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Abstract: Thermal inspection of buildings regarding efficient energy use is an increasing need in
today’s energy-demanding world. This paper proposes a framework for mapping temperature
attributes from thermal point clouds onto building facades. The goal is to generate thermal textures
for three-dimensional (3D) analysis. Classical texture generation methods project facade images
directly onto a 3D building model. Due to the limited level of detail of these models, projection errors
occur. Therefore, we use point clouds from mobile laser scanning extended by intensities extracted
from thermal infrared (TIR) image sequences. We are not using 3D reconstructed point clouds because
of the limited geometric density and accuracy of TIR images, which can lead to poor 3D reconstruction.
We project these thermal point clouds onto facades using a mapping algorithm. The algorithm uses a
nearest neighbor search to find an optimal nearest point with three different approaches: “Minimize
angle to normal”, “Minimize perpendicular distance to normal”, and “Minimize only distance”.
Instead of interpolation, nearest neighbor is used because it retains the original temperature values.
The thermal intensities of the optimal nearest points are weighted by resolution layers and mapped
to the facade. The approach “Minimize perpendicular distance to normal” yields the finest texture
resolution at a reasonable processing time. The accuracy of the generated texture is evaluated based
on estimating the shift of the window corner points from a ground truth texture. A performance
metric root-mean-square deviation (RMSD) value that measures this shift is calculated. In terms
of accuracy, the nearest neighbor method outperformed bilinear interpolation and an existing TIR
image-based texturing method.

Keywords: thermal mapping; point clouds; TIR textures; nearest neighborhood algorithm; thermal
images; building models; texels

1. Introduction

Over the last few years, thermography has gained numerous applications in terms of
studying the energy situation in the world. Since the industrial revolution, a large part of
the world’s population has shifted to urban locations. As a result, the built environment
expanded quickly, producing significant carbon dioxide emissions from the energy used in
buildings. Therefore, energy consumption by buildings has become a widely spoken topic.
The scientific community has grown interested in infrared radiation (IR) thermography [1],
especially because it is cost-effective and can provide images of different building elements
representing the surface temperature. Buildings’ thermal radiance is recorded using ther-
mal infrared (TIR) cameras, a time-efficient and economical tool for monitoring leakage
and energy usage. It is also a non-contact and non-destructive method for thermal analy-
sis. Thermal analysis [2] is necessary for detecting patterns such as the inhomogeneous
distribution of wall materials, anomalies, heating system pipes, internal cracks, structural
damages [3], leakages, moisture [4], failure of electrical circuits, air conditioning, ventila-
tion, etc., which are typically hidden from the building’s surface. Traditional methods of
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monitoring the thermal signature are manually looking at a series of TIR images captured
from different viewing positions. Some drawbacks of directly using the images are that they
include occluded objects and also require a significant overlap between multi-view images.
Also, there can be temporal and illumination changes in transition areas between image
acquisitions. Therefore, including a three-dimensional (3D) spatial reference containing
thermal information in the building model can increase the scope of thermal building
inspection [5]. For complex buildings, instead of looking at isolated facades, the whole
structure can be observed as a single unit. We can locate the anomalies with a 3D reference
to the building and perform change detection and observation of dynamic processes more
efficiently. Information from the inside of walls can be connected to the outside to identify
energy loss.

Now, there can be different ways to represent 3D information, such as adding thermal
textures to 3D geometric building models [6,7] or representing the thermal information in
the form of voxels or meshes [8] or thermal point clouds [9,10]. Some researchers in the past
have devoted themselves to generating some of these kinds of representations. One thing
to remember while using archived building models is that we can update the models from
time to time, and acquiring the latest representation of buildings can be labor-intensive
and time-consuming. Moreover, the levels of detail (LoDs) imply the precise geometric
depiction of the building model. Also, the bigger vision should be to scale-up thermal
models to vast areas like cities, states, or even countries.

The goal of our project is to enrich building models with thermal information. Hence,
we have worked on generating textures by projecting point clouds to facades. Otherwise, we
could have directly used 3D thermal point clouds. Also, later, for thermal analysis, we will
use Neural Networks for image interpretation in the thermal textures. The interpretation of
images is also more convenient than point clouds. Additionally, point clouds also contain
occlusions, outliers, noise, and unwanted data. Some of this information is irrelevant and
we do not want to process these extra information. Textures do not include this unwanted
information, but only contain the information relevant to a particular facade structure.

This paper contributes a novel technique to texture facades of 3D building models
using thermal point clouds. We assume that Mobile Laser Scanning (MLS) point clouds
and thermal images were recorded in one measurement campaign and are fused to a
thermally enriched 3D point cloud. We further assume that the point cloud was already
used to refine the original building model by adding elements like windows and doors. A
mapping algorithm takes the texture layer of the facade. For each texture pixel (texel), the
algorithm finds the nearest optimal point closest to the vertical of the facade and which has
a temperature value. A resolution layer weights the thermal intensities of all optimal points
before assigning them to the texture layer. The generated TIR texture is enhanced and finally
applied to the facade. This paper is structured into different parts. Section 1 introduces the
overall problem statement, Section 2 discusses the related research conducted previously,
Section 3 describes in detail the methodology workflow, Section 4 describes the test datasets
and input data preparation, Section 5 presents the implementation results and analysis,
and Section 6 finally draws conclusions and introduces future work.

In our mapping algorithm, we can compute the texel intensity using different methods
such as nearest neighbor point, bilinear interpolation, cubic spline interpolation, etc. The
primary reason that we have selected the nearest neighbor point is to keep the original
temperature values. Nearest neighbor ensures the original temperature but at a slightly
shifted position (lower geometric accuracy). On the other hand, interpolation has an
estimated (weighted mean) temperature, but higher geometric accuracy (no geometric
shift). An interpolation would have generated intermediate average values via some
weighting criteria, which would have changed the original values. Another advantage
of using the nearest neighbor is its simplicity, as we take the nearest point based on a
distance metric without further calculating average values based on some complicated
rules. But the downside of using the nearest neighbor approach is that some texels with
no corresponding vertical neighbor points are left empty, so the generated texture image
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has some blank texels. Interpolation would have filled up all those empty texels. Also,
with interpolation, we can further increase the resolution to obtain finer texels, but with the
nearest neighbor, this will result in more blank texels. Hence, there is a trade-off between
selecting the method that provides the real temperature at a slightly shifted position versus
the method that provides an estimated/interpolated temperature with no shift.

The main innovation in this paper is the usage of thermal point clouds to generate
thermal textures. Previously, researchers worked on generating thermal textures directly
from TIR images or point clouds reconstructed from TIR images. Some classical texture
generation methods project facade images directly onto the 3D building models. Due
to the limited level of detail of these simplified building models, projection errors occur.
Some other drawbacks, such as limited geometric density and lower resolution/accuracy
of TIR images, lead to poor 3D reconstruction or blurry textures. Also, TIR images in-
clude reflections from window glasses and occlusions. Objects in the TIR domain show
radiometric behavior, which causes blurred edges in the generated textures. In Section 2,
we discussed the drawbacks of facade texture generation from TIR images. Therefore, to
overcome the limitations of these methods, we are using thermal point clouds prepared by
extending laser scanner point clouds with intensities from TIR images. The reason why
we used point clouds instead of images for texture generation is because of TIR image
interpretation challenges, discussed in detail in Section 2. We projected the thermal point
clouds to building facades by using a mapping algorithm. The mapping algorithm uses a
nearest neighbor approach. Later, we also implemented bilinear interpolation and com-
pared that with the nearest neighbor. We also investigated different approaches for the
nearest neighbor search to calculate the intensities, compared and analyzed them, deduced
the best-suited approach, and finally presented a performance metric of the results.

