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Abstract: The quality of remote sensing images has been greatly improved by the rapid improvement
of unmanned aerial vehicles (UAVs), which has made it possible to detect small objects in the most
complex scenes. Recently, learning-based object detection has been introduced and has gained
popularity in remote sensing image processing. To improve the detection accuracy of small, weak
objects in complex scenes, this work proposes a novel hybrid backbone composed of a convolutional
neural network and an adaptive multi-scaled transformer, referred to as HAM-Transformer Net.
HAM-Transformer Net firstly extracts the details of feature maps using convolutional local feature
extraction blocks. Secondly, hierarchical information is extracted, using multi-scale location coding.
Finally, an adaptive multi-scale transformer block is used to extract further features in different
receptive fields and to fuse them adaptively. We implemented comparison experiments on a self-
constructed dataset. The experiments proved that the method is a significant improvement over
the state-of-the-art object detection algorithms. We also conducted a large number of comparative
experiments in this work to demonstrate the effectiveness of this method.

Keywords: aerial images; object detection; hybrid structure; adaptive multi-scaled net; transformer

1. Introduction

With advancements in science and technology, the quality of remote sensing images
has significantly improved. Due to their low cost, small size, and flexibility, UAVs are
increasingly utilized in various tasks, such as maritime searching and rescuing [1], parking
vehicle searching, and specific person recognition [2,3]. However, UAV aerial images
pose unique challenges, including shooting angles, numerous small and overlapping
targets, and onerous manual recognition. To address these challenges, deep-learning-based
object detection methods are widely used. While object detection algorithms have made
significant progress in the fields of face and pedestrian detection, their application to UAV
aerial photography is relatively limited, particularly for accurately detecting small targets.
Hence, the aim of this study was to explore and develop a small object detection algorithm
specifically tailored to UAV aerial images, highlighting its importance and serving as the
motivation for this research [4,5].

Traditional object detection algorithms use sliding windows, of different sizes, to
traverse the image [6,7]. This method is time-consuming and not robust; it has difficulty
meeting the requirements of object detection in UAV images with complex scenes. In
recent years, deep-learning-based methods, especially convolutional neural networks
(CNNs), have achieved good results in several areas of computer vision research [8,9]. In
object detection algorithms, there are two main categories: two-stage detection algorithms,
such as R-CNN [10], Fast R-CNN [11], and Faster R-CNN [12], and single-stage detection
algorithms, such as YOLO [13–21] and SSD [22]. The two-stage detection algorithm is
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divided into two subtasks, which first determine the candidate regions of possible objects
and then perform regression and classification for each candidate region. The two-stage
detector has higher accuracy, but the detection speed is slower. The one-stage detection
algorithm removes the step of identifying candidate frames, and it directly performs object
classification and regression. Compared to the two-stage detection algorithm, the one-stage
detection algorithm has a faster detection speed, but its detection accuracy is relatively low,
especially in the UAV aerial image detection task.

In recent years, with the development of deep learning, convolutional neural net-
works have been dominant in the field of object detection. CSADet [23] uses deformable
convolution to construct a context-aware block that can extract both local high-frequency
information and global semantic features. The semantic and location information of feature
maps at different scales is shared using a multi-scale feature optimization block. Parallel
extended convolution, to learn the contextual information of different objects at multiple
scales, is used by mSODANet [24]. It has been experimentally demonstrated that the
introduced hierarchical extension network captures the semantic information in the images
more effectively. Ref. [25] designed a backbone network based on cross-stage and residual
segmentation attention (CSP-ResNeSt) and a multiscale bidirectional feature pyramid with
a simple attention module (Bi-SimAM-FPN). Experiments showed that the network can
improve the recognition accuracy of small targets in images. Ref. [26] constructed a feature
enhancement module (RFA), which consists of a pooling layer of deformable regions of
interest and location attention. The spatial information of small objects is enriched by fusing
the region of interest features at different scales. Ref. [27] used dilated convolution to study
the contextual information of small objects. A module that dilated ResNet (DRM) was
proposed, which was highly adaptable to scale variations of small objects at low altitude.
Ref. [28] introduced the DDMA module, which incorporates coordinate attention, channel
attention, and space attention, into the neck of YOLOv5s. By integrating local and global
features with the DDMA module, the problem of missing error detection for small targets
is reduced. Ref. [29] enhanced modeling capability by integrating deformable convolution
within the network. Ref. [30] designed a global context (GC) block that can efficiently model
the global context. The network showed excellent performance in various recognition tasks.

