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Abstract: Land use/cover change (LULCC) is an integral part of global environmental change
and is influenced by both natural and socioeconomic factors. This study aims to comprehensively
analyze land use and land cover (LULC) in Kwazulu-Natal and Mpumalanga provinces in eastern
South Africa from 1995 to 2020 and to identify the driving force behind LULCC. Utilizing Landsat
series satellite imagery as a data source and based on the Google Earth Engine (GEE) platform
and eCognition software 9.0, two different classification methods, pixel-based classification and
object-oriented classification, were adopted to gather LULC data every five years. The spatiotemporal
characteristics of the data were then analyzed. Using an optimal parameter-based geodetector
(OPGD), this study explored the driving factors of LULCC in this region. The results show the
following: (1) Of the two classification methods examined, the object-oriented classification had
higher accuracy, with an overall accuracy of 80–90%. The pixel-based classification had lower accuracy,
with an overall accuracy of 62.33–72.14%. (2) From 1995 to 2020, the area of farmland in the study area
showed a fluctuating increase, while the areas of forest and grassland declined annually. The area of
constructed land increased annually, whereas the areas of water and unused land fluctuated over
time. (3) Socioeconomic factors generally had greater explanatory power than natural factors, with
population growth and economic development being the main drivers of LULCC in the region. This
study provides a reliable scientific basis for the formulation of sustainable land resource development
strategies in the area, as well as for the management and implementation of urban and rural planning,
ecological protection, and environmental governance by relevant departments.

Keywords: land use/cover change; object-oriented classification; driving factor analysis; optimal
parameter-based geodetector

1. Introduction

Land is a vital resource that underlies both natural processes and human activities. It
is the stage upon which complex natural processes occur and human civilization develops,
leading to transformations in landforms [1,2]. However, the relationship between land
and human activities is not always harmonious. This tension is particularly evident in
Kwazulu-Natal and Mpumalanga provinces in the eastern part of South Africa. This region,
characterized by advantageous climate conditions and a long coastline, presents favorable
conditions for human habitation and socioeconomic development, thus facing notably
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prominent human-land conflicts. In Kwazulu-Natal, where small-scale agriculture domi-
nates, the growing supply and demand for crops such as sugarcane, tea, and pineapple has
led to a large amount of natural land being converted into farmland. Additionally, uncon-
trolled deforestation has resulted in a decrease in forest area and quality. Persistent and
unsustainable changes in land not only exacerbate soil erosion and habitat destruction but
also diminish the capacity for carbon sequestration both aboveground and underground [3].
Mpumalanga is home to one of Africa’s largest wildlife reserves, Kruger National Park. The
thriving tourism industry and the expansion of human settlements have led to a transition
in 36% of the local biosphere reserves, posing a huge threat to the ecosystem [4].

Given the pressing nature of human-land conflicts in this region, it is imperative to
understand the dynamics of land use and land cover (LULC). LULC refers to the attributes
of land resulting from both human activities and natural processes. The rate and scale of
land use/cover change (LULCC) caused by human factors generally exceed those induced
by natural actions [5,6]. LULCC profoundly impacts global climate patterns, water cycles,
carbon cycles, radiation balance, etc., by changing elements of physical geography, such as
surface reflectance, carbon storage capacity, and soil physicochemical properties, thereby
further affecting the stability of global ecosystems [7–9]. Numerous studies have proven
that LULCC is one of the main driving factors of global warming, causing approximately
1.37 billion tons of carbon emissions annually, accounting for nearly 12% of total global
carbon emissions. In addition, due to carbon emissions, the global average temperature
has increased by approximately 1 ◦C in the past 100 years, with urban areas experiencing a
higher increase than this average [10]. Therefore, studying the spatiotemporal variation
in regional LULCC and revealing the critical driving factors will be crucial for promoting
global environmental change research.

LULC data, primarily obtained from remote sensing images, are fundamental for
analyzing regional LULCC. The classification methods of LULC data based on remote
sensing images mainly include pixel-based and object-oriented mechanisms. Both methods
can be performed through supervised learning and possess their own strengths and weak-
nesses in terms of classification performance and efficiency [11–13]. With the introduction
and improvement of classifiers with high computational efficiency, strong generalization
ability, and diverse adaptation scenarios, comparative research on classification methods
has significantly increased. Moreover, the precision and quantity of produced LULC data
gradually meet the needs of practical applications [14–16]. While technological advance-
ments in classification methods have been instrumental in improving the quality of LULC
data, understanding the underlying factors driving these changes remains more important.

Driving force analysis is a method that can be used for exploring the intrinsic mecha-
nisms and influencing factors of various phenomena, including but not limited to LULCC. It
offers insights into the dynamic processes and regularities that govern LULCC. Geodetector
occupies an important position in the field of driving force analysis. Its basic theory is built
on the assumption that the spatial distribution of independent variables and dependent
variables with a correlation displays similarity [17–19]. Compared with other traditional
driving force analysis methods, geodetectors can not only avoid the problem of multi-
collinearity of influencing factors but also detect the interaction between two influencing
factors [20,21]. However, when many studies apply the geodetector method, they often
rely on professional knowledge, existing experience, or a single data grouping method to
discretize the independent variables rather than choosing the optimal grouping scheme
based on the data features of the independent variables. Therefore, the explanatory power
of the driving factors is generally low, and it is difficult to accurately detect the spatial
relationship between the dependent variable and the influencing factors. In 2020, Song et al.
proposed an optimal parameter-based geodetector (OPGD) model that could design an
optimal discretization scheme based on the data features of each independent variable and
then input them into the geodetector model for analysis [22]. This model is grounded in a
statistical perspective, providing a more accurate discretization method for independent
variables, making it easier to express the relationship between the spatial distribution of



Remote Sens. 2023, 15, 4823 3 of 19

independent variables, and dependent variables and effectively promoting the driving
force analysis of LULCC toward a precise and quantitative perspective.