2. Related Work

Some research has been conducted on preparing 3D thermal point clouds from dif-
ferent sources. Ref. [11] reconstructed 3D point clouds containing TIR attributes using
Structure from Motion (SfM) techniques with multi-view stereo-principle. The images
were taken from Unmanned Aerial Vehicles (UAVs). Low-quality thermal images are
challenging for this method since there must be enough detected features, especially when
an uncooled camera captures the image. Ref. [12] proposes an automated approach to
register thermal with red, green, and blue (RGB) point clouds reconstructed independently
via SfM. Normalizing the point cloud scale is the first step in the registration procedure.
Global registration using calibration data and SfM output is followed by fine registration
using an iterative closest point (ICP) optimization variant. Ref. [13] generated dense point
clouds directly from TIR images by automatically orienting sequences of images taken
from UAVs. However, if RGB images are additionally available, dense point clouds are
generated from RGB data. Then, the ICP algorithm is used to align the point clouds, a mesh
is generated from the RGB point cloud, and, finally, a 3D model is created by mapping
the texture from TIR images. Ref. [14] superimposes thermal information onto each point
on 3D structures reconstructed with Direct Sparse Odometry (DSO) using RGB images to
create a 3D thermal map. The RGB and TIR cameras are mounted on a stereo rig and their
relative pose is estimated. Depth images from RGB and TIR cameras are matched based on
mutual information. Then, the point cloud’s scale is estimated corresponding to extrinsic
parameters between both cameras to perform the superimposition. Ref. [15] generated
point clouds using SfM using cell phone images. Then, the temperature information was
projected to the generated point clouds by utilizing a thermal camera’s relative position
data. Ref. [16] used a “bi-camera” system to integrate RGB and IR cameras and then
performed thermal 3D mapping by registering the images into a terrestrial laser scanner
(TLS) reference system.

Texturing building facades with thermal images was attempted by [17]. Here, 3D
models generated from terrestrial laser scanners are taken, and then RGB and TIR image
blocks are mapped to the model. It uses accurate photogrammetric orientation via bundle
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adjustment that integrates TIR and RGB data. Ref. [18] creates a 3D thermal map of a
building using three sensors: a color camera, a 3D laser scanner, and a thermal camera
setup in a robot. The sensors are automatically co-calibrated, and one highly accurate 3D
model incorporating data from all the sensors is created to depict the heat distribution.
Ref. [19] maps roofs by fusing thermal and visible point clouds. The point clouds are
generated from their respective thermal and visible UAV images. The point clouds are
then geo-referenced using control points and are co-registered. Building roofs are extracted
from visible point clouds and thermal point clouds, which are combined to create a fused
dense point cloud. Ref. [20] merges 3D point clouds with terrestrial thermal image data to
map thermal attributes. Thermal and RGB point clouds are generated, respectively, from
their images using SfM, and coarse registration is conducted between the point clouds.
The RGB–thermal image pairs with the best correspondences are obtained, and reliable
matching features are extracted from the pairs. In the end, the RGB image is mono-plotted
to carry out fine registration, and then the thermal image is resectioned.

Previously, researchers have attempted to extract thermal textures for 3D building
models. Ref. [6] presents a mobile thermal mapping technique that extracts thermal
textures using thermal image sequences, 3D building models, and point clouds. They
introduced two workflows. The first workflow determines image orientations by co-
registering terrestrial image sequences with a 3D building model. In the second workflow,
given pre-orientations of TIR and RGB image-based point clouds are used to match them,
and then the ICP algorithm is performed to minimize the distance between the point
clouds. Finally, thermal textures are extracted by correcting the orientation parameters
of TIR images. Refs. [21–24] refer to the concept of projecting the image sequence to the
facade plane in a bundle adjustment process of tracked feature points to generate the
facade’s thermal textures. Figure 1 shows the facades textured from TIR image sequences
based on these approaches. One drawback is that, compared with images in the visual
domain, 3D reconstruction of TIR images has less accuracy due to the lower resolution of
TIR images. It gives rise to more discretization and decreases matches between the image
sequence. Another drawback is that objects in the TIR domain show radiometric behavior,
which causes blurred edges and fewer changes in intensity and details in an image. Other
drawbacks of the textures extracted using the above-discussed methods are that occlusions
are not considered, and they also include window glasses, which often show the wrong
temperature due to reflections, as illustrated in Figure 1.

Figure 1. Thermal infrared (TIR) textures based on existing approach.

The terrestrial images cannot capture data such as roof structures, inner yards, or
backyards. To complement this missing information, oblique images captured from a
helicopter or aerial system are necessary. Ref. [25] projects building models into directly
georeferenced oblique airborne IR image sequences to perform texture mapping of the
building models. Georeferencing, however, is not always precise; in this case, there is no
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match between the structures in the image and the projected model. Ref. [26] solves this
using line-based matching to correct the exterior orientation and determine the best fit
between the image sequence and the 3D model.

Contrary to the texture representations, ref. [9] attempted to represent the thermal
information in the form of point clouds by preparing thermal point clouds through a
combination of TIR image sequences and MLS point clouds. They combined data from
various sensors using a data fusion technique. Firstly, they extracted key points from
distorted TIR images, then used a restricted Random Sample Consensus (RANSAC)-based
algorithm for correspondence determination to estimate the six Degree of Freedom (DOF)
pose, and finally fused geometric properties from point clouds and thermal attributes from
images using a non-local means strategy. Ref. [27] attempted indoor mapping by adding
thermal channels to 3D points by fusing TIR camera images with terrestrial laser scanners
and RGB point clouds. They mounted the sensors on a robot platform and calibrated
the system geometrically by defining the used coordinate systems and co-registering the
laser scanner point cloud and camera images. As the sensors’ field of view differed, they
had to synchronize them before fusion. A similar technique for co-registration with a
photogrammetric point cloud is shown in [28].

Ref. [29] worked on IR camera calibration to map textures to 3D building models
automatically. Texture mapping requires external orientation of images, and direct geo-
referencing requires a global positioning system (GPS)/inertial navigation system (INS),
which is included in the camera system that was calibrated. They used a helicopter platform
to obtain the images. Ref. [30] proposed a technique for texture mapping by finding the best
fit between the airborne images and the building model using model-to-image matching.
It also extracts texture by selecting the best texture. Ref. [31] assessed the quality of
building textures extracted from TIR image sequences from aerial and terrestrial platforms
captured using various sensors and orientations. The qualities are compared based on
the completeness of texture, viewing angle, the accuracy of the projection, and geometric
resolution, to finally select the most accurate and complete textures. Ref. [32] matched IR
images with 3D building models for extracting textures. Based on the relative orientation
of the point cloud, they matched terrestrial image sequences, and using standardized
masked correlation, including system calibration, they also matched airborne images. They
introduced the combination of airborne and terrestrial data in a single model. Ref. [33]
aligned 3D building models using oblique TIR images captured from a flying platform
to extract thermal textures correctly. By establishing correspondences between image
line segments and building model edges, they were able to track lines and estimate the
optimal camera pose for the best possible match between the image structures and the
projected model.