Since the vision transformer (ViT) introduced the transformer to the field of computer
vision, transformer architecture has been continuously optimized [31–34]. Ref. [35] pro-
posed a general transformer structure, MaxViT. MaxViT is composed of local and global
attention that can fuse local and global features at each stage of the network. The effective-
ness of MaxViT has been demonstrated by a large number of ablation experiments. Ref. [36]
proposed a novel contextual transformer (CoT) module. The CoT enhances the learning
capability of the attention module by using contextual information between the key and
value. Ref. [37] built a new backbone network, by using the multi-head self-attention mod-
ule of pyramid pooling (pyramid pooling transformer, P2T), which can extract the context
features of the network. Ref. [38] disintegrated the self-attention mechanism into horizontal
and vertical, which can be computed in parallel in both directions. At the same time, local
enhanced position coding (LePE) was introduced, and the experiment proved that the
CSWin transformer has a good effect in the field of vision. Ref. [39] constructed a vision
transformer that alternately stacks the scalable attention mechanism and the windowed
self-attention mechanism. This structure allows the network to achieve a good balance
between accuracy and speed. Ref. [40] used overlapping convolutions with different kernel
sizes as patch embedding to obtain patches of the same length. These patches are passed
to the transformer. Finally, the output features are aggregated to represent the features at
different granularity.

Recent work has shown that combining a CNN and a transformer allows the network
to take advantage of the strengths of both architectures. Ref. [41] proposed an efficient
hybrid architecture, EdgeNeXt. In EdgeNeXt, a slice-depth-transposed attention module is
introduced, which can split features into multiple groups and use depth convolution and
channel self-attention to increase receptive field and fuse multi-scale information.
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Ref. [42] used a bidirectional bridge to connect MobileNet to the transformer. This
design can integrate the local features of a CNN and the global features of a transformer,
which can achieve higher computational efficiency and stronger feature extraction ability.
Ref. [43] have discovered the potential relationship between the CNN and transformer
by analyzing their operation principles. A transformer and a CNN have been cleverly
combined to design a hybrid architecture called ACmix. Ref. [44] designed a parallel
structure using a transformer and deep convolution, which makes the channel dimension
and spatial dimension complementary through the interaction structure. The combina-
tion of the two designs achieves a deep fusion of local and global features. Ref. [45]
enhanced the global perception capability of the CNN by fusing the global information
of the transformer. Experimental results show that the conformer outperforms the CNN
and ViT architectures alone with the same number of parameters. Ref. [46] proposed a
convolutional transformer block (CTB) and a convolutional multi-head self-attention block
(CMHSA). This design can improve the algorithm’s ability to recognize obscured objects by
aggregating context information.

To achieve high accuracy and fast detection methods, this paper proposes a hybrid
adaptive multi-scaled transformer network (HAM-Transformer Network) for UAV aerial
photography, which consists of three basic blocks: the convolutional local feature extrac-
tion block (CLB), multi-scale position embedding block (MPE), and adaptive multi-scale
transformer block (AMT). Specifically, we use the CLB to extract local texture features in
the initial three stages of HAM-Transformer Net. The CLB borrows the overall architectural
idea of efficient layer aggregation network (ELAN) [47] but differs from the ELAN in
that we redesigned the basic blocks. The MPE introduces the idea of multi-scale feature
fusion into the overlapping embedding module by stacking max pooling layers. The
AMT merges adjacent embedding blocks by using deep convolution with different kernel
sizes and uses multi-branch adaptive fusion to balance features at different scales. Experi-
ments demonstrate that the HAM-Transformer network outperforms state-of-the-art target
detection methods. With the same number of parameters, HAM-Transformer improves
4.1% mAP over YOLOv8-S and 5.9% mAP over YOLOv6-S on the remote sensing-UAV
aerial photography dataset.

The contributions of this study can be summarized as follows:

• We propose three efficient blocks, namely a convolutional local feature extraction block,
multi-scale position embedding block and adaptive multi-scale transformer block,
which can be easily inserted into any network without adjusting the
overall architecture.

• We designed a novel efficient feature extraction backbone network, HAM-Transformer,
which cleverly fuses the CNN and transformer. It can adaptively adjust the feature
contribution for different receptive fields in the last stage of the network.