To address the increasingly prominent LULCC and human-land conflicts in Kwazulu-
Natal and Mpumalanga provinces, it is necessary to produce accurate and reliable LULC
data to analyze the key causes of changes. Due to the spatial heterogeneity between
different regions of the Earth’s surface, different regions produce varying results for diverse
classification schemes [23]. This study used three main classification methods to classify the
LULC of the study area. The LULC produced by the most effective method was taken as the
basic data, and the OPGD model was used to analyze the driving factors of LULCC in the
region. This study compared various LULC classification algorithms, which facilitated the
extraction of the most accurate LULC data in the study area. The OPGD model accurately
identifies the driving factors of LULCC in this area based on the produced LULC data,
providing a detailed and reliable scientific basis for relevant departments to develop land
planning, environmental governance, and ecological protection.

2. Study Area and Data
2.1. Study Area

Mpumalanga and KwaZulu-Natal are located in the eastern part of South Africa and
hold crucial positions in the overall development of the Republic of South Africa. The total
area of the study area is 166,570 km2, comprising 14 municipalities and 69 local munici-
palities. The geographical range is from 24.00◦S to 31.08◦S and 28.24◦E to 32.89◦E, with
altitudes varying between 0 and 3495 m. The terrain is highly undulating and complex, as
illustrated in Figure 1. The region features a diverse climate, with Mpumalanga Province
primarily experiencing a tropical grassland climate and KwaZulu-Natal Province predomi-
nantly characterized by a temperate marine climate. The annual average temperature in
the study area is between 16 and 23 ◦C, and the precipitation decreases from east to west
and from the coast to the interior, ranging between 510 and 1270 mm. The population is
primarily comprised of South African black people, with respective population numbers
of 13,127,268 in Mpumalanga and 11,278,513 in Kwazulu-Natal. Economically, agricul-
ture, forestry, mining, and tourism are the dominant sectors, with corn, wheat, sugarcane,
and fruit as the main crops. Despite the region’s abundant natural resources and favor-
able ecological environment, activities such as excessive urban expansion, deforestation,
land reclamation, coal mining, and the development of tourist areas have led to severe
environmental pollution issues. Ecosystems and biodiversity are under significant threat.

2.2. Data Sources

The research data included remote sensing imagery data, topographic data, precipita-
tion data, land surface temperature data, population density data processed through spatial
visualization, nighttime light data, and vector data of administrative boundaries at all
levels in South Africa (Table 1). Aside from the vector data of South African administrative
boundaries, the raster data were obtained on the Google Earth Engine (GEE) platform
and were processed in conjunction with GEE and other software such as ArcGIS 10.8 and
ENVI 5.6, with all raster data resampled to 30 m. In addition, the temporal range of the
MOD21A1D dataset, which provides land surface temperature (LST) information, lacked
data for the year 1995, so the LST data for this year were obtained using the statistical
mono-window (SMW) algorithm.

Table 1. Specific parameters of the research data.

Type Name Resolution (m) Data Source Notes

Basic data Administrative boundary Vector data https://gadm.org/data.html (accessed on 16 July 2023)
Image data Landsat5 TM 30 LANDSAT/LT05/C02/T1_L2 1995–2010

Landsat8 OLI 30 LANDSAT/LC08/C02/T1_L2 2015–2020
Topographic data NASA-SRTM 30 USGS/SRTMGL1_003
Precipitation data CHIRPS 5566 UCSB-CHG/CHIRPS/DAILY

https://gadm.org/data.html
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Table 1. Cont.

Type Name Resolution (m) Data Source Notes

LST data MOD21A1D 1000 MODIS/061/MOD21A1D 2000–2020
Population

density data GPWv411 927.67 CIESIN/GPWv411/GPW_Population_Density

Nighttime
light data DMSP-OLS 927.67 NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4 1995–2010

VIIRS 463.83 NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG 2015–2020

Notes: Apart from the basic data, the sources of other data are represented by their data collection ID in GEE,
which can be retrieved and acquired from the Earth Engine Data Catalog. The LST data for 1995 were generated
by the SMW in conjunction with Landsat 5 imagery.
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3. Methods
3.1. LULC Classification System and Sampling Scheme

(1) LULC classification system: Regional LULC can be divided based on various classifica-
tion systems, depending on the application objectives. For example, the International
Geosphere-Biosphere Programme (IGBP) system is particularly comprehensive, of-
fering 17 primary classes that range from various types of forests and shrublands to
urban and constructed lands [24]. This system is widely recognized for its utility in
remote sensing applications and has been adopted in numerous global and regional
studies. Studies centered on agriculture may find the Food and Agriculture Organiza-
tion (FAO) system more fitting [25]. However, it is crucial to recognize that specific
research objectives might require different LULC classification systems. For instance,
Ge and colleagues divided land use types into farmland, forest, grassland, garden
land, residential and industrial land, transportation land, water, and others in their
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study [26]. Ju divided the LULC into 31 classes when studying the portrayal of the
national land use spatial pattern [27]. Given the objectives and the actual situation of
the study area, farmland, forest, grassland, water, constructed land, and unused land
were adopted as six primary classes for the classification system in this study.