There are some benefits of using point clouds instead of images for texture generation.
Images have drawbacks, such as that they include occluded objects and require large
overlap between multi-view images. Another drawback is that objects in the TIR domain
show radiometric behavior, which causes blurred edges in the generated textures and
fewer changes in intensity and details in an image. They also include window glasses,
which often show the wrong temperature due to reflections. Projecting or aligning the 3D
building models with oblique images requires proper correspondences between the model
and structures in the image to estimate the optimal camera pose for the best possible match,
which is challenging and also needs accurate georeferencing and an accurate estimation
of the external orientation of images. The number of elements visible in the TIR domain
influences the position refinement. The refinement quality is greatly reduced in the case
of facades with repetitive patterns or few objects. It becomes worse when it happens
along with inaccurate GPS positions. The extraction of textures is sensitive to errors in the
estimation of viewing direction. To overcome the aforementioned image interpretation
challenges in TIR images, we used thermal point clouds. Now, thermal point clouds
can also be generated only from TIR images via 3D reconstruction with SfM/the multi-
view stereo principle. Still, the reconstruction accuracy will be limited due to the limited
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geometric density and lower resolution of TIR images that gives rise to more discretization
and decreases matches between the image sequence. Homologous points are rarer to
find and difficult to locate. Therefore, in this paper, we used point clouds generated with
mobile laser scanning that give good location information with usable georeferenced 3D
coordinates of buildings, good point density, and accurate geometric details, and then the
points were extended with thermal intensities extracted from TIR image sequences. Also,
when using point clouds, the occlusions are omitted, as our proposed algorithm selects
only the nearest points from the facade for mapping.

3. Methodology

The proposed method for texture generation is embedded into a larger processing
chain that uses both MLS point clouds and thermal images to refine existing building
models. This paper uses refined LoD3 building models, texture masks, and thermal point
clouds as input data for thermal texture generation. For input data preparation, the point
cloud and the building model are co-registered and georeferenced wherever necessary, and
then the LoD2 building model’s geometry is enriched with facade elements like windows,
doors, and underpasses to prepare a refined LoD3 model. These input data are then fed
into a thermal mapping algorithm, where we compare different strategies to calculate the
thermal intensity values for the texels of the facade texture from the point cloud. The
temperature values are projected from the thermal point cloud to the facade using the
nearest neighbor algorithm. At first, the building model and point clouds are superimposed
over one another. Then, for each texel of the texture layer of the facade, the neighboring
points of the point cloud within a certain threshold radius are filtered. The minimum
distance point vertical to the texel is selected, and that point’s thermal intensity value is
assigned to the texel. This procedure is repeated for all the texels of the texture layer to map
the thermal values to the whole facade. After that, a post-processing strategy is applied to
the generated texture image. A mask is applied to cut out the windows and doors because
the temperature values of windows and doors captured by TIR cameras are inaccurate or
distorted due to reflections from glass surfaces. In this way, the TIR textures on the facade
are finally established. The overall workflow of the methodology is shown in Figure 2.

Figure 2. Workflow of the proposed methodology.

3.1. Thermal Mapping Algorithm: Nearest Neighbor Approach

The following points describe the steps implemented in the algorithm:

(i) Take the texture layer of the facade and consider texels (pixels on texture layer) with a
predefined size corresponding to the real world (Ground Sampling Distance (GSD));

(ii) Take the thermal point cloud and clip it by retaining only points within a threshold
distance normal to the facade to decrease the computation time of the nearest neighbor
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search algorithm and increase efficiency. The point cloud has a resolution layer that
contains quality information;

(iii) For each texel:

(a) Define neighborhood. Take the neighbor points within a predefined radius;
(b) Search for the minimum distance point vertical to texel that has a temperature

value. The search for the best point can be based on three different approaches:
minimizing the angle to normal, minimizing the perpendicular distance to
normal, and minimizing only distance;

(c) Assign the thermal intensity value (weighted by quality layer) of the point to
the texel;

(iv) Repeat the above step 3 until all the temperature values are mapped to the facade.

The mapping method is illustrated graphically in Figure 3.

Figure 3. Thermal mapping approach.

3.1.1. Clipping the Point Cloud

The thermal point cloud is clipped by retaining points within a predefined threshold
distance in front and behind the facade along the normal direction and removing the
remaining points. It is necessary to reduce the data size to be processed and to speed up
the computation for the nearest neighbor search. The underlying method fits a plane to
the 3D point cloud. It sets a threshold distance from the plane to an inlier point and has
orientation constraints specified by a 1-by-3 reference vector. The method makes use of
M-estimator Sample Consensus (MSAC) [34], which is a variant of the Random Sample
Consensus (RANSAC) algorithm, to find the plane. The reference vector is a vector normal
to the facade plane and is computed using Singular Value Decomposition (SVD).

3.1.2. Finding the Neighbor Points within a Radius

The neighbor points belonging to the thermal point cloud within a predefined radius
from the mid-point of texel are computed using the fast approximate nearest neighbor
algorithm provided by [35]. The point cloud is organized in a kd-tree (a generalization of
a binary search tree) for optimal neighbor search. After finding the neighbor points, they
are stored in an array in a sorted manner (nearest to farthest, based on their Euclidean
distances from the texel mid-point) for the next step of the thermal mapping algorithm.
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3.1.3. Finding the Nearest Point along Normal Direction to Texel

After filtering the neighbor points in the above step, the task is to select the optimal
point whose thermal intensity value can be mapped to the texel. The ideal point would
be the closest in the direction exactly normal to the texel surface. In other words, the
point should be vertical to the mid-point of the texel. In practice, it is required to search
for the point which is closest to the vertical of the texel and also closest to the facade
plane. The following sections describe three different approaches for selecting the nearest
optimal point.

Minimize Angle to Normal:

In this approach, we select the nearest optimal point based on the angle to normal. We
evaluate the angle between the vector connecting the candidate point to the texel mid-point
and the normal vector. Finally, we choose the point where this angle is minimum. (For ideal
point vertical to texel, this angle will be zero). The angle is found using the cosine formula
(ratio of the dot product of the vectors to the product of the magnitude of the vectors):

cos Θ =

−→
N · −−−−→Pc − Pm∣∣∣−→N ∣∣∣∣∣∣−−−−→Pc − Pm

∣∣∣ (1)

where Θ is the angle that needs to be minimized,
−→
N is the normal vector, and

−−−−→
Pc − Pm is

the vector from texel mid-point (Pm) to the external candidate point (Pc) in the point cloud.
Figure 4 shows the texel plane (yellow) and the corresponding angles and vectors. For
each of the filtered neighbor points, the algorithm checks for the minimum angle points
and then selects the closest distance point (from texel mid-point) out of them to map the
thermal intensity.

Minimize Perpendicular Distance to Normal:

In this approach, we select the nearest optimal point based on the perpendicular dis-
tance to normal. We calculate the perpendicular 3D distance between the nearby candidate
points and the normal vector. Finally, we choose the point with minimum distance. (For
the ideal case, this distance should be zero). The perpendicular distance is found using the
sine formula:

sin Θ =
perpendicular

hypotenuse
=

D⊥
distance between Pc and Pm

(2)

where D⊥ is the perpendicular distance from the external candidate point (Pc) to the normal
vector. It is also shown in Figure 4. For each of the filtered neighbor points, the algorithm
checks for the minimum perpendicular distance points and then selects the closest distance
point (from texel mid-point) out of them to map the thermal intensity.

Minimize Only Distance:

In addition to the above two approaches, the third approach is to find only the clos-
est/minimum distance point of the texel’s local neighborhood without considering the normal
direction. Here, the algorithm does not consider whether the point is vertical to the texel.

In cases where there is more than one optimal point, the algorithm calculates the
median of the thermal intensity and quality values of multiple points for mapping.

