenosphere, particularly below mid-
oceanic spreading ridges, although the asthenosphere is mostly almost solid. Nonetheless,
the sub-lithospheric mantle gravity map in fact does not exhibit any particular density
structure anomaly, except for a more pronounced signature of subducted slabs in the West
Pacific. The thermal signature of the asthenosphere under the continental lithospheric
mantle is slightly more pronounced under some cratonic formations (Laurentian, Baltic
and Amazonian Shields, and São Francisco and East Antarctic Cratons). This finding
agrees with the hypothesis that in the thickest cratonic portions of very fast seismic velocity
(e.g., [108,109]), the cold and dense layers within the cratonic crust or the lithospheric
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mantle are isostatically compensated and neutrally buoyant due to the positive buoyancy
of depleted cratonic mantle peridotites [110].

The sub-lithospheric mantle geoid pattern (Figure 4e) differs significantly from the
long-wavelength geoidal geometry (Figure 1a). The West Pacific geoid high is mostly
absent, while the sub-lithospheric mantle geoid high spreads over most of the Central
Pacific. The North Atlantic geoid high is also absent in the sub-lithospheric mantle geoid
map. Instead, we see two geoid highs in the Hudson Bay region and Northeast Eurasia.
The Indian Ocean geoid low coincides with the sub-lithospheric mantle geoid low, but
this anomaly is distributed much more broadly over most of South Eurasia while further
spreading over Northeast Africa and the North Indian Ocean. The sub-lithospheric mantle
geoid high in the Central Pacific is apparently delineated by oceanic subductions in the
North Pacific and by mid-oceanic ridges in the East Pacific, but the exact location of their
margins could not clearly be ascertained (due to a prevailing long-wavelength geoidal
pattern). A more detailed discussion of these findings is postponed until Section 5.

The Airy–Heiskanen, Pratt–Hayford, and Vening Meinesz–Moritz isostatic geoids
(Figure 6) very closely resemble the long-wavelength geoidal geometry (Figure 1a). Inter-
estingly, even more detailed features in all three isostatic geoid models are very similar to
the geoid pattern. We could still depict, for instance, the topographic signature of Tibet
and the Himalayas, especially along the Himalayan foothills, even after applying isostatic
correction. The largest localized differences between the geoid and isostatic geoids are
seen along the Andes, where the topographic signature is almost completely removed. The
Airy–Heiskanen and Vening Meinesz–Moritz isostatic gravity maps (Figure 7a,c) are very
similar, with both having a smooth pattern. The application of isostatic correction thus
removed the signature of isostatically uncompensated or overcompensated lithospheric
structures to a large extent, especially along active convergent tectonic margins. As a
result, the long-wavelength pattern is more pronounced in both isostatic geoid models.
Interestingly, this long-wavelength pattern is more clearly manifested in the Pratt–Hayford
isostatic geoid (Figure 7b).

As seen in Figure 8, the spatial decomposition gradually filters out more detailed
features in the geoidal geometry when decreasing the maximum degree of spherical har-
monics used to compute the geoid models. Nevertheless, the topographic signature of Tibet
and the Himalayas is still partially displayed in the long-wavelength geoidal geometry
computed up to a degree of 10 and higher. This topographic signature becomes almost
completely absent only in the geoidal geometry computed up to a maximum degree of
5. These results confirm that the separation of gravitational signatures from different
depth structures inside the Earth is not unique. Thus, this method works only under the
assumption that anomalous density structures increase with depth. In reality, however,
this trend is typically the opposite (i.e., the largest density variations are within the upper
crust).

5. Discussion

The results presented in Section 4 are discussed next. We first briefly summarize
findings from isostatic results and then focus more on the interpretation of the gravimetric
forward modelling results.

5.1. Isostatic Results

The global isostatic geoid models (Figure 6) demonstrated that the Airy–Heiskanen,
Pratt–Hayford, and Vening Meinesz–Moritz isostatic compensation schemes generally
enhance long-wavelength geoidal geometries, while removing the signature of isostatically
overcompensated and undercompensated lithospheric structures, particularly along active
convergent tectonic margins. The results also revealed that there was no significant dif-
ference between adopting the Airy local compensation principle or the Vening-Meinesz
regional (or global) compensation principle. Both isostatic schemes provided a smooth
isostatic gravity field, while exhibiting mostly its long-wavelength pattern.
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5.2. Gravimetric Forward Modelling Results

The long-wavelength geoidal geometry (see Figure 1a) was characterized by the Indian
Ocean geoid low and the West Pacific and North Atlantic geoid highs. Additional geoid
lows were detected in North America and the Southwest Pacific and a geoid high was seen
also in the Southwest Indian Ocean. Hager and Richards [2] argued that most large-scale
geoidal undulations can be explained by mantle density anomalies (inferred from seismic
tomography) and subducted slab models. To inspect this aspect more thoughtfully, we
first calibrated the mantle and sub-lithospheric mantle geoid models so their mean values
equaled zero and then computed these models by using different maximum degrees of
spherical harmonics. Both results are plotted in Figures 9 and 10, and the summary statistics
are given in Tables 9 and 10.

Table 9. The (rectified) long-wavelength mantle geoid models computed up to a maximum degree of
5, 10, 15, 20, and 25 of spherical harmonics.