(2) Sampling scheme: In this study, a proportional stratified random sampling method
was employed to select training and testing samples for different LULC classes based
on their respective area ratio to the total area of the study area [28]. The sampling
process was conducted through the visual interpretation of high-resolution imagery
available on the GEE platform. A total of 7000 samples were collected across the study
area, as illustrated in Table 2. The distribution of samples varies depending on the
research year under consideration. The distribution map of samples collected for 2020
is shown in Figure 2. It is noteworthy that the samples were collected from individual
pixels, thereby ensuring a high level of representativeness for each LULC class. The
random division of samples into training and testing sets followed a fixed ratio of
5000 to 2000. Specifically, within each class, the division between training and testing
sets maintained a fixed ratio of 5:2.
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In the case of object-oriented classification, the sampling process was implemented
after the image segmentation phase, utilizing eCognition Developer 9.0 as the software
platform. Unlike the pixel-based approach, the sampling unit was the object generated
from the segmentation process. A total of 7000 samples were collected independently
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and were randomly divided into 5000 training samples and 2000 testing samples. The
same proportional stratified random sampling method as in the pixel-based approach
was adopted, preserving the existing area ratio for different LULC classes. The random
division between training and testing sets adhered to the established 5:2 ratio within each
class. This maintained methodological consistency across both pixel-based and object-
oriented approaches.

Table 2. The land use classification system adopted in this study.

LULC Class Training Sample Testing Sample

Farmland 1500 600
Forest 700 280

Grassland 2000 800
Water 200 80

Constructed land 300 120
Unused land 300 120

3.2. Feature Combination

In the process of remote sensing image classification, choosing an appropriate combi-
nation of features can help to maximize the differentiation of various LULC classes, thereby
effectively improving classification accuracy [29–31]. In this study, the visible, near-infrared,
and shortwave infrared bands of Landsat imagery (B1–B5 and B7 bands for L5, B2–B7
bands for L8) were used as spectral features. Four spectral index features, namely the nor-
malized difference vegetation index (NDVI), modified normalized difference water index
(MNDWI), normalized difference built-up index (NDBI), and bare soil index (BSI), were
generated based on the imagery of each year. By importing NASA-SRTM data, elevation
and slope were generated as topographic features. All the features above form the feature
combination used for pixel-based classification. The formulas for four spectral indices are
as follows:

NDVI =
(NIR − RED)

(NIR + RED)
(1)

MNDWI =
(GREEN − MIR)
(GREEN + MIR)

(2)

NDBI =
(SWIR − NIR)
(SWIR + NIR)

(3)

BSI =
(MIR + RED)− (NIR + BLUE)
(MIR + RED) + (NIR + BLUE)

(4)

where BLUE refers to the blue band, GREEN refers to the green band, RED refers to the red
band, NIR refers to the near infrared band, MIR refers to the middle infrared band, and
SWIR refers to the short-wave infrared band.

In the object-oriented classification process, in addition to the aforementioned feature
combination, texture features generated by the gray-level cooccurrence matrix (GLCM)
were added [29]. A GLCM can identify the spatial relationships of pixels in the image,
thus calculating the texture features of the objects. Through the GEE platform, the GLCM
generates the eight most typical texture features: energy (angular second moment), contrast,
correlation, entropy, variance, inverse difference moment, sum average, and dissimilarity.

To reduce the dimensionality of eight texture features, principal component analysis
(PCA) was employed. This analysis was conducted using ENVI 5.6 software, which
utilizes an orthogonal rotation method for component extraction. Prior to PCA, all original
features were subjected to standardization, and the correlation matrix was used for the
following analysis. The eigenvalues of the first and second principal components were
found to be 4.43 and 1.50, respectively. When considered against the aggregate eigenvalue
sum of 6.509, these two components account for over 90% of the total variance, thus
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serving as an effective representation of the texture information. The component matrix
is shown in Table 3, elucidating how each original variable contributes to these principal
components [32].

Table 3. Component matrix generated from PCA.

Feature Eig. 1 Eig. 2

Energy 0.396 −0.415
Contrast −0.396 −0.397
Correlation −0.154 −0.062
Entropy −0.409 0.386
Variance −0.389 −0.425
Inverse difference moment 0.392 −0.365
Sum average 0.049 0.366
Dissimilarity −0.433 −0.265

Among all the texture features, energy, contrast, entropy, variance, inverse difference
moment, sum average, and dissimilarity primarily contribute to the first and second
principal components according to their loadings.

Additionally, the size and shape of the segmented objects were calculated as geometric
features to be added to the feature combination for object-oriented classification. The
features required for pixel-based classification and object-oriented classification are shown
in Table 4.

Table 4. Features required for pixel-based and object-oriented classification.