The angle-based approach implicitly includes the normal distance of the point to the
plane, as the angle depends not only on the absolute distance from the normal to the center
point of the texel but also on the distance to the facade plane. It means that if there are two
points at the same absolute distance from the normal, but one point is farther away from
the facade plane than the other, the farther point will have a smaller angle. It may lead to
selecting points far from the facade plane. To avoid such cases, the algorithm checks both
the distance and angle, i.e., it tries to minimize the angle and gives preference to closer
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points simultaneously. On the other hand, this issue is not present in the perpendicular
distance-based approach, as it only considers the absolute distance from the normal. All
these approaches are implemented, and their results are compared later in this paper.

Figure 4. Angle and perpendicular distance to normal.

3.2. Post-Processing

After selecting the nearest optimal point, a resolution layer is applied before mapping
the thermal intensity values to the texture layer. The resolution layer contains the quality
information of points in the thermal point cloud. The quality corresponds to the distance
from the TIR camera (selected image center) to the points. The points at less distance have
higher quality or resolution, and vice-versa. The points without thermal attributes are
assigned zero values in the quality layer. The windows and doors of the generated texture
image are then removed by applying a mask.

4. Experiments
4.1. Test Datasets and Platform Used

The study area is located at the Technical University of Munich (TUM) city campus.
We tested on two facades of a three-story building block. The height of the facades is 19 m.
The length of one facade is 66 m (surface area 1254 m2) and the other is 18 m (surface area
342 m2). The total area of the test site is approx. 1400 m2 and the volume is 28,000 m3.
LoD2 building models in CityGML format [36] are used. Point clouds are taken from the
TUM-MLS-2016 dataset [37]. Thermal point clouds were provided by [9], who used laser
scanner point clouds and TIR image sequences of facades captured from a mobile platform
setup Mobile Distributed Situation Awareness (MODISSA) [38]. The MODISSA platform
was mounted with sensors: one thermal camera (uncooled microbolometer) Jenoptik IR-
TCM 640 (manufactured by Jenoptik AG, Jena, Germany) and two Velodyne HDL-64E
LiDAR (Light Detection and Ranging) (manufactured by Velodyne Lidar, San Jose, CA,
USA). The Velodyne sensors were mounted on the front roof of a vehicle at 35 degree
angles. These sensors were mounted together with a GPS to provide the vehicle’s location
information. An Applanix POS LV inertial navigation system was used to georeference
the measurements directly. The uncooled thermal camera was mounted crosswise to the
driving direction. The thermal camera provided TIR images as 16 bit-TIFFs with lossless
compression in the size of 640 pixels × 480 pixels. The LiDAR sensors can record all objects
within a 120 m range with up to 2.2 million points per second. Each of the two laser
scanners performed more than 8000 scans (rotations of the scanner head) to acquire the
point clouds. For more information about the sensors and their specifications, please refer
to [38]. The programming and computation were conducted using MATLAB on a computer



Remote Sens. 2023, 15, 4830 10 of 25

with 32 GB RAM, a 3.20 GHz CPU, and a 64-bit processor. The 3D building modeling
was performed in a Computer-Aided Design (CAD) software, SketchUp. Data integration,
transformation, inspection, extraction, and visualization were carried out using the FME
platform on a 2.40 GHz CPU (two processors), 32 GB RAM, 64-bit operating system.

4.2. Preparation of Input Data
4.2.1. Pre-Processing and Co-Registering of Input Point Clouds and LoD2 Models

In our study, we carried out manual registration between point clouds and 3D building
models. This may seem time- and labor-consuming when compared with automatic
registration. But automatic registration can lead to more errors than manual registration.
For example, there can be errors in bundle adjustment and also facades may not be properly
visible. In contrast, by performing manual registration, we can minimize the errors.

The LoD2 City Geography Markup Language (CityGML) models are georeferenced
and reprojected to a standard coordinate system EPSG:25832—ETRS89/Universal Trans-
verse Mercator (UTM) zone 32N. All the input data are transformed into this coordinate
system using Feature Manipulation Engine (FME). The point clouds in the local Euclidean
coordinate system are georeferenced by performing an affine transformation that includes
translations and rotations. The affine transformation is carried out either in FME or MAT-
LAB. If the exact world coordinates are known, then the georeferencing can also be carried
out by manually offsetting in the X, Y, and Z directions and 3D rotation. This manual ad-
justment can always be carried out in FME if there is a mismatch between the transformed
and ground truth coordinates.

The point clouds with high volume took a lot of computation time and storage. In FME,
point clouds are downsampled to reduce their size. It outputs a point cloud with fewer
points than the input and also maintains the original shape. It uses a Medial Axis Transform
algorithm to keep more points in areas with high rates of change, while thinning areas with
low rates of change. Again, a filter is used in FME to further reduce the size and volume of
the point cloud by thresholding with respect to the X, Y, and Z coordinates. Figure 5 shows
the transformation of point clouds and building models using the FME workbench.

Figure 5. Feature Manipulation Engine (FME) workbench showing the transformation of point clouds
and building model.
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4.2.2. Establish Refined LoD3 Models and Texture Mask

The LoD2 building model is overlayed with a point cloud. It ensures the exact location
of openings like windows and doors. Then, they are modeled using SketchUp. Figure 6
shows the refined building model.

A uniform gray texture is applied to the facade of the refined building model using
the 3D modeling software SketchUp, and then the texture mask is extracted without the
doors and windows. We will use this gray texture mask later for thermal mapping. These
are illustrated in Figure 7.

The thermal point clouds have attributes such as temperature values, quality infor-
mation, and location coordinates. Figure 8 shows the visibility of the laser scanner and
thermal camera in relation to the building model. Figure 8a shows the whole point cloud,
while in Figure 8b the points with thermal attributes are colored.

(a) Level of detail 2 (LoD2) model

(b) Point cloud

(c) Overlayed

Figure 6. Cont.
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(d) Refined model
Figure 6. Refining the model with windows and doors.

(a) Mask extraction

(b) Gray texture mask

(c) Facade with texture mask
Figure 7. Extraction of gray texture mask.
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(a) Whole point cloud

(b) Points with thermal attributes colored

Figure 8. Visibility of laser scanner and thermal camera with respect to building model.

5. Results and Discussion
5.1. Thermal Mapping

The computation and programming of all the processes discussed in this section were
performed in MATLAB. The texture layer of one facade is taken with the texel size set to
10 cm × 10 cm corresponding to the real world (i.e., 10 cm GSD). The thermal point cloud
is taken and then clipped to contain only points within a threshold 1 m in front and behind
the facade, in the normal direction. As mentioned before, this reduces the computation
time of the nearest neighbor search algorithm. Figure 9 shows the point cloud before and
after clipping, together with the facade plane. The facade is shown in red color and the
point clouds in blue/yellow/green colors. From the figure, it can be seen that only the
closest and relevant points within 1 m normal to the facade are retained after clipping.

The next step is to define the neighborhood for each texel, i.e., to find neighbor points
in the thermal point cloud within a predefined radius from the mid-point of the texel. The
radius is set to 1 m. Later, in Section 5.3, it will be discussed how the performance is affected
when we change the radius from 0.3 m to 1 m. Figure 10 shows the neighbor points (green)
for a single texel plane (red).

Then, the algorithm searches for the nearest point vertical to the texel and which
has a temperature attribute. Three methods are approached: angle to normal vector,
perpendicular distance to normal vector, and distance without considering their verticality.
We already discussed these three approaches in detail in the previous section. Their
performance results will be discussed and compared later in Section 5.2. Figure 11 shows
the detected optimal point closest to the vertical (blue) for a single texel plane (red), the
nearest distance point (green), the farthest point within a predefined radius (red), and lines
connecting the texel mid-point (black) to the detected points for illustration. The figure
shows both the top view and side view. From the figure, it can be clearly seen that the
nearest distance point is not normal to the texel mid-point, and the point closest to vertical
is a bit far from the nearest distance point.
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(a) Before clipping

(b) After clipping
Figure 9. Clipping the thermal point cloud.