Degree Min [m] Max [m] Mean [m] STD [m]

5 −372 276 0 116
10 −503 253 0 126
15 −542 262 0 127
20 −579 251 0 128
25 −591 256 0 128

Table 10. The (rectified) long-wavelength sub-lithospheric mantle geoid models computed up to a
maximum degree of 5, 10, 15, 20, and 25 of spherical harmonics.

Degree Min [m] Max [m] Mean [m] STD [m]

5 −911 796 0 344
10 −884 1000 0 366
15 −929 950 0 370
20 −903 956 0 370
25 −901 981 0 371

5.2.1. Comparison of Long-Wavelength Geoid and Mantle Geoid Models

As seen from the comparison of long-wavelength geoid and mantle geoid models
(Figures 8 and 9), the mantle geoidal geometry enhanced the mantle signature. The most
significant changes were related to modifications of the Indian Ocean geoid low and the
West Pacific and North Atlantic geoid highs that were much less pronounced or even absent
in the mantle geoid pattern. Instead, the long-wavelength geoidal geometry resembled
more a spatial pattern in the sub-lithospheric geoidal geometry (Figure 10) dominated by
large positive anomalies in the Central Pacific and Atlantic regions coupled by negative
anomalies in Central Eurasia and in the Southeast Pacific. Obviously, the same general
findings apply for the comparison of mantle and isostatic geoid models, because long-
wavelength geoid and isostatic geoid patterns are very similar. If we assume that the
CRUST1.0 density structure model is reasonably accurate, we could conclude that the
application of isostatic compensation corrections does not enhance the mantle density
structure in the geoidal geometry. Instead, isostatic models only smooth the geoidal
geometry.

5.2.2. Comparison of Long-Wavelength Geoid and Sub-lithospheric Mantle Geoid Models

As seen in Figures 8 and 10, the long-wavelength patterns in the geoid and sub-
lithospheric mantle geoid models generally disagreed. The most prominent feature in
the sub-lithospheric mantle geoidal geometry was a large-scale positive anomaly in the
Central Pacific. A less pronounced positive anomaly was detected over the Atlantic Ocean
with extension towards the Southwest Indian Ocean. These two sub-lithospheric mantle
geoid highs were coupled by two lows in the East Pacific and South Eurasia (with an
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extension towards Northeast Africa). To further examine how closely the spatial pattern
in the sub-lithospheric mantle geoid exhibited a mantle convection pattern, we visually
compared it with selected global dynamic topography models.
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Figure 9. The (rectified) long-wavelength mantle geoid models computed up to a maximum degree:
(a) 5, (b) 10, (c) 15, (d) 20, and (e) 25 of spherical harmonics.

5.2.3. Comparison of Long-Wavelength Sub-lithospheric Mantle Geoid and Dynamic
Topography Models

Despite methods of modelling dynamic topography being generally not consistent [111],
their concept is theoretically rather simple. Dynamic topography represents surface de-
formations caused by vertical stresses generated by mantle convection flow. The isostatic
component of surface deformations that depends on the composition and thickness of
the lithosphere is, therefore, not taken into consideration. Following this idea, we cor-
rected the geoidal geometry for the gravitational contribution of lithospheric density and
geometry variations. With respect to this, we speculate that a spatial pattern in the sub-
lithospheric mantle geoid could partially mimic the main spatial features in the dynamic
topography. It is important to emphasize, however, that the geoid and dynamic topog-
raphy are not equivalent quantities. The former is an equipotential surface (modified by
removing the gravitational contributions of lithospheric density and geometry variations),
while the latter represents the topographic manifestations of vertical stresses due to mantle
convection flow.
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The long-wavelength sub-lithospheric mantle geoid (in Figure 10a) was compared
with the dynamic topography models compiled by Müller et al. [112] and Barnett-Moore
et al. [113] (Figure 11). A visual inspection of dynamic topography models prepared by
Richards et al. [114], Steinberger [115], Conrad and Husson [116], Spasojevic and Gur-
nis [117], Flament et al. [118], and others confirmed overall similarities in their spatial
patterns with models compiled by Müller et al. [112] and Barnett-Moore et al. [113]. We,
therefore, selected only these two models for a comparison of the major features, instead of
providing an extensive analysis of differences between numerous models.

As seen in Figure 11, the most pronounced features in the dynamic topography models
are positive anomalies in the Pacific and Africa (including the Central and South Indian
Ocean and the East Atlantic). These two positive anomalies are coupled by two negative
anomalies. One expands along the West Atlantic and North and South America. The other
one spreads over Asia, the North Indian Ocean, the Western Pacific, and Australia. The
major differences between these two models are related to more detailed features seen in
the Barnett-Moore et al. [113] solution.
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The spatial pattern in the dynamic topography models (Figure 11) generally disagrees
with the long-wavelength geoid undulations. Steinberger et al. [119] explained this by
the fact that the long-wavelength topography is largely dynamically supported from
the sub-lithospheric mantle dominated by the signature of the LLSVPs. Second-degree
geoidal spherical harmonics (when corrected for the Earth’s flattening by considering the
Earth’s hydrostatic model [120]) are also mostly dominated by the LLSVP signature, but
the gravitational contribution of the sub-lithospheric mantle prevails at higher degrees
of geoidal spherical harmonics. The long-wavelength geoidal geometry thus reflects
thermal and compositional density anomalies within the whole mantle, while the dynamic
topography is controlled mostly by the density structure within the lowermost mantle. This
suggests that the sub-lithospheric mantle geoid geometry (corrected for the gravitational
contribution of the whole lithosphere) might better agree with the dynamic topography
pattern. This is evident from the comparison of spatial patterns of the sub-lithospheric
geoid and dynamic topography models plotted in Figures 10 and 11. In this case, we could
recognize more similarities between the long-wavelength sub-lithospheric mantle geoid
and the dynamic topography than between the long-wavelength geoid (as well as isostatic
geoid and mantle geoid) models and the dynamic topography. Nonetheless, significant
inconsistencies between the sub-lithospheric mantle geoidal geometry and the dynamic
topography pattern are also clearly recognized.