Features Pixel-Based Classification Object-Oriented Classification

Spectral feature Landsat8 B2–B7 for 2015 and 2020, Landsat5 B1–B5 and B7 for 1995–2010
Spectral index feature NDVI, MNDWI, NDBI, BSI
Topographical feature Elevation, slope

Texture feature - Two principal components of features generated from GLCM
Geometrical feature - Size, shape

3.3. Random Forest Classifier

Random forest classification is an ensemble learning algorithm that performs classi-
fication by constructing multiple decision trees. This algorithm randomly draws several
subsets from the original training dataset without replacement, with each subset used
to build an independent decision tree. Each sample to be classified is input into each
decision tree, the prediction results are collected and statistically analyzed, and the class
that appears the most times is chosen as the classification output [33]. The random forest
classification algorithm has good generalization ability and stability, can effectively handle
high-dimensional data, and has strong robustness against noise and outliers, so it is widely
used in the field of LULC classification. In addition, the random forest classification algo-
rithm has fast training speed and high accuracy, outperforming many other classification
methods. In practical applications, it is important to choose the appropriate size of the
subset and the number of decision trees, as these hyperparameters will significantly affect
the performance and generalization ability of the model. To optimize the classification
process, cross-validation can be used for tuning hyperparameters [34].

3.4. Classification Stage
3.4.1. Pixel-Based Classification

Pixel-based classification operates directly on individual pixels of remote sensing
images. In this study, pixel-based classification was executed on the GEE platform. A
total of 5000 out of 7000 pixels were selected as training samples through proportional
stratified random sampling. The feature set employed for classification encompassed
spectral features, spectral index features, and topographic features, focusing on pixel-level
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information. The random forest classifier was utilized to perform classification, yielding
the pixel-based classification outcome.

3.4.2. Object-Oriented Classification

Object-oriented classification uses image segmentation technology to group all pixels
in remote sensing images into completely covered and compactly connected objects based
on spectral/spatial similarity. In this study, object-oriented classification was performed
on eCognition Developer 9.0. A multiscale segmentation method was adopted, assigning
equal weight to each feature in the feature combination with a scale setting of 150, and
both shape and compactness were set to 0.5 [35]. 5000 out of 7000 total object samples were
divided as training samples by proportional stratified random sampling, and a feature
combination that included spectral features, topographic features, spectral index features,
texture features, and geometric features was used as the basis for classification. The
classification was completed using the random forest classifier, resulting in the object-
oriented classification outcome [36].

3.5. Optimal Parameter-Based Geodetector

The OPGD model is an improvement of the traditional geographic detector model,
comprising five major modules: parameter optimization, factor detection, interaction
detection, risk detection, and ecological detection [22]. Traditional studies often yield poor
analytical outcomes due to the reliance on experience to group independent variables
or the use of a single discretization method across different independent variables. The
parameter optimization module addresses this problem by quantitatively evaluating each
independent variable, achieving the optimal detection effect on the degree to which each
driving factor affects the spatial distribution of the dependent variable. The parameter
optimization module can utilize various data grouping methods based on the characteristics
of the data (this paper selected four grouping methods: natural breaks method, quantile
method, equal distance interval method, and geometric interval method) and set various
breakpoint numbers to discretize the independent variables. Moreover, it calculates the
q-value for each combination of the grouping method and the breakpoint number. The
combination with the highest q-value is selected as the optimal data discretization scheme.

Based on the optimal grouping scheme obtained from the parameter optimization
module, the factor detection and interaction detection modules in the OPGD were used
to analyze the driving forces of LULCC in the study area. The calculation formula for the
factor detection module is as follows:

q = 1 −
L

∑
h=1

Nhσ2
h

Nσ2 = 1 − SSW
SST

(5)

SSW =
L

∑
h=1

Nhσ2
h (6)

SST = Nσ2 (7)

where SSW is the sum of the variances of the dependent variables within the groups
corresponding to the discretized independent variables, and SST is the total variance of the
dependent variables within the entire area. L is the number of groups for the independent
variables, h is the index of the group number, Nh is the number of units of the dependent
variables in the h-th group, and N is the number of units of the dependent variables in
the entire area. Correspondingly, σh is the variance of the dependent variables in the h-th
group, and σ is the variance of the dependent variables in the entire area. q represents
that the spatial distribution of the independent variables can explain 100 × q% of the
spatial distribution of the dependent variables, and the range of the q-value is [0, 1]. q = 1
indicates that the variance of the dependent variables within the group is 0, which means
the distribution of the dependent variables completely matches the distribution of this
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independent variable, and this independent variable can completely explain the spatial
distribution of the dependent variables; in contrast, q = 0 indicates that this independent
variable offers no explanation for the spatial distribution of the dependent variables.

3.6. Selection of Dependent Variables and Driving Factors

In the process of driving force analysis, the comprehensive index of land use intensity
was selected as the dependent variable for analysis. This index serves as a robust indicator
of LULCC, effectively linking LULCC to diverse driving factors that contribute to its
dynamics. Considering the natural and socioeconomic characteristics of the study area, as
well as the accessibility and comprehensiveness of data coverage over time, the human
impact index (HII), population density, total population, nighttime light intensity, elevation,
slope, terrain roughness, annual precipitation, surface temperature, and vegetation index
were selected as driving factors. The expression of the comprehensive index of land use
intensity is as follows:

L = 100 ×
n

∑
i=1

Ai × Ci (8)

where L is the comprehensive index of land use intensity in a specific area, A is the grading
index of the degree of land use for the i-th class, C is the ratio of the area of the i-th class of
LULC to the total area of the region, and n is the number of LULC classes. In this study,
LULC was divided into six classes. Drawing on past research results, the grading indices
for farmland, forest, grassland, water, constructed land, and unused land were 3, 2, 2, 2, 4,
and 1, respectively [37].