Figure 10. Neighbor points (green) for a single texel plane (red).



Remote Sens. 2023, 15, 4830 15 of 25

(a) Top view

(b) Side view
Figure 11. Detected points for a single texel: Optimal point closest to vertical (blue), nearest distance
point (green), the farthest point within the neighborhood of the predefined radius (red), and texel
mid-point (black).

For illustration, Figure 12 shows how the detected points look for the whole facade
plane (red), considering texels at a distance 3 m apart from each other and skipping all
the other texels in between them. It can be clearly seen from the figure that some detected
optimal points (blue) are behind the facade. This is obvious because the mapping algorithm
searches for points on both sides of the facade.

After finding the optimal point, the thermal attribute of that point, weighted by the
resolution layer, is mapped to the texel. Figure 13a shows the resolution layer applied
to the texels, with the brighter pixels having better quality and darker pixels showing
worse quality. From the figure, it is clear that all the points are not of the same quality and,
especially, more points on the right side are bad quality. Therefore, it makes complete sense
to weight the thermal intensities with quality information before mapping. The upper
right corner has completely black pixels, as it does not have thermal attributes. And this
is evident when we look at the input point clouds in Figure 8, as they have no points in
this corner region. The mapped thermal texture is a low-light image that is brightened
and a heat map is applied as a color map to visualize the temperature distribution better.
Figure 13b shows the resulting generated texture. In the texture, we can see some heating
pipes in the shape of cylinders; thermal lintels, bridges, and anomalies in the shape of blobs
(near windows/doors).
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(a) Top view

(b) Side view
Figure 12. Detected points for whole facade plane (red), skipping 30 texels in between two consecutive
texels. The optimal point closest to vertical (blue), nearest distance point (green), texel mid-point
(black), and lines connecting the texel mid-point to the optimal point.

(a) Resolution layer

(b) Resulting generated texture
Figure 13. Applied resolution layer and resulting generated texture.
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Finally, the extracted gray texture mask, shown in Figure 7b, is applied to remove the
doors and windows and to assign a uniform gray value to the texels where no thermal
intensity is mapped. The mask is binarized via thresholding and blended with the texture
in Figure 13b to generate the final TIR texture, as shown in Figure 14a. It is implemented
on two facades, as shown in Figure 14b.

(a) TIR texture after masking

(b) Textured facades
Figure 14. TIR textures mapped to facades.

The source thermal point cloud shown in Figure 8b and the resulting textured facade
in Figure 14b look quite consistent. Therefore, this proves that the projection algorithm
works quite well. Also, in comparison, Figure 14b clearly shows that the occlusions are not
mapped, as the algorithm selects the nearest points from the facade for mapping, unlike
in the case in Figure 1. Additionally, the windows are excluded by using texture masks.
Therefore, our method shows an advantage over the previous approach.

5.2. Comparison of Different Approaches for Searching Nearest Point

Earlier, we discussed three different approaches for searching for the nearest point.
In this section, we will compare their performance results. The purpose of this analysis
is to find out the best-suited approach that yields the best texture resolution at the best
computation cost. The first approach minimizes the angle between the vector normal to
the texel and the vector connecting the optimal candidate point to the texel mid-point. The
second approach minimizes the 3D perpendicular distance between the optimal candidate
point and the normal vector. The third approach is to select only the minimum distance
point with a temperature value without considering if it is vertical to the texel or not. The
second approach yielded the finest pixels. Table 1 shows the detection results based on the
three approaches for one facade.

The computation time is apparently much more for the first two approaches because
it has to complete the extra computation to find the point closest to vertical. On the other
hand, the third approach is quite fast, as it only searches for the nearest point. Also, it has
the least mean distance from the optimal points to texels, which is quite apparent. As it does
not consider verticality, it has a high mean angle and high mean perpendicular distance to
the normal vector. The mean angle to normal for the first approach is 7.19°, which is very
close to normal and looks good. For the second approach, the mean perpendicular distance
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to normal is 0.0413 m, which is also close to vertical and is quite satisfactory. Considering
the above factors, there is a trade-off between the texture resolution and computation time.
The second approach yields the finest texture, but at the cost of processing time (186 min),
while the third approach generates the coarsest texture, but is quite fast (23 min). Therefore,
the user can choose one of these approaches based on their needs and priorities.

Table 1. Detection results based on different approaches for searching the nearest optimal point.
There are a total of 126,060 texels, out of which 114,446 could be assigned a TIR value.

Parameters Minimize Angle
to Normal

Minimize Perpendicular
Distance to Normal

Minimize Only
Distance

Texels with optimal point farther than nearest point 113,792 103,083 13,444

Texels with multiple optimal points 1130 7177 0

Mean distance from optimal points to texels 0.4597 m 0.4597 m 0.1736 m

Mean angle to normal vector 7.19° 7.42° 82.48°

Mean perpendicular distance to normal vector 0.0575 m 0.0413 m 0.1721 m

Window/door texels 23,342 23,342 23,342

Texels with thermal attributes (without windows/doors) 91,104 91,104 91,104

Processing time 177 min 186 min 23 min

5.3. Tuning the Radius to Find Neighbor Points of the Texel

As mentioned earlier, to define the neighborhood of the texel, we need to set a pre-
defined radius. The radius signifies the search space for the nearest neighbor. The larger
the radius, the more the search space, and vice versa. The selection of an optimal search
space is crucial for the thermal mapping algorithm. Therefore, the purpose of this analysis
is to find out the deciding factors for an optimal search space. The mapping results are
affected by changing the radius, which is discussed in this section. We want to analyze
what is the best-fitting radius that yields a good detection rate and a good quality texture
in a reasonable processing time. Table 2 shows the results for one facade.

The detection rate signifies the proportion of texels for which a corresponding tem-
perature value can be detected and mapped. With an increasing radius, this rate increases,
which seems logical because the search space increases as more neighbor points are con-
sidered. The computation time also increases as more points need to be processed. The
mean distance from the optimal points to texels increases, which is also obvious because
more points imply more outliers. The mean perpendicular distance to the normal vector
is approximately 0.08 m, which is close to vertical. Therefore, it looks like the deciding
factors are the detection rate and computation time. Changing the radius from 0.3 m to
0.5 m increases the detection rate significantly. It can also be seen in the generated textures,
whose quality improves (becomes finer) and has fewer texels with no thermal intensity.
But the computation time also increases three-fold. Changing the radius further to 0.7 m or
1 m does not improve the detection rate much, but the processing time keeps increasing
significantly. Therefore, looking at these factors, a radius of 0.5 m seems to be a good
trade-off where one can assure good quality in a reasonable processing time. Moreover, the
best dimensions of the neighborhood will also depend on the texel size and point cloud
density. If the GSD is reduced, fewer neighbor points will be available for each texel and,
therefore, need a larger radius to include more points. Similarly, more points are available
per texel for a higher point cloud density, so a lower radius would suffice. Nevertheless,
reducing the GSD and increasing the point cloud density will definitely require more
computation cost and time. Therefore, considering these factors, an automated method to
deduce the best-fitting dimensions of the neighborhood will be quite useful.
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Table 2. Detection results based on changing radius of neighborhood.