As seen, the positive anomaly of the sub-lithospheric mantle geoid in the Central
Pacific coincides with a broader positive anomaly of the dynamic topography that spreads
over most of the Pacific. The positive anomaly in the Atlantic Ocean partially overlaps the
positive anomaly of the dynamic topography in the East Atlantic and the South Indian
Ocean. The negative sub-lithospheric mantle geoid anomaly in the East Pacific is shifted
when compared to the negative anomaly of the dynamic topography along North and South
America, including the West Atlantic. The negative sub-lithospheric mantle geoid anomaly
in South Eurasia to some extent mimics the negative anomaly in the dynamic topography.
It is worth noting that both dynamic topography models (in Figure 11) were prepared
from subducted slab models. Both dynamic topography models thus mainly reflect the
lower mantle structure. Apparent overall similarities between the dynamic topography
and sub-lithospheric mantle geoid models indicate that the geoid model corrected for
the gravitational contributions of lithospheric density and geometry variations exhibits
mainly low-density upwelling (marked by the sub-lithospheric mantle geoid highs) and
high-density downwelling (marked by the sub-lithospheric mantle geoid lows). Despite
these overall similarities, significant inconsistencies between the sublithosphere mantle
geoid and dynamic topography patterns also exist, particularly marking locations with a
maximum lithospheric thickness.
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6. Summary and Concluding Remarks

We investigated the possibility of enhancing a mantle signature in the long-wavelength
geoidal geometry by applying gravimetric, isostatic, and spectral decomposition methods.
In the gravimetric method, we applied gravimetric forward modelling to isolate and
subsequently remove the gravitational contributions of crustal density and geometry
variations from the geoidal geometry in order to enhance the mantle signature. In the
isostatic method, we applied the Airy–Heiskanen, Pratt–Hayford, and Vening Meinesz–
Moritz isostatic compensation schemes for this purpose. In the spectral decomposition
method, we computed the long-wavelength geoidal geometry with a limited spectral
resolution. In addition, we also inspected the possibility of using a filtering technique, but
our results (not presented in this study) showed that the Gauss filter did not sufficiently
smooth the geoidal geometry.

According to our numerical results, the gravimetric forward modelling better en-
hanced the mantle signature in the geoidal geometry than the isostatic and spectral decom-
position methods. Whereas the former modified the geoidal geometry substantially, the
latter mostly only smoothed the long-wavelength geoidal geometry. A similar finding was
related to mantle and isostatic gravity maps. Whereas the mantle gravity map relatively
realistically manifested a thermal signature of the lithospheric mantle, the isostatic gravity
maps mostly enhanced the long-wavelength gravity pattern that very closely agreed with
the corresponding long-wavelength geoidal geometry. Evidently, the concerning question
is how realistic modifications of the geoidal geometry by subtracting the gravitational
contribution of crust are, because available global models of the crustal density structure
and geometry (such as the CRUST1.0 and LITHO1.0 models) have a limited accuracy and
resolution.

We further used lithospheric models to subtract the gravitational contributions of
lithospheric mantle density and lithospheric thickness variations from the mantle geoid.
This procedure yielded the sub-lithospheric mantle geoid that should better exhibit the
signature of the mantle convection pattern than the mantle geoid. The result revealed
the existence of two positive sub-lithospheric mantle geoid anomalies in the Central Pa-
cific and along the Atlantic Ocean and two negative anomalies in the East Pacific and
South Eurasia.

Despite the overall similarities between the major features in the sub-lithospheric man-
tle geoid and dynamic topography models, large differences between their spatial patterns
were also found. This finding confirmed that the spatial pattern of the sub-lithospheric
mantle geoid is not compatible (despite overall similarities) with the spatial pattern of
dynamic topography. The main reason is that the former reflects lateral mantle density
anomalies below the lithosphere–asthenosphere boundary, while the latter represents topo-
graphic manifestations of vertical stresses due to convection flow. Moreover, large positive
anomalies in the sub-lithospheric mantle geoid at locations with a maximum lithospheric
thickness suggest large inaccuracies in the CRUST1.0 and LITHO1.0 models. A detailed
inspection of these errors will be the subject of a forthcoming study.
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Appendix A. Airy–Heiskanen Compensation Potential

According to the Airy–Heiskanen isostatic model, the compensation potential Vc,AH

is defined by [121,122]