The expression of the HII is as follows:

HII =
N

∑
i=1

AiPi
TA

(9)

where HII is the human impact index; A is the area of the i-th class of land use; TA is
the total area of the region; P is the intensity coefficient of human impact represented by
the i-th class of land use; and N is the number of LULC classes. In line with previous
research, the coefficients of impact intensity were obtained by averaging the values from the
Lohani checklist method, the Leopold matrix method, and the Delphi method. The impact
intensity coefficients for farmland, forest, grassland, water, constructed land, and unused
land were 0.59, 0.13, 0.10, 0.14, 0.94, and 0.06, respectively [38]. This averaging approach
aimed to capture the complementary strengths and mitigate the individual limitations of
each method, thus offering a comprehensive and reliable assessment of impact intensities
across different land classes.

4. Experimental Results
4.1. Accuracy Assessment

As shown in Table 5, among the classification results, the object-oriented classification
yielded the best results, with an overall accuracy ranging between 81.67% and 90.57%
and a kappa coefficient between 0.7800 and 0.8869. However, the results generated from
pixel-based classification were much lower, with an overall accuracy between 62.33% and
72.14% and a kappa coefficient between 0.5480 and 0.6657. Therefore, we decided to employ
the object-oriented classification algorithm to extract the LULC data of the study area from
1995 to 2020, followed by post-classification processing, temporal consistency checks, and
logical consistency checks. Expert validation and ground-truth validation were applied to
rectify any inconsistencies and inaccuracies in the classification, eventually generating the
regional LULC dataset (Figure 3).
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Table 5. Accuracy verification of classification results for each year in the study area.

Year
Pixel-Based Object-Oriented

OA (%) KAPPA OA (%) KAPPA

1990 62.33% 0.5480 81.67% 0.7800
1995 63.90% 0.5669 85.95% 0.8314
2000 65.52% 0.5863 87.05% 0.8446
2005 68.10% 0.6171 89.33% 0.8720
2010 67.38% 0.6086 89.05% 0.8686
2015 68.68% 0.6242 88.34% 0.8601
2020 72.14% 0.6657 90.57% 0.8869
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4.2. LULCC Analysis

According to the multiyear LULC spatial distribution maps of the study area (Figure 3),
the temporal change graph of the area proportion of each LULC from 1995 to 2020 could
be calculated (Figure 4). According to Figure 3, farmlands were mainly distributed in
the southeastern coastal areas and the central-northern plateau regions; grasslands were
located primarily in Kruger National Park in the northeast; forests extended north–south
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along the main mountain ranges within the region; and water, constructed lands, and
unused lands were scattered throughout the entire study area. Since 1995, the proportion
of farmland has shown a fluctuating upward trend, rising from 28.67% in 1995 to 30.65% in
2000, then declining to 29.45% in 2005, subsequently increasing gradually and reaching a
peak in 2015 at 31.40% of the total area before falling to 30.95% in 2020. This trend might be
related to proactive measures taken by the local government in agricultural policy, food
security, and productivity enhancement. The proportion of forest decreased from 15.08%
in 1995 to 13.50% in 2020. This decline could be attributed to unsustainable exploitation
of forest resources, illegal logging, and related activities. Despite the local government’s
efforts in forest conservation, significant challenges persist in implementation. Similarly,
the proportion of grassland showed a downward trend, dropping from 49.80% in 1995 to
43.21% in 2020. This decline could be associated with the expansion of agricultural land,
accelerated urbanization, and infrastructure development. The proportion of water bodies
fluctuated over the 25-year period, peaking at 1.09% in 2000 and reaching a low of 0.73% in
2005. This variation might be linked to intensified efforts by the local government in water
resource management as well as the influence of natural factors such as annual fluctuation
and climate change. The proportion of constructed land consistently increased throughout
the study period, growing from 2.88% in 1995 to 6.08% in 2020, with a growth rate of
111.1%. This reflects the rapid socio-economic and urbanization developments in the study
area. The accelerated growth rate in constructed land indicates increased investment in
infrastructure and commercial activities, which in turn have attracted a larger population
to the region. Additionally, this trend aligns with the government’s strategic focus on urban
planning, aimed at fostering economic prosperity and improving the quality of life for
residents. The proportion of unused land fluctuated during the study period, dropping
from 2.82% in 1995 to 2.19% in 2000, then gradually rising to 5.97% in 2015 and declining to
5.31% in 2020. This fluctuation might result from adjustments in land resource policies as
well as the impact of natural disasters [39].

4.3. Driving Force Analysis
4.3.1. Parameter Optimization

The best discretization schemes for the ten driving factors, derived from the built-in
Geographical Detector Model (GDM) function in OPGD, are presented in Table 6. Among
these factors, elevation, slope, and terrain roughness were three static driving factors that
described topographic features that were not affected by temporal changes. Moreover,
the optimal grouping methods and breakpoint numbers varied for different independent
variables and even for the same variable across different years, underscoring the spatiotem-
poral variations of these variables. By employing the optimal discretizing method, each
independent variable can be assured of having a high q-value, emphasizing their potential
significance. This method also ensures significant differences between each group, precisely
indicating the extent of influence each independent variable has on the spatiotemporal
differentiation of the dependent variable.

4.3.2. Factor Detection

By selecting the optimal discretization scheme for each year and using the GDM func-
tion for factor detection and interaction detection, we obtained the degree of influence on
the annual comprehensive index of land use intensity by socioeconomic factors, including
the human impact index (HII), population density (PD), total population (POP), and night-
time light intensity (NIG), as well as natural factors, including the elevation (ELE), slope
(SLO), terrain roughness (REL), annual precipitation (PRE), surface temperature (LST), and
vegetation index (NDVI) (Table 7).
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Table 6. Optimal discretization method and optimal number of categories of the selected variables.