Parameters Radius = 0.3 m Radius = 0.5 m Radius = 0.7 m Radius = 1 m

Detection rate 83.93% 87.15% 88.97% 90.78%
Detection rate (without windows/doors) 80.28% 84.23% 86.47% 88.69%

Processing time 15 min 44 min 89 min 191 min
Mean distance from optimal points to texels 0.1928 m 0.2448 m 0.2854 m 0.3377 m

Mean perpendicular distance to normal vector 0.0926 m 0.0807 m 0.0783 m 0.0818 m

5.4. Bilinear Interpolation

As an additional experiment, we computed the texel intensity using bilinear interpolation.
To validate our choice of the nearest neighbor approach, we compared it with bilinear interpola-
tion. Later, in Section 5.5, we perform an accuracy analysis of these two methods and show that
the nearest neighbor approach outperforms the bilinear interpolation.

For bilinear interpolation, we project each point in the point cloud normally to a facade
plane. Then, we take the interpolated value of four projected neighbor points for each texel.
The bilinear texture mapping process can be described by the following steps:

(i) Filter and take planar points from the point cloud. Fit a plane to the thermal point
cloud with a maximum allowable distance of 0.5 m from the facade. Retain all the
inlier points in the plane and discard the remaining points in the point cloud. We used
the M-estimator SAmple Consensus (MSAC) algorithm to find the plane. Figure 9b
shows the planar points.

(ii) Project each point in the plane normally to the facade. We only projected the points
with a temperature value. Therefore, the points with no thermal attributes are dis-
carded. Figure 15a shows some sample points (blue) from the point cloud projected
normally to the facade plane. The points after the projection are depicted in green.

(iii) Take the texture layer of the facade (with the same GSD 10 cm). We take the mid-
point of each texel and find its four nearest neighbor points from the above-projected
points. The nearest neighbors are found by using the Kd-tree-based search algo-
rithm. In Figure 15b, we show the mid-point of the texel in blue, the four nearest
neighbor points (p1, p2, p3, p4) in green, and the corresponding Euclidean distances
(d1, d2, d3, d4) between the mid-point and the neighbor points in yellow.

(iv) Finally, for each texel, we perform bilinear interpolation of the thermal attributes of
the four neighbor points.The interpolated value is based on a weighted mean, with
the highest weight given to the lowest distance point and vice versa. The interpolated
value is calculated as:

Vinterpolate = (w1× v1) + (w2× v2) + (w3× v3) + (w4× v4);

w1 =
d4

d1 + d2 + d3 + d4
,

w2 =
d3

d1 + d2 + d3 + d4
,

w3 =
d2

d1 + d2 + d3 + d4
,

w4 =
d1

d1 + d2 + d3 + d4
;

(3)

where w1, w2, w3, and w4 are the weights and v1, v2, v3, and v4 are the temperature
values (weighted by the resolution layer) corresponding to the neighbor points
p1, p2, p3, and p4. The highest weight, w1, corresponds to the nearest point, p1,
and the lowest weight, w4, corresponds to the farthest point, p4. Therefore, d1 <
d2 < d3 < d4 =⇒ w4 < w3 < w2 < w1.
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The interpolated thermal value is finally assigned to the mid-point of the texel. We
repeated this step for all texels until all the interpolated values were mapped to
the facade.

Figure 15c shows the thermal texture generated by bilinear interpolation. The interpo-
lation changed the original temperature values and generated some intermediate average
values, so all the texels in the generated texture image are assigned a value and there are no
blank texels. Therefore, we can see that the upper right corner is also filled up with some
interpolated values, even though there are no corresponding points in that region in the
input thermal point cloud (Figure 8).

(a) Normal projection of points to facade

(b) Four neighbor points of texel mid-point

(c) Interpolated thermal texture
Figure 15. Texture mapping using bilinear interpolation.

5.5. Performance Evaluation

In our study, we registered point clouds with 3D building models. The registration may
cause some errors, such as shift and tilted point clouds. This can lead to incorrect projection
directions and can impact the mapping results. For example, the mapped temperature
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intensity of a point may shift from its original location. Therefore, it is necessary to evaluate
the mapping accuracy. The purpose of this analysis is to evaluate and compare the mapping
accuracy of our proposed method and some similar/former methods.

The accuracy or correctness of the texture is evaluated based on the window’s corner
points. We manually selected some corner points which were distinctly visible in the
thermal texture. We calculated the deviation/shift of these points from a ground truth RGB
texture of the facade. From the discussion in previous sections, the approach “Minimize
perpendicular distance to normal” for searching the nearest point yields the finest texture,
and a radius of 0.5 m seems to be a good trade-off to obtain good quality at a higher
detection rate. Therefore, we took these as a use case for calculating the performance
metrics. Figure 16a shows the window corner points (blue) in the thermal texture and
Figure 16d shows the ground truth RGB texture (corners marked in green).

(a) Thermal texture—nearest neighbor (corner points marked in blue)

(b) Thermal texture—bilinear interpolation (corner points marked in black)

(c) Texture from TIR image sequences (corner points marked in green)

(d) Ground truth RGB texture (corner points marked in green)
Figure 16. Window corners labeled manually. Thirty corner points are taken from 12 windows in the
middle row.
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For deviation, we calculated the Euclidean distance between the pixel coordinates of
the generated thermal texture and the ground truth RGB texture. Finally, we evaluated the
root-mean-square deviation (RMSD) of our nearest neighbor approach as follows:

RMSDNN =

√
∑N

i=1
{
(xti − xgi)2 + (yti − ygi)2

}
N

(4)

where xt and yt are the corner point coordinates of thermal texture (nearest neighbor), xg
and yg are the corner point coordinates of ground truth RGB texture, and N is the total
number of corner points.

We obtained an RMSDNN value of 0.7 m, which seems satisfactory. For perfect results,
this value should tend to zero.

To further strengthen the accuracy analysis of our proposed method, we will compare
our study’s results with similar/former studies. As a use case for similar study, we take
the thermal texture generated using bilinear interpolation (shown in Figure 16b, corners
marked in black color) and calculate its deviation from the ground truth RGB texture. The
RMSD value for bilinear interpolation is calculated as:

RMSDBI =

√
∑N

i=1
{
(xbi − xgi)2 + (ybi − ygi)2

}
N

(5)

where xb and yb are the corner point coordinates of thermal texture (bilinear interpolation).
The estimated RMSDBI value is 1.6 m, which is more than the value for nearest neigh-

bor. This proves that the nearest neighbor has better accuracy than bilinear interpolation.
As a use case for previous studies, we take the texture generated from a sequence

of thermal infrared images [6,24]. This is shown in Figure 16c (corners marked in green).
Similarly, we calculate its deviation from the ground truth RGB texture. The RMSD value
for the image texture is defined as:

RMSDIM =

√
∑N

i=1
{
(xmi − xgi)2 + (ymi − ygi)2

}
N

(6)

where xm and ym are the corner point coordinates of the texture from TIR image sequences.
The RMSDIM value is estimated to be 1.37 m, which is again more than the value for

nearest neighbor. This shows that the nearest neighbor also has better accuracy than the
texture generated from TIR image sequences.

Therefore, from the accuracy point of view, our proposed nearest neighbor method
outperformed both bilinear interpolation and texture from image sequences (RMSDNN <
RMSDIM < RMSDBI).

Therefore, the performance evaluation supported our choice of the nearest neighbor
approach over bilinear interpolation. Earlier, we mentioned that texture generation from
TIR images can lead to projection errors due to the limited level of detail of building mod-
els. We verified that since our nearest neighbor method is better in terms of accuracy
(RMSDNN < RMSDIM). Our approach does not map occlusions, which is evident in
Figures 1 and 13b. Therefore, our results verify our contributions and the gaps we fill in
the literature.