Vc,AH(r, Ω) = G
x

Φ

∫ R+L0

r′=R−L0−t(Ω′)
ρc(Ω′) l−1(r, ψ, r′

)
r′2dr′dΩ′, (A1)

where G denotes Newton’s gravitational constant, R is the Earth’s mean radius
(R = 6371 × 103 m), L0 is the adopted (nominal) mean value of the compensation depth
(typically L0 =30 × 103 m), and the (root/anti-root) parameter t defines the actual com-
pensation depth with respect to L0. The 3-D position in Equation (A1) and thereafter is
defined in the spherical coordinate system (r, Ω), where r is the radius and Ω = (ϕ, λ)
denotes the spherical direction with the spherical latitude ϕ and longitude λ. The Euclidean
spatial distance of two points (r, Ω) and (r′, Ω′) is denoted as l, and ψ is their respective
spherical distance. The density distribution function ρc equals ρc = ρc on land, where ρc is
the reference crustal density. The ocean density contrast is defined as ρc = ρc − ρw, where
ρw is the mean seawater density. The values ρc = 2670 kg m−3 and ρw = 1030 kg m−3 were
adopted in this numerical study.

The parameter t is defined based on a hydrostatic equilibrium of continents (roots) and
oceans (anti-roots) by assuming the planar approximation to the problem. With reference
to Lambeck [123], we write (see also Rummel et al. [124] and Tsoulis [125])

t =
ρc

∆ρc/m H =

(
R

R− L0

)2 ρc

∆ρc/m H (inland), (A2)

t =
ρc

∆ρc/m H =

(
R

R− L0

)2 ρc − ρw

∆ρc/m D (offshore), (A3)

where H is the topographic height, and D is the ocean floor depth. The Moho density
contrast in Equations (A2) and (A3) is defined as ∆ρc/m = ρm − ρc, where ρc and ρm denote
the constant density values of the Earth’s crust and the encompassing upper(most) mantle,
respectively [48]. A typical value applied in numerical studies for the Airy–Heiskanen
isostatic model is ρm = 3270 kg m−3, with ∆ρc/m = 600 kg m−3.

Expressing the fundamental harmonic function l−1 for the external convergence
domain r ≥ R (and r′ < R) and applying the binomial theorem, we arrive at

Vc,AH(r, Ω) =
GM

R ∑n
n=0

(
R
r

)n+1

∑n
m=−n cAH

n,m Yn,m(Ω), (A4)

where GM = 3, 986, 005× 108 m3 s−2 is the geocentric gravitational constant, and Yn,m is
the surface spherical harmonic functions (see Heiskanen and Moritz, 1967).

From Equations (A2) and (A3), the coefficients cAH
n,m of the Airy–Heiskanen compensa-

tion potential are given by [123]

cAH
n,m ≈

3
2n + 1

1
ρEarth

[
(ρc H)n,m

R
+ (n + 2)

L0

R2 (ρ
c H)n,m +

(n + 2)
2 R2∆ρc/m

(
ρc H2

)
n,m

]
, (A5)

where (ρc H)n,m are the coefficients of global topographic/bathymetric (density) spherical
functions, and ρEarth = 5513 kg m−3 is the Earth’s mean density.

https://github.com/wjchennjtech/mantle-and-sub-lithospherical-geoid
https://github.com/wjchennjtech/mantle-and-sub-lithospherical-geoid
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Appendix B. Pratt–Hayford Compensation Potential

In the Pratt–Hayford isostatic model, isostatic mass balance is achieved with a variable
compensation density ρcp, which is typically smaller than the adopted value of reference
crust density ρc in mountains, while it is larger for the oceanic crust. Sjöberg [121] defined
the residual compensation density ∆ρcp = ρcp − ρc for continents as follows (see also
Heiskanen and Moritz [59] and Heiskanen and Vening-Meinesz [43]):

∆ρcp = − H
L + H

ρc = −ρc

[
H
L
−
(

H
L

)2
− . . .

]
, (A6)

where L is the (constant) depth of compensation (usually L = 1× 105 m). The residual
compensation density ∆ρcp for oceans is defined as

∆ρcp =
D

L− D
(ρc − ρw) = (ρc − ρw)

[
H
L
−
(

H
L

)2
− . . .

]
. (A7)

The Pratt–Hayford isostatic compensation potential Vc,PH then becomes [122]

Vc,PH(r, Ω) = G
x

Φ

∫ R

r′=R−L
∆ρ−cp(Ω′) l−1(r, ψ, r′

)
r′2dr′dΩ′. (A8)

The corresponding spectral representation of Vc,PH reads (ibid.)

Vc,PH(r, Ω) =
GM

R ∑n
n=0

(
R
r

)n+1

∑n
m=−n cPH

n,m Yn,m(Ω). (A9)

The coefficients cPH
n,m of the Pratt–Hayford compensation potential are defined as

cPH
n,m ≈

3
2n + 1

1
ρEarth

[
−

(∆ρc L)n,m

R
+

n + 2
2 R2

(
∆ρc L2

)
n,m
− (n + 2) (n + 1)

6 R3

(
∆ρc L3

)
n,m

]
, (A10)

where (∆ρc L)n,m are the spherical functions of the product ∆ρc L.