• We have combined existing UAV aerial photography and remote sensing datasets to enrich
the diversity of our datasets, which include urban, maritime, and natural landscapes.

• We have carried out extensive experimental validation, and the experimental results
show that HAM-Transformer Net balances speed and accuracy and outperforms the
existing single-stage object detection feature extraction backbone network with similar
parameter quantity.

The rest of this article is structured as follows. We introduce the overall structure of
HAM-Transformer Net and the details of each block in Section 2. In Section 3, we describe
the dataset used in the experiments and the implementation of the comparisons. We discuss
the methodology proposed in this paper in Section 4. We summarize this work in Section 5.

2. Methodology

In this section, we outline the design of the overall structure of HAM-Transformer Net.
Then, the details of each component in HAM-Transformer Net are introduced, including
the convolutional local feature extraction block (CLB), multi-scale position embedding
block (MPE), and adaptive multi-scale transformer block (AMT). In addition, in order to
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support object detection in different hardware environments, we designed specific models
with different sizes.

2.1. Overview

The overall structure of HAM-Transformer Net is shown in Figure 1. HAM-Transformer
Net adopts a hierarchical pyramid structure. The input image X is fed into the stem, during
which time its spatial dimension is 2× downsampled. Stages 1, 2, and 3 play the role
of refining local features in the whole backbone. And the downsampling operation is
performed before each Stage. Stage 4 is the last stage of the backbone. This stage is able to
extract multi-scale global features. Each of these stages is built from multiple foundation
blocks. In the figure, we use N1, N2, ... to represent the number of foundation blocks. H, W,
and Cn denote feature map length, width, and number of channels. Split indicates that the
input channel is evenly sliced into two parts. Conv3× 3 and Conv1× 1 represent 3× 3 and
1× 1 size convolution operations, respectively. MaxPool2d denotes the maximum pooling
operation. Layer normalization represents a classical normalization operation. The shuffle
operation mixes the input channels. DWConv3× 3 denotes deep convolution with kernel
size of 3× 3.
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Figure 1. The overall architecture of HAM-Transformer Net. It consists of the convolutional local
feature extraction block (CLB), multi-scale position embedding block (MPE) and adaptive multi-scale
transformer block (AMT).

2.2. Convolutional Local Feature Extraction Block (CLB)

To compare with existing feature extraction methods, we first browsed some feature
extraction blocks based on convolution, as shown in Figure 2. ResNet possesses a residual
structure to solve the problem of difficult training [48]. MobileNetV2 is a lightweight
structure due to an inverted residual structure [49]. Unlike ResNet, MobileNetV2 uses
deep convolution to extract features and reduce the number of parameters. Although
the above two structures have their own advantages, they still do not perform as well as
vision transformers in the field of computer vision. ConvNeXt takes the advantages of
transformer architecture and introduces the transformer idea into the ResNet structure [50].
At the macro level, ConvNeXt sets the convolutional kernel size to 7× 7 and moves it up to
the top of the residual block. At the micro level, the normalization layers and activation
functions are replaced by layer normalization (LN) and GELU, which the authors call the
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“modernization” of ResNet. The accuracy of ConvNeXt is higher than ResNet, but the large
kernel convolution and LN are not suitable for mobile devices.

Conv 3 ∗ 3

Conv 1 ∗ 1

BN+ReLU

BN+ReLU

Conv 1 ∗ 1

BN

ReLU

(a)ResNet-50

BN+ReLU6

BN+ReLU6

Conv 1 ∗ 1

Conv 1 ∗ 1

DWConv 3 ∗ 3

BN

(b)MobileNetV2

GELU

LN

Conv 1 ∗ 1

DWConv 7 ∗ 7

Conv 1 ∗ 1

(c)ConvNeXt

Figure 2. Comparison of different convolution-based blocks. BN denotes the batch normalization
operation, and LN denotes the layer normalization operation. ReLU, ReLU6, and GELU denote
several classical linear activation functions

The design process of the base CLB is similar to ConvNeXts, but we did not use
the large kernel convolution, LN and GELU. We replaced the residual structure with the
inverse residual structure, which is similar to MobileNetV2 but without deep convolution
in the inverse residual structure. After the inverse residual structure, we proposed the
3× 3 convolution and removed the last 1× 1 convolution operation. The base CLB can be
expressed as follows:

F(x) = X + W1×1(W3×3(X)× e) (1)

where W1×1 and W3×3 are the weights of 1× 1 convolution as well as 3× 3 convolution,
e is the residual ratio, and X is the input feature.