6. Conclusions

This paper proposes a framework to map temperature attributes from thermal point
clouds to building facades to prepare a thermal 3D description of buildings. The goal is
to enrich building models with thermal textures. The texture layer of the facade and point
clouds are fed into a thermal mapping algorithm that uses a nearest-neighbor approach to
find an optimal point closest to vertical within a predefined neighborhood of points. The
thermal intensity of the optimal point is read, weighted by a resolution layer, and then
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assigned to texels. The mapped thermal texture is further enhanced through post-processing
stages to generate the final TIR texture that is applied to the facade. Instead of interpolation,
the nearest neighbor method is selected because it retains the original temperature values.
Three different approaches for searching the nearest point are attempted: “Minimize angle to
normal”, “Minimize perpendicular distance to normal”, and “Minimize only distance”. The
approach “Minimize perpendicular distance to normal” yields the finest texture resolution
at a reasonable processing time. This approach yielded a 0.0413 m mean perpendicular
distance to normal, which is close to vertical and is quite satisfactory. The radius of the
neighborhood that signifies the search space is tuned. A radius of 0.5 m provides a good
trade-off of better quality and a higher detection rate at a reasonable computation cost. The
accuracy of the generated texture is evaluated based on the shift in the window corner points
from a ground truth RGB texture. The deviation/shift is calculated using a performance
metric, RMSD, and its value for our nearest neighbor method is found to be 0.7 m, which is
satisfactory. In terms of accuracy, the nearest neighbor method is compared with bilinear
interpolation and an existing TIR image-based texturing method. The RMSD value of the
nearest neighbor method is found to be the lowest, which implies that it has better accuracy
than the other two methods. Our approach is compared with existing texturing methods
and is found to have some advantages, such as occlusions being removed and windows
that show the wrong temperature being excluded. Some benefits of using point clouds
instead of TIR images are discussed. Texture generation directly from TIR images can lead
to projection errors due to simplified building models. That is why texture is generated by
projecting point clouds. The limited geometric density and accuracy of TIR images can lead
to poor 3D reconstruction. That is why laserscanner point clouds extended with thermal
intensities are used in our method instead of 3D reconstructed point clouds. The current
implementation of our method is carried out on an outdoor facade. In the future, we aim to
include indoor thermal mapping, thermal pattern analysis, processing time optimization,
and performance evaluation with a manually generated annotated model.
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TIR Thermal Infrared
3D Three-dimensional
IR Infrared Radiation
LoD Level of Detail
MLS Mobile Laser Scanning
SfM Structure from Motion
UAV Unmanned Aerial Vehicle
RGB Red, Green, and Blue
ICP Iterative Closest Point
DSO Direct Sparse Odometry
TLS Terrestrial Laser Scanner
INS Inertial Navigation System
GPS Global Positioning System
CAD Computer-Aided Design
GSD Ground Sampling Distance
SVD Singular Value Decomposition
RANSAC Random Sample Consensus
DOF Degree of Freedom
MSAC M-estimator Sample Consensus
FME Feature Manipulation Engine
CityGML City Geography Markup Language
UTM Universal Transverse Mercator
TUM Technical University of Munich
RMSD Root-Mean-Square Deviation
MODISSA Mobile Distributed Situation Awareness
LiDAR Light Detection and Ranging

References
1. Balaras, C.A.; Argiriou, A. Infrared thermography for building diagnostics. Energy Build. 2002, 34, 171–183. [CrossRef]
2. Garrido, I.; Lagüela, S.; Arias, P.; Balado, J. Thermal-based analysis for the automatic detection and characterization of thermal

bridges in buildings. Energy Build. 2018, 158, 1358–1367. [CrossRef]
3. Krawczyk, J.; Mazur, A.M.; Sasin, T.; Stokłosa, A. Infrared building inspection with unmanned aerial vehicles. Prace Instytutu

Lotnictwa 2015, 240, 32–48. [CrossRef]
4. Lerma, J.L.; Cabrelles, M.; Portalés, C. Multitemporal thermal analysis to detect moisture on a building façade. Constr. Build.

Mater. 2011, 25, 2190–2197. [CrossRef]
5. Rakha, T.; Gorodetsky, A. Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated

building inspection procedures using drones. Autom. Constr. 2018, 93, 252–264. [CrossRef]
6. Hoegner, L.; Stilla, U. Mobile thermal mapping for matching of infrared images with 3D building models and 3D point clouds.

Quant. InfraRed Thermogr. J. (QIRT) 2018, 15, 252–270. [CrossRef]
7. Ham, Y.; Golparvar-Fard, M. Mapping actual thermal properties to building elements in gbXML-based BIM for reliable building

energy performance modeling. Autom. Constr. 2015, 49, 214–224. [CrossRef]
8. Golparvar-Fard, M.; Ham, Y. Automated diagnostics and visualization of potential energy performance problems in existing

buildings using energy performance augmented reality models. J. Comput. Civ. Eng. 2014, 28, 17–29. [CrossRef]
9. Zhu, J.; Xu, Y.; Ye, Z.; Hoegner, L.; Stilla, U. Fusion of urban 3D point clouds with thermal attributes using MLS data and TIR

image sequences. Infrared Phys. Technol. 2021, 113, 103622. [CrossRef]
10. Wang, C.; Cho, Y.K.; Gai, M. As-is 3D thermal modeling for existing building envelopes using a hybrid LIDAR system. J. Comput.

Civ. Eng. 2013, 27, 645–656. [CrossRef]
11. Westfeld, P.; Mader, D.; Maas, H.G. Generation of TIR-attributed 3D point clouds from UAV-based thermal imagery. In

Photogrammetrie-Fernerkundung-Geoinformation; Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2015; pp. 381–393.
12. Lagüela, S.; Armesto, J.; Arias, P.; Zakhor, A. Automatic procedure for the registration of thermographic images with point clouds.

In Proceedings of the XXII Congress of the International Society for Photogrammetry and Remote Sensing, Melbourne, Australia,
25 August–1 September 2012.

13. Maset, E.; Fusiello, A.; Crosilla, F.; Toldo, R.; Zorzetto, D. Photogrammetric 3D building reconstruction from thermal images.
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 25. [CrossRef]

14. Yamaguchi, M.; Truong, T.P.; Mori, S.; Nozick, V.; Saito, H.; Yachida, S.; Sato, H. Superimposing thermal-infrared data on 3D
structure reconstructed by RGB visual odometry. IEICE Trans. Inf. Syst. 2018, 101, 1296–1307. [CrossRef]

15. Yang, M.D.; Su, T.C.; Lin, H.Y. Fusion of infrared thermal image and visible image for 3D thermal model reconstruction using
smartphone sensors. Sensors 2018, 18, 2003. [CrossRef]

http://doi.org/10.1016/S0378-7788(01)00105-0
http://dx.doi.org/10.1016/j.enbuild.2017.11.031
http://dx.doi.org/10.5604/05096669.1194965
http://dx.doi.org/10.1016/j.conbuildmat.2010.10.007
http://dx.doi.org/10.1016/j.autcon.2018.05.002
http://dx.doi.org/10.1080/17686733.2018.1455129
http://dx.doi.org/10.1016/j.autcon.2014.07.009
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000311
http://dx.doi.org/10.1016/j.infrared.2020.103622
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000273
http://dx.doi.org/10.5194/isprs-annals-IV-2-W3-25-2017
http://dx.doi.org/10.1587/transinf.2017MVP0023
http://dx.doi.org/10.3390/s18072003


Remote Sens. 2023, 15, 4830 25 of 25

16. Alba, M.I.; Barazzetti, L.; Scaioni, M.; Rosina, E.; Previtali, M. Mapping infrared data on terrestrial laser scanning 3D models of
buildings. Remote Sens. 2011, 3, 1847–1870. [CrossRef]

17. Scaioni, M.; Rosina, E.; Barazzetti, L.; Previtali, M.; Redaelli, V. High-resolution texturing of building facades with thermal images.
Proc. SPIE 2012, 8354, 14. [CrossRef]

18. Borrmann, D.; Elseberg, J.; Nüchter, A. Thermal 3D mapping of building façades. In Intelligent Autonomous Systems 12; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 173–182.