Appendix C. Vening Meinesz–Moritz Compensation Potential

In the Vening Meinesz–Moritz model, the isostatic compensation potential Vc,VMM is
defined by (Sjöberg [50])

Vc,VMM(r, Ω) = G
x

Φ

∫ R+T0

r′=R−T(Ω′)
∆ρc/m(Ω′) l−1(r, ψ, r′

)
r′2dr′dΩ′, (A11)

where T0 is the (nominal) mean Moho depth, and T is the Moho depth relative to T0. The
isostatic compensation attraction of residual Moho geometry in Equation (A11) is thus
defined respective to the (nominal) mean Moho depth T0. The Moho depth T values are
taken from available seismic models.

The spectral representation of Vc,VMM in Equation (A11) is given in the following
form:

Vc,VMM(r, Ω) =
GM

R ∑n
n=0

(
R
r

)n+1

∑n
m=−n cVMM

n,m Yn,m(Ω) (A12)

The coefficients cVMM
n,m of the compensation potential (up to the third order) read
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cVMM
n,m ≈ 3

2n+1
1

ρEarth

{
1
R

[
∆ρc/m( TVMM − T0)

]
n,m

+ n+2
2 R2

[
∆ρc/m( T2

0 − T2
VMM

)]
n,m

+ (n+2) (n+1)
6 R3

[
∆ρc/m( T3

VMM − T3
0
)]

n,m

}
,

(A13)

where
[
∆ρc/m( TVMM − T0)

]
n,m

,
[
∆ρc/m( T2

0 − T2
VMM

)]
n,m

, and
[
∆ρc/m( T3

VMM − T3
0
)]

n,m
are the surface spherical functions of ∆ρc/m( TVMM − T0), ∆ρc/m( T2

0 − T2
VMM

)
, and

∆ρc/m( T3
VMM − T3

0
)
, respectively. Their computation is realized by using the following

integral convolutions:[
∆ρc/m( TVMM − T0)

]
n,m

=
1

4 π

x

Φ
∆ρc/m[TVMM

(
Ω′
)
− T0

]
dΩ′, (A14)[

∆ρc/m
(

T2
0 − T2

VMM

)]
n,m

=
1

4 π

x

Φ
∆ρc/m

[
T2

0 − T2
VMM

(
Ω′
)]

dΩ′, (A15)[
∆ρc/m

(
T3

VMM − T3
0

)]
n,m

=
1

4 π

x

Φ
∆ρc/m

[
T3

VMM
(
Ω′
)
− T3

0

]
dΩ′. (A16)

where Φ is the full spatial angle.
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52. Rathnayake, S.; Tenzer, R.; Chen, W.; Eshagh, M.; Pitoňák, M. Comparison of different methods for a Moho modeling under

oceans and marginal Seas: A case study for the Indian Ocean. Surv. Geophys. 2021, 42, 839–897. [CrossRef]
53. Kaban, M.K.; Schwintzer, P.; Tikhotsky, S.A. Global isostatic gravity model of the Earth. Geophys. J. Int. 1999, 136, 519–536.

[CrossRef]
54. Tenzer, R.; Hamayun, K.; Vajda, P. Global maps of the CRUST2.0 crustal components stripped gravity disturbances. J. Geophys.

Res. 2009, 114, B05408.
55. Tenzer, R.; Gladkikh, V.; Vajda, P.; Novák, P. Spatial and spectral analysis of refined gravity data for modelling the crust-mantle

interface and mantle-lithosphere structure. Surv. Geophys. 2012, 33, 817–839. [CrossRef]
56. Forte, A.M.; Rowley, D.B. Earth’s isostatic and dynamic topography—A critical perspective. Geochem. Geophys. Geosystems 2022,

23, e2021GC009740. [CrossRef]
57. Wienecke, S.; Braitenberg, C.; Götze, H.-J. A new analytical solution estimating the flexural rigidity in the Central Andes. Geophys.

J. Int. 2007, 169, 789–794. [CrossRef]
58. Watts, A.B. Isostasy and Flexure of the Lithosphere; Cambridge University Press: Cambridge, UK, 2001; p. 458.
59. Heiskanen, W.A.; Moritz, H. Physical Geodesy; W. H. Freeman: New York, NY, USA, 1967.
60. Pizzetti, P. Sopra il calcolo teorico delle deviazioni del geoide dall’ellissoide. Atti Della R. Accad. Delle Sci. Di Torino 1911, 46,

331–350.
61. Somigliana, C. Teoria Generale del Campo Gravitazionale dell’Ellisoide di Rotazione. Mem. Della Soc. Astron. Ital. IV 1929, 4, 425.
62. Tenzer, R.; Novák, P.; Vajda, P.; Gladkikh, V.; Hamayun. Spectral harmonic analysis and synthesis of Earth’s crust gravity field.

Comput. Geosci. 2012, 16, 193–207. [CrossRef]
63. Tenzer, R.; Novák, P.; Moore, P.; Vajda, P. Atmospheric effects in the derivation of geoid-generated gravity anomalies. Stud.

Geophys. Geod. 2006, 50, 583–593. [CrossRef]
64. Tenzer, R.; Vajda, P.; Hamayun. Global atmospheric corrections to the gravity field quantities. Contrib. Geophys. Geod. 2009, 39,

221–236. [CrossRef]
65. Barrel, J. The strength of the crust, Part VI. Relations of isostatic movements to a sphere of weakness—The asthenosphere. J. Geol.

1914, 22, 655–683.
66. Flanagan, M.P.; Shearer, P.M. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors.