Independent
Variable

1995 2000 2005 2010 2015 2020
Method BK Method BK Method BK Method BK Method BK Method BK

HII natural 11 natural 12 natural 12 natural 11 geometric 10 geometric 12
PD quantile 11 quantile 9 quantile 11 quantile 12 quantile 11 quantile 11

POP quantile 11 natural 8 quantile 11 quantile 9 natural 8 quantile 10
NIG quantile 8 quantile 9 natural 9 quantile 12 quantile 12 quantile 12
ELE equal 12 equal 12 equal 12 equal 12 equal 12 equal 12
SLO natural 11 natural 11 natural 11 natural 11 natural 11 natural 11
REL natural 12 natural 12 natural 12 natural 12 natural 12 natural 12
PRE quantile 10 natural 12 quantile 12 quantile 12 natural 12 geometric 12
LST quantile 10 natural 12 natural 11 quantile 9 quantile 12 quantile 12

NDVI equal 10 natural 10 natural 11 natural 12 quantile 11 quantile 10

Notes: (1) The column labeled “BK” stands for the number of breakpoints. (2) HII stands for human impact index;
PD stands for population density; POP stands for total population; NIG stands for nighttime light intensity; ELE
stands for elevation; SLO stands for slope; REL stands for terrain roughness; PRE stands for annual precipitation;
LST stands for surface temperature; and NDVI stands for normalized difference vegetation index. (3) Natural
stands for natural breaks method; quantile stands for quantile method; equal stands for equal distance interval
method; geometric stands for geometric interval method.
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Table 7. Factor detection results of the land use intensity index in the study area from 1995 to 2020.

Factors
1995 2000 2005 2010 2015 2020

q-Value p-Value q-Value p-Value q-Value p-Value q-Value p-Value q-Value p-Value q-Value p-Value

HII 0.971 7.41 × 10−10 0.977 5.55 × 10−10 0.976 3.41 × 10−10 0.974 9.94 × 10−10 0.964 6.29 × 10−10 0.970 3.52 × 10−10

PD 0.317 1.74 × 10−10 0.518 9.85 × 10−10 0.672 7.91 × 10−10 0.614 5.11 × 10−10 0.650 2.57 × 10−10 0.657 3.15 × 10−10

POP 0.166 2.61 × 10−10 0.214 3.94 × 10−10 0.232 3.78 × 10−10 0.185 4.34 × 10−10 0.160 3.77 × 10−10 0.141 2.75 × 10−9

NIG 0.374 6.46 × 10−10 0.527 5.93 × 10−10 0.665 3.14 × 10−10 0.630 9.27 × 10−10 0.687 8.31 × 10−10 0.688 5.91 × 10−10

ELE 0.135 7.79 × 10−11 0.095 9.57 × 10−10 0.127 2.15 × 10−10 0.107 2.62 × 10−10 0.111 3.91 × 10−8 0.089 6.82 × 10−10

SLO 0.039 4.42 × 10−7 0.086 4.74 × 10−10 0.111 3.24 × 10−10 0.154 6.48 × 10−10 0.178 6.75 × 10−10 0.158 5.61 × 10−10

REL 0.059 2.67 × 10−6 0.107 6.27 × 10−10 0.135 1.73 × 10−10 0.172 3.15 × 10−10 0.202 4.32 × 10−10 0.177 3.81 × 10−10

PRE 0.049 4.18 × 10−2 0.053 1.04 × 10−10 0.041 2.41 × 10−2 0.034 6.05 × 10−1 0.095 3.35 × 10−5 0.110 7.32 × 10−10

LST 0.053 2.06 × 10−6 0.099 1.19 × 10−5 0.133 7.63 × 10−10 0.064 3.48 × 10−5 0.071 4.26 × 10−1 0.140 3.75 × 10−10

NDVI 0.124 5.85 × 10−6 0.193 8.88 × 10−10 0.115 9.68 × 10−10 0.160 9.28 × 10−10 0.109 4.50 × 10−10 0.197 4.88 × 10−10
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As seen in Table 7, the explanatory power of socioeconomic factors was generally
higher than that of natural factors. The explanatory power of the human impact index
was the highest, with a stable q-value of approximately 0.97 between 1995 and 2020,
indicating that human activities, including increased urbanization, agricultural expansion,
and industrial development, played a decisive role in LULCC. The explanatory power of
population density and nighttime light intensity was relatively high, with the q-value of
population density peaking in 2005 at 0.672 and the q-value of nighttime light intensity
peaking in 2020 at 0.688. High explanatory power signifies the substantial impact of these
two driving factors on LULCC. Nighttime light intensity serves as a compelling proxy for
economic activity, urbanization, and technological advancement. It is directly correlated
with the level of industrialization and the proliferation of services that operate during
nighttime hours [40]. On the other hand, high population density often necessitates more
intensive land use, whether for housing, transportation, or public services. The explanatory
power of the total population was relatively weak, with the highest q-value occurring in
2005, at 0.232. The relatively low explanatory power of the total population suggests that it
is not merely the number of people that matters, but how they are distributed and what
activities they are engaged in.