19. Dahaghin, M.; Samadzadegan, F.; Javan, F.D. 3D thermal mapping of building roofs based on fusion of thermal and visible point
clouds in uav imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 271–277. [CrossRef]

20. Lin, D.; Jarzabek-Rychard, M.; Tong, X.; Maas, H.G. Fusion of thermal imagery with point clouds for building façade thermal attribute
mapping. ISPRS J. Photogramm. Remote Sens. 2019, 151, 162–175. [CrossRef]

21. Hoegner, L.; Stilla, U. Building facade object detection from terrestrial thermal infrared image sequences combining different
views. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 55–62. [CrossRef]

22. Hoegner, L.; Stilla, U. Automatic generation of façade textures from terrestrial thermal infrared image sequences. In Proceedings
of the 12th Quantitative InfraRed Thermography Conference, France, Bordeaux, 7–11 July 2014.

23. Hoegner, L.; Kumke, H.; Meng, L.; Stilla, U. Automatic extraction of textures from infrared image sequences and database integra-
tion for 3D building models. In PFG Photogrammetrie-Fernerkundung-Geoinformation; Schweizerbart’sche Verlagsbuchhandlung:
Stuttgart, Germany, 2007; pp. 459–468.

24. Hoegner, L.; Stilla, U. Automated Generation of Building Textures from Infrared Image Sequences. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 2007, 36, 65–70.

25. Stilla, U.; Kolecki, J.; Hoegner, L. Texture mapping of 3D building models with oblique direct geo-referenced airborne IR image
sequences. In Proceedings of the ISPRS Hannover Workshop, Hannover, Germany, 2–5 June 2009.

26. Iwaszczuk, D.; Hoegner, L.; Schmitt, M.; Stilla, U. Line based matching of uncertain 3D building models with ir image sequences
for precise texture extraction. In Photogrammetrie-Fernerkundung-Geoinformation; Schweizerbart’sche Verlagsbuchhandlung:
Stuttgart, Germany, 2012; pp. 511–521.

27. Hoegner, L.; Abmayr, T.; Tosic, D.; Turzer, S.; Stilla, U. Fusion of TLS and RGB point clouds with TIR images for indoor mobile
mapping. In Proceedings of the 14th Quantitative InfraRed Thermography Conference (QIRT 2018), QIRT Council, Berlin,
Germany, 25–29 June 2018; pp. 341–349. [CrossRef]

28. Hoegner, L.; Tuttas, S.; Xu, Y.; Eder, K.; Stilla, U. Evaluation of methods for coregistration and fusion of rpas-based 3d point
clouds and thermal infrared images. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 241–246. [CrossRef]

29. Kolecki, J.; Iwaszczuk, D.; Stilla, U. Calibration of an IR camera system for automatic texturing of 3D building models by direct
geo-referenced images. In Proceedings of the Eurocow, Castelldefels, Spain, 10–12 February 2010.

30. Iwaszczuk, D.; Helmholz, P.; Belton, D.; Stilla, U. Model-to-image registration and automatic texture mapping using a video
sequence taken by a mini UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W1, 151–156. [CrossRef]

31. Iwaszczuk, D.; Hoegner, L.; Stilla, U. Quality-based building-texture selection from different sensors. In Proceedings of the 2015
Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4. [CrossRef]

32. Iwaszczuk, D.; Hoegner, L.; Stilla, U. Matching of 3D building models with IR images for texture extraction. In Proceedings of
the 2011 Joint Urban Remote Sensing Event, Munich, Germany, 11–13 April 2011; pp. 25–28. [CrossRef]

33. Iwaszczuk, D.; Stilla, U. Alignment of 3D Building Models and TIR Video Sequences with Line Tracking. ISPRS Ann. Photogramm.
Remote Sens. Spat. Inf. Sci. 2014, II-1, 17–24. [CrossRef]

34. Torr, P.H.; Zisserman, A. MLESAC: A new robust estimator with application to estimating image geometry. Comput. Vis. Image
Underst. 2000, 78, 138–156. [CrossRef]

35. Muja, M.; Lowe, D.G. Fast approximate nearest neighbors with automatic algorithm configuration. In Proceedings of the Fourth
International Conference on Computer Vision Theory and Applications—VISAPP, Lisboa, Portugal, 5–8 February 2009; p. 2.

36. Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.H. OGC City Geography Markup Language (CityGML) Encoding Standard, 2.0.0 ed.;
Open Geospatial Consortium: Maryland, MD, USA, 2012.

37. Zhu, J.; Gehrung, J.; Huang, R.; Borgmann, B.; Sun, Z.; Hoegner, L.; Hebel, M.; Xu, Y.; Stilla, U. TUM-MLS-2016: An Annotated
Mobile LiDAR Dataset of the TUM City Campus for Semantic Point Cloud Interpretation in Urban Areas. Remote Sens. 2020, 12,
1875. [CrossRef]

38. Borgmann, B.; Schatz, V.; Kieritz, H.; Scherer-Klöckling, C.; Hebel, M.; Arens, M. Data Processing and Recording Using a Versatile
Multi-Sensor Vehicle. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4.1, 21–28. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/rs3091847
http://dx.doi.org/10.1117/12.920613
http://dx.doi.org/10.5194/isprs-archives-XLII-4-W18-271-2019
http://dx.doi.org/10.1016/j.isprsjprs.2019.03.010
http://dx.doi.org/10.5194/isprsannals-II-3-W4-55-2015
http://dx.doi.org/10.21611/qirt.2018.019
http://dx.doi.org/10.5194/isprs-archives-XLI-B3-241-2016
http://dx.doi.org/10.5194/isprsarchives-XL-1-W1-151-2013
http://dx.doi.org/10.1109/JURSE.2015.7120352
http://dx.doi.org/10.1109/JURSE.2011.5764710
http://dx.doi.org/10.5194/isprsannals-II-1-17-2014
http://dx.doi.org/10.1006/cviu.1999.0832
http://dx.doi.org/10.3390/rs12111875
http://dx.doi.org/10.5194/isprs-annals-IV-1-21-2018

	Introduction
	Related Work
	Methodology
	Thermal Mapping Algorithm: Nearest Neighbor Approach
	Clipping the Point Cloud
	Finding the Neighbor Points within a Radius
	Finding the Nearest Point along Normal Direction to Texel

	Post-Processing

	Experiments
	Test Datasets and Platform Used
	Preparation of Input Data
	Pre-Processing and Co-Registering of Input Point Clouds and LoD2 Models
	Establish Refined LoD3 Models and Texture Mask


	Results and Discussion
	Thermal Mapping
	Comparison of Different Approaches for Searching Nearest Point
	Tuning the Radius to Find Neighbor Points of the Texel
	Bilinear Interpolation
	Performance Evaluation

	Conclusions
	References