J. Geophys. Res. 1998, 103, 2673–2692. [CrossRef]
67. Fiquet, G.; Guyot, F.; Badro, J. The Earth’s lower mantle and core. Elements 2008, 4, 177–182. [CrossRef]
68. Schmerr, N. The Gutenberg discontinuity: Melt at the lithosphere-asthenosphere boundary. Science 2012, 335, 1480–1483.

[CrossRef]
69. Lekic, V.; Cottaar, S.; Dziewonski, A.; Romanowicz, B. Cluster analysis of global lower mantle. Earth Planet. Sci. Lett. 2012,

357–358, 68–77. [CrossRef]
70. Lay, T.; Hernlund, J.; Buffett, B.A. Core-mantle boundary heat flow. Nat. Geosci. 2008, 1, 25–32. [CrossRef]
71. Hirt, C.; Rexer, M. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models—Available as gridded data and

degree-10,800 spherical harmonics. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 103–112. [CrossRef]
72. Divins, D. Total Sediment Thickness of the World’s Oceans and Marginal Seas; NOAA National Geophysical Data Center: Boulder, CO,

USA, 2003.
73. Moritz, H. Geodetic Reference System 1980. J. Geod. 2000, 74, 128–162. [CrossRef]
74. Hinze, W.J. Bouguer reduction density, why 2.67? Geophysics 2003, 68, 1559–1560. [CrossRef]
75. Artemjev, M.E.; Kaban, M.K.; Kucherinenko, V.A.; Demjanov, G.V.; Taranov, V.A. Subcrustal density inhomogeneities of Northern

Eurasia as derived from the gravity data and isostatic models of the lithosphere. Tectonophysics 1994, 240, 248–280. [CrossRef]
76. Cutnell, J.D.; Kenneth, W.J. Physics, 3rd ed.; Wiley: New York, NY, USA, 1995.
77. Gladkikh, V.; Tenzer, R. A mathematical model of the global ocean saltwater density distribution. Pure Appl. Geophys. 2011, 169,

249–257. [CrossRef]
78. Tenzer, R.; Novák, P.; Gladkikh, V. The bathymetric stripping corrections to gravity field quantities for a depth-dependent model

of the seawater density. Mar. Geod. 2012, 35, 198–220. [CrossRef]
79. Baranov, A.; Tenzer, R.; Bagherbandi, M. Combined gravimetric-seismic crustal model for Antarctica. Surv. Geophys. 2018, 39,

23–56. [CrossRef]
80. Tenzer, R.; Gladkikh, V. Assessment of density variations of marine sediments with ocean and sediment depths. Sci. World J. 2014,

2014, 823296. [CrossRef]
81. Gu, X.; Tenzer, R.; Gladkikh, V. Empirical models of the ocean-sediment and marine sediment-bedrock density contrasts. Geosci. J.

2014, 18, 439–447. [CrossRef]
82. Chen, W.; Tenzer, R.; Gu, X. Sediment stripping correction to marine gravity data. Mar. Geod. 2014, 37, 419–439. [CrossRef]
83. Carlson, R.L.; Raskin, G.S. Density of the ocean crust. Nature 1984, 311, 555–558. [CrossRef]
84. Chen, W.; Tenzer, R. Harmonic coefficients of the Earth’s Spectral Crustal Model 180—ESCM180. Earth Sci. Inform. 2015, 8,

147–159. [CrossRef]

https://doi.org/10.1111/j.1365-246X.2009.04397.x
https://doi.org/10.1016/j.pepi.2012.04.001
https://doi.org/10.1007/s10712-021-09648-2
https://doi.org/10.1046/j.1365-246x.1999.00731.x
https://doi.org/10.1007/s10712-012-9173-3
https://doi.org/10.1029/2021GC009740
https://doi.org/10.1111/j.1365-246X.2007.03396.x
https://doi.org/10.1007/s10596-011-9264-0
https://doi.org/10.1007/s11200-006-0036-6
https://doi.org/10.2478/v10126-009-0008-2
https://doi.org/10.1029/97JB03212
https://doi.org/10.2113/GSELEMENTS.4.3.177
https://doi.org/10.1126/science.1215433
https://doi.org/10.1016/j.epsl.2012.09.014
https://doi.org/10.1038/ngeo.2007.44
https://doi.org/10.1016/j.jag.2015.03.001
https://doi.org/10.1007/s001900050278
https://doi.org/10.1190/1.1620629
https://doi.org/10.1016/0040-1951(94)90275-5
https://doi.org/10.1007/s00024-011-0275-5
https://doi.org/10.1080/01490419.2012.670592
https://doi.org/10.1007/s10712-017-9423-5
https://doi.org/10.1155/2014/823296
https://doi.org/10.1007/s12303-014-0015-9
https://doi.org/10.1080/01490419.2014.932870
https://doi.org/10.1038/311555a0
https://doi.org/10.1007/s12145-014-0155-5


Remote Sens. 2023, 15, 4845 28 of 29

85. Griffin, W.L.; O’Reilly, S.Y.; Afonso, J.C.; Begg, G.C. The Composition and Evolution of Lithospheric Mantle: A Re-evaluation and
its Tectonic Implications. J. Petrol. 2009, 50, 1185–1204. [CrossRef]

86. Bowin, C. Mass anomaly structure of the Earth. Rev. Geophys. 2000, 38, 355–387. [CrossRef]
87. Humphreys, E.D.; Coblentz, D.D. North American dynamics and western U. S. tectonics. Rev. Geophys. 2003, 45, RG3001.