The explanatory power of natural factors for LULCC in this region was relatively low,
with the highest explanatory power not exceeding 0.202 during the study period. This
indicates that the impact of natural factors on the degree of land use was not as significant as
that of human activities. Among these factors, the explanatory power of topographic factors
was greater than that of climate factors, with the average explanatory power of topographic
factors and climate factors during the study period being 0.125 and 0.102, respectively.
Among the topographic factors, the explanatory power of terrain roughness was higher
than that of elevation and slope except in 1995, with the highest q-value being 0.202 in
2015. The explanatory power of elevation and slope alternately led during the study period,
with the highest q-value of elevation occurring in 1995 at 0.135 and the highest q-value of
slope occurring in 2015 at 0.178. It indicates that topographical factors play a pivotal role in
determining the feasibility of various land use types, thus affecting LULCC. For instance,
elevation serves as a constraint for agricultural activities, as higher altitudes may not be
conducive to certain crops. Similarly, slope restricts the range and viability of construction
projects, as it requires more sophisticated engineering solutions for steeper terrains. Terrain
roughness, on the other hand, might influence both agriculture and development, as
uneven landscapes may necessitate specialized land management practices [41]. Among the
three factors representing climate and vegetation, the explanatory power of the vegetation
index was generally higher, with the highest q-value being 0.197 in 2020. This could be
due to the role of vegetation variation in soil stabilization and water retention, which are
critical for both natural ecosystems and human activities. The highest q-values for annual
precipitation and surface temperature both occurred in 2020, at 0.110 and 0.140, respectively.
Although annual precipitation and surface temperature are often considered key indicators
of climate and its impact on LULCC, the response speed of features to climate condition
changes is usually not significant in a short period of time. Therefore, the explanatory
power of annual precipitation and surface temperature was relatively low.

4.3.3. Interaction Detection

The interactions between the 10 driving factors are shown in Figure 5. During the study
period, the q-values of the HII and any other driving factor remained between 0.968 and
0.985 after interaction, demonstrating extremely high explanatory power. Each selected
driving factor showed a dual-factor enhancement effect when coupled with the HII. Apart
from the HII, the interaction of nighttime light intensity and population density with other
factors showed enhanced effects. Among them, the coupling of nighttime light intensity
with other factors yielded higher q-values. The coupling relationships of these two driving
factors with others showed dual-factor enhancement and nonlinear enhancement, and the
specific coupling situations varied according to different years and conditions. Notably, in
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2015, the interaction between nighttime light intensity and elevation showed the strongest
explanatory power, reaching 0.743, suggesting that as elevation rises, urbanization tends to
decrease, thereby influencing LULCC in ways particularly relevant to human interference.
In other years, the interaction between the two was relatively strong, showing dual-factor
enhancement effects. This result indicates that socioeconomic development at various
altitudes was the main driving factor influencing the spatial differentiation of land use
intensity in each year. The coupling of the remaining driving factors involved dual-factor
enhancement or nonlinear enhancement relationships, with the factors interdependent
and without any mutual inhibition. The weakest interaction combinations were slope
and terrain roughness in 1995, 2000, 2005, and 2020, while in 2010 and 2015, the weakest
interaction was between annual precipitation and surface temperature. These results
indicated that when natural factors were coupled, the intensity of their influence on LULCC
was lower than that of the influence exerted by the coupling of natural and socioeconomic
factors and the coupling among socioeconomic factors. This might be due to the more
direct and immediate impact that socioeconomic activities often have on LULCC compared
to the generally slower changes induced by natural factors.
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5. Discussion
5.1. Comparison of Accuracy Difference of Classification Methods

This study applied two distinct classification methods to classify the LULC of the
study area and created a spatial distribution map of the LULC every five years from 1995
to 2020. However, the accuracy of pixel-based classification did not meet the threshold
required for the following research. In contrast, the object-oriented classification added
texture features and geometric features on the basis of spectral features, spectral index
features, and topographic features, which jointly trained the classifier. This enabled the
integration of a richer set of information in the feature space of the sample data, significantly
improving the classification effect, and the overall accuracy was maintained above 80%.
Although numerous studies have indicated that object-oriented classification exhibits clear
advantages when processing high-resolution imagery, with the ability to effectively remove
salt-and-pepper noise and better identify ambiguous land cover types and transition
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boundaries, this study found that object-oriented classification also contributed to high-
precision classification results when handling Landsat series satellite imagery with a spatial
resolution of 30 m [42–44]. It could achieve a good balance between overrefinement and
overgeneralization, which aligns with the research findings of Tassi et al. [16]. Additionally,
according to the classification results and visual interpretation verification, the primary
LULC class in Kruger National Park, located in the northeastern part of the study area, was
grassland. However, research by Liu et al. indicated that Kruger National Park has been
largely occupied by constructed land, suggesting that there is a certain bias in the LULC
data derived from relying on a single classification method [45]. In practical research, to
circumvent issues with insufficient classification accuracy from a single method, multiple
classification methods can be employed and compared, with the highest accuracy scheme
selected, to obtain more precise LULC classification data. This strategy not only enhances
the reliability of LULC classification data but also ensures the accuracy and effectiveness
of following driving force studies. Moreover, adopting various classification methods for
comparison and optimization helps to reveal the strengths and weaknesses of different
methods under various geographic environments and parameter settings, providing useful
references for future studies.

5.2. Primary Driving Factors of LULCC

The analysis results of LULCC driving forces suggest that socioeconomic activities
often have a greater impact on LULC than natural processes do. This result is consistent
with the research conclusions of Wang et al. and Long et al., who emphasized that socioe-
conomic factors played a more crucial role in LULCC. Among the socioeconomic factors,
nighttime light intensity can reflect the strength and distribution of regional GDP to a
certain degree. Economically developed regions tend to have a high degree of urbanization
and population aggregation, contributing to high land use intensity. From 1995 to 2020, the
population in the study area increased from 11,217,732 to 24,405,781. The population surge
led to rapid expansion of construction and residential land, thereby accelerating changes in
the LULC distribution pattern. The influence of natural factors was relatively low, with
topographic factors having a greater impact than climatic factors. To a certain extent, the
variations in the terrain restrict or promote the progress of human activities and regulate the
distribution of water, heat, and plants. Elevation affects atmospheric pressure, temperature,
relative humidity, and the vertical distribution of vegetation, while slope determines the
stability and difficulty of development. Therefore, topographic indicators have an impact
on LULCC that cannot be ignored. The natural conditions like climate patterns, topography,
and resource endowment in KwaZulu-Natal and Mpumalanga Provinces restrict the exer-
cise of human subjective initiative, while human activities, in turn, change the appearance,
characteristics, functions, and quality of the local natural environment. LULCC is one of
the important manifestations of the interaction between nature and humans. In the long
term, natural factors have a greater impact on the degree of land use; however, in the short
term, socioeconomic activities within human settlements bring more significant changes to
and influences on land use.

Policy factors within socioeconomic factors also have a significant impact on LULCC.
After the abolition of apartheid in 1994, South Africa implemented a series of urbanization
reform policies to promote urban development, reduce poverty and inequality, improve
quality of life, and protect the ecological environment. These policies covered diverse as-
pects, such as urban renewal and regeneration, urban-rural integration, urban governance,
and urban participation. Due to these policies, the proportion of the urban population
in the region increased from 62.1% in 2010 to 66.3% in 2019, leading to a rapid expan-
sion of constructed land. South Africa’s urbanization reform policies have significantly
impacted LULCC, revealing many pressing issues that need to be resolved, including:
1© urban expansion under policy guidance has led to the reduction of agricultural land,

loss of rural population, and a decline in agricultural production capacity; 2© an inadequate
land management system has led to unclear land ownership, frequent land disputes, and
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severe wastage of land resources; and 3© haphazard land use planning has exacerbated
environmental problems such as soil erosion, water pollution, and biodiversity loss.

Furthermore, with the implementation of the National Environmental Management
Act in 1998, South Africa began enforcing biodiversity protection policies aimed at pre-
serving its unique and rich biological resources. Measures such as establishing nature
reserves, formulating ecosystem management plans, and promoting the concept of sustain-
able development to minimize damage to the ecological environment. KwaZulu-Natal and
Mpumalanga provinces, among the richest in South Africa in terms of biodiversity and nat-
ural landscapes, have established various reserves, such as Kruger National Park, Bladen
Nature Reserve, and St. Lucia Wetland Park. This policy effectively lowered the degree
of land use within these nature reserves, reduced the intensity of human disturbance and
development, and maintained stability in forest and grassland cover, thereby enhancing
the integrity and stability of the regional ecosystem.

5.3. Prospect and Limitation

The results of the present study significantly impact policy formulation, development
planning, and environmental conservation. Building upon the insights gained from this
study, forthcoming research will delve deeper into monitoring the evolving trends of LULC
and the underlying mechanisms of LULCC. A particularly promising direction for future
inquiry is the scenario simulation of LULC dynamics. Such computational models will not
only enhance our understanding of the principal driving forces but also provide critical
data for informed decision-making, offering scientific guidance for further sustainable
land management.

This study still has the following shortcomings: 1© When generating the GLCM, the
weighting scheme possesses some subjectivity, and this process needs to be refined in future
research. 2© When analyzing the factors affecting land use intensity, some factors, such
as road network density, road area, and distance from roads, are missing. These missing
transportation factors may have a certain impact on the results. Future research will obtain
more data to analyze the spatiotemporal characteristics and driving factors of LULCC in
the study area more comprehensively.

6. Conclusions

This study compared the accuracy of LULC extraction from pixel-based and object-
oriented classification methods, selected the optimal classification method to support
further LULCC driving force analysis, and drew the following conclusions: 1© For the
Landsat series of satellite images, the object-oriented classification outperformed the pixel-
based approach. The overall accuracy of LULC data from 1995 to 2020 was more than
80%, and the kappa coefficient was more than 78%, which met the requirements of the
following research. 2© From 1995 to 2020, the area of farmland in the study area fluctuated
and increased, while the areas of forest and grassland gradually decreased. The area of
constructed land significantly grew, and the areas of water and unused land fluctuated.
3© Socioeconomic factors had a greater impact on LULCC than natural factors. Socioeco-

nomic factors, mainly population growth, economic development, and urban expansion,
dramatically increased the demand for farmland and constructed land, accelerating the
transition of various land classes toward constructed land and farmland, thereby directly or
indirectly affecting regional LULCC. Natural factors primarily lead to LULCC by affecting
soil quality, hydrological conditions, vegetation distribution, etc. Due to the longer time
scale and larger spatial scale of the influence of natural factors and their interference and
regulation by human activities, their impact on LULCC is relatively subtle and slow. 4© This
study identified the reasons for LULCC qualitatively and quantitatively, providing a sci-
entific basis for the land planning and management departments in KwaZulu-Natal and
Mpumalanga provinces to protect the local ecological environment, comprehensively plan
future urbanization processes, and accurately promote sustainable development strategies.
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