[CrossRef]
88. Davis, E.E.; Lister, C.R.B. Fundamentals of ridge crest topography. Earth Planet. Sci. Lett. 1974, 21, 405–413. [CrossRef]
89. Sclater, J.G.; Lawver, L.A.; Parsons, B. Comparison of long-wavelength residual elevation and free-air gravity anomalies in the

North Atlantic and possible implications for the thickness of the lithospheric plate. J. Geophys. Res. 1975, 80, 1031–1052. [CrossRef]
90. Parsons, B.; Sclater, J.G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 1977, 82,

803–827. [CrossRef]
91. Parsons, B.; McKenzie, D. Mantle convection and the thermal structure of the plates. J. Geophys. Res. 1978, 83, 4485–4496.

[CrossRef]
92. Richter, F.M.; McKenzie, D.P. Parameterizations for the horizontally-averaged temperature of infinite Prandtl Number convection.

J. Geophys. Res. 1981, 86, 1738–1744. [CrossRef]
93. Houseman, G.; McKenzie, D.P. Numerical experiments on the onset of convective instability in the Earth’s mantle. Geophys. J. R.

Astron. Soc. 1982, 68, 133–164. [CrossRef]
94. Robinson, E.M.; Parsons, B. Effect of a shallow, low viscosity zone on small-scale instabilities under the cooling oceanic plates. J.

Geophys. Res. 1988, 93, 3468–3479. [CrossRef]
95. Phipps Morgan, J.; Smith, W.H.F. Flattening of the sea floor depth-age curve as a response to asthenospheric flow. Nature 1992,

359, 524–527. [CrossRef]
96. Stein, C.A.; Stein, S. A model for the global variation in oceanic depth and heat flow with age. Nature 1992, 359, 123–129.

[CrossRef]
97. Shoberg, T.; Stein, C.; Stein, S. Constraints on lithospheric thermal structure for the Indian ocean basin from depth and heat flow

data. Geophys. Res. Lett. 1993, 20, 1095–1098. [CrossRef]
98. DeLaughter, J.; Stein, S.; Stein, C.A. Extraction of a lithospheric cooling signal from oceanwide geoid data. Earth Planet. Sci. Lett.

1999, 174, 173–181. [CrossRef]
99. Huang, J.; Zhong, S. Sub-lithospheric small-scale convection and its implications for the residual topography at old ocean basins

and the plate model. J. Geophys. Res. 2005, 110, B05404.
100. Hillier, J.K.; Watts, A.B. The relationship between depth and age in the North Pacific Ocean. J. Geophys. Res. 2005, 110, B02405.

[CrossRef]
101. Doin, M.P.; Fleitout, L. Flattening of the oceanic topography and geoid: Thermal versus dynamic origin. Geophys. J. Int. 2000, 143,

582–594. [CrossRef]
102. Crosby, A.G.; McKenzie, D.; Sclater, J.G. The relationship between depth, age and gravity in the oceans. Geophys. J. Int. 2006, 166,

553–573. [CrossRef]
103. Rudnick, R.L.; McDonough, W.F.; Connell, R.J. Thermal structure, thickness and composition of continental lithosphere. Chem.

Geol. 1998, 145, 395–411. [CrossRef]
104. Artemieva, I.M.; Mooney, W.D. Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res.

2001, 106, 16387–16414. [CrossRef]
105. Kaban, M.K.; Schwintzer, P.; Artemieva, I.M.; Mooney, W.D. Density of the continental roots: Compositional and thermal

contributions. Earth Planet. Sci. Lett. 2003, 209, 53–69. [CrossRef]
106. Artemieva, I.M. Global 1◦ × 1◦ thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution.

Tectonophysics 2006, 416, 245–277. [CrossRef]
107. Mooney, W.D.; Kaban, M.K. The North American upper mantle: Density, composition, and evolution. J. Geophys. Res. Solid Earth

2010, 115, 24. [CrossRef]
108. Jordan, T.H. The continental tectosphere. Rev. Geophys. 1975, 13, 1–12. [CrossRef]
109. Gung, Y.C.; Panning, M.; Romanowicz, B. Global anisotropy and the thickness of continents. Nature 2003, 422, 707–711. [CrossRef]
110. Kelly, R.K.; Kelemen, P.B.; Jull, M. Buoyancy of the continental upper mantle. Geochem. Geophys. Geosystems 2003, 4, 1017.

[CrossRef]
111. Steinberger, B. Topography caused by mantle density variations: Observation-based estimates and models derived from

tomography and lithosphere thickness. Geophys. J. Int. 2016, 205, 604–621. [CrossRef]
112. Müller, R.D.; Flament, N.; Matthews, K.J.; Williams, S.E.; Gurnis, M. Formation of Australian continental margin highlands driven

by plate-mantle interaction. Earth Planet. Sci. Lett. 2016, 441, 60–70. [CrossRef]
113. Barnett-Moore, N.; Hassan, R.; Müller, R.D.; Williams, S.E.; Flament, N. Dynamic topography and eustasy controlled the

paleogeographic evolution of northern Africa since the mid-Cretaceous. Tectonics 2017, 36, 929–944. [CrossRef]
114. Ricard, Y.; Richards, M.; Lithgow-Bertelloni, C.; Le Stunff, Y. A geodynamic model of mantle density heterogeneity. J. Geophys.

Res. Solid. Earth 1993, 98, 21895–21909. [CrossRef]
115. Steinberger, B. Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and

dynamic topography at the Earth’s surface. Phys. Earth Planet. Inter. 2007, 164, 2–20. [CrossRef]

https://doi.org/10.1093/petrology/egn033
https://doi.org/10.1029/1999RG000064
https://doi.org/10.1029/2005RG000181
https://doi.org/10.1016/0012-821X(74)90180-0
https://doi.org/10.1029/JB080i008p01031
https://doi.org/10.1029/JB082i005p00803
https://doi.org/10.1029/JB083iB09p04485
https://doi.org/10.1029/JB086iB03p01738
https://doi.org/10.1111/j.1365-246X.1982.tb06966.x
https://doi.org/10.1029/JB093iB04p03469
https://doi.org/10.1038/359524a0
https://doi.org/10.1038/359123a0
https://doi.org/10.1029/93GL00985
https://doi.org/10.1016/S0012-821X(99)00247-2
https://doi.org/10.1029/2004JB003406
https://doi.org/10.1046/j.1365-246X.2000.00229.x
https://doi.org/10.1111/j.1365-246X.2006.03015.x
https://doi.org/10.1016/S0009-2541(97)00151-4
https://doi.org/10.1029/2000JB900439
https://doi.org/10.1016/S0012-821X(03)00072-4
https://doi.org/10.1016/j.tecto.2005.11.022
https://doi.org/10.1029/2010JB000866
https://doi.org/10.1029/RG013i003p00001
https://doi.org/10.1038/nature01559
https://doi.org/10.1029/2002GC000399
https://doi.org/10.1093/gji/ggw040
https://doi.org/10.1016/j.epsl.2016.02.025
https://doi.org/10.1002/2016TC004280
https://doi.org/10.1029/93JB02216
https://doi.org/10.1016/j.pepi.2007.04.021


Remote Sens. 2023, 15, 4845 29 of 29

116. Conrad, C.P.; Husson, L. Influence of dynamic topography on sea level and its rate of change. Lithosphere 2009, 1, 110–120.
[CrossRef]

117. Spasojevic, S.; Gurnis, M. Sea level and vertical motion of continents from dynamic earth models. AAPG Bull. 2012, 96, 2037–2064.
[CrossRef]

118. Flament, N.; Gurnis, M.; Muller, R.D. A review of observations and models of dynamic topography. Lithosphere 2013, 5, 189–210.
[CrossRef]

119. Steinberger, B.; Werner, S.C.; Torsvik, T.H. Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth,
Venus and Mars. Icarus 2004, 207, 564–577. [CrossRef]

120. Chambat, F.; Ricard, Y.; Valette, B. Flattening of the Earth: Further from hydrostaticity than previously estimated. Geophys. J. Int.
2010, 183, 727–732. [CrossRef]

121. Sjöberg, L.E. On the Pratt and Airy models of isostatic geoid undulations. J. Geodyn. 1998, 26, 137–147. [CrossRef]
122. Sjöberg, L.E. The exterior Airy/Heiskanen topographic-isostatic gravity potential, anomaly and the effect of analytical continua-

tion in Stokes’s formula. J. Geod. 1998, 72, 654–662.
123. Lambeck, K. Geophysical geodesy. In The Slow Deformations of the Earth; Clarendon Press: Oxford, UK, 1988.
124. Rummel, R.; Rapp, R.H.; Sünkel, H.; Tscherning, C.C. Comparison of Global Topographic/Isostatic Models to the Earth’s Observed

Gravitational Field; The Ohio State University: Columbus, OH, USA, 1988.
125. Tsoulis, D.A. Comparison between the Airy-Heiskanen and the Pratt-Hayford isostatic models for the computation of potential

harmonic coefficients. J. Geod. 2001, 74, 637–643. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1130/L32.1
https://doi.org/10.1306/03261211121
https://doi.org/10.1130/L245.1
https://doi.org/10.1016/j.icarus.2009.12.025
https://doi.org/10.1111/j.1365-246X.2010.04771.x
https://doi.org/10.1016/S0264-3707(97)00027-6
https://doi.org/10.1007/s001900000124

	Introduction 
	Theory 
	Geoid 
	Isostatic Geoid 
	Sub-Lithospheric Mantle Geoid 
	Crust-Stripped Disturbing Potential 
	Mantle Disturbing Potential 
	Lithosphere-Stripped Disturbing Potential 
	Sub-Lithospheric Mantle Disturbing Potential 

	Spectral Decomposition 

	Data Acquisition 
	Results 
	Discussion 
	Isostatic Results 
	Gravimetric Forward Modelling Results 
	Comparison of Long-Wavelength Geoid and Mantle Geoid Models 
	Comparison of Long-Wavelength Geoid and Sub-lithospheric Mantle Geoid Models 
	Comparison of Long-Wavelength Sub-lithospheric Mantle Geoid and Dynamic Topography Models 


	Summary and Concluding Remarks 
	Appendix A
	Appendix B
	Appendix C
	References