The convolutional neural network includes feature aggregation path and gradient
path design. By adjusting the gradient propagation path, different blocks can learn different
information from a variety of points; at the same time, the information is passed to the
next block and the final stage simultaneously. This gradient propagation method can make
further use of the information of each module, thus greatly improving the utilization rate
of network parameters. The features of different scales can be aggregated to improve the
capability of feature expression at each stage. Between each CLB and concatenation, there
the ELAN carries out skip connection, which makes the network more efficient in terms
of parameter utilization. The ELAN is able to learn the important features efficiently by
controlling the gradient path. In this study, we adopted this efficient architecture and
combined it with our base CLB to form a local feature extraction module. The CLB can be
expressed as follows:

xout = cat(x0, x1, · · · , xn) (2)

where xout is the output feature x ∈ Rcout×H×W of the CLB and x0, x1, · · · , xn is the output
feature of each base CLB.

2.3. Multi-Scale Position Embedding Block (MPE)

The original vision transformer encodes the position information of the embedded
block by absolute or relative position. However, these two positional encodings have
limitations. For example, absolute positional encoding adds a unique positional encoding
to each token, which breaks the translational invariance of the transformer. Relative position
encoding can increase the computational complexity and is unsuitable for self-attention
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mechanisms. To avoid the above problems, we used convolutional position embedding
(CPE) [51] for our study.

Multi-scale patch embedding [40] builds an embedding block that can operate in both
fine-grained and coarse-grained systems. It achieves the same receptive fields as 3× 3,
5× 5, and 7× 7 by stacking three 3× 3 convolutions, and finally the embedded blocks with
different scale sizes are fed into the self-attention module. We constructed a multi-scale
position-encoding block. Similar to multi-scale patch embedding, in this stage we used
overlapping convolutional positional embedding to encode the positional information of the
input features. Unlike non-overlapping convolutional positional embedding, overlapping
convolution maintains the image information continuity and avoids truncating the critical
information in the image. We used zero padding to maintain the spatial size of the input
feature maps. Specifically, given an input x ∈ RC×H×W , we performed zero padding of
size k−1

2 , where k is the kernel size. The final output size is x ∈ R2C× H
2 ×

W
2 .

We first performed a positional embedding operation on the input features using the
overlapping convolution described above. After that, we extracted multi-scale feature
information for the position embedding block. It is worth emphasizing that we adopted a
different approach to the extraction of multi-granularity features than multi-scale patch
embedding. We used a max pooling layer, which is more efficient than convolution, to
aggregate features at different scales. To be specific, by stacking multiple max pooling
layers with kernel size of 5× 5, we can concatenate features from different scaled receptive
fields and finally merge them with the original features to form a multi-path aggregation
structure. Finally, the aggregated features are fed into the next block.

2.4. Selective Kernel Transformer Block (SK-ViT)

Inspired by the visual nerve in neuroscience, the receptive field of the visual nerve is
not static but is modulated by the size of objects and the surrounding environment [52].
A dynamic selection mechanism is proposed in the visual transformer structure, which is
rarely considered in most visual transformers. Specifically, we divided the self-attention
heads into several groups and used different compression coefficients to compress the
number of input embedding blocks, as shown in the bottom half of Figure 3. The picture
on the right shows the number of embedded blocks (original embedded blocks) with a
compression factor of 1×. And the left shows the number of embedded blocks with a
compression factor of two which are merged with two neighboring embedded blocks.
Finally, we used adaptive weights to adjust the contribution of different branches. In order
to enable the network to adaptively adjust the size of the receptive field, we propose an
automatic selection operation among different groups of self-attention heads. The operation
includes grouping, selection, and fusion, as shown in Figure 3, where W1 and W2 are the
weight coefficients of each branch. For simplicity, we only describe the case of two groups,
but this structure can easily be extended to multiple groups.
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𝑊1

Attention
Attention

Grouping

𝑊2

Selection Fusion

Input Output

Figure 3. The overall architecture of the SK-ViT. The operation includes grouping, selection, and fu-
sion. It divides the self-attention heads into several groups and uses different compression coefficients
to compress the number of input embedding blocks.

2.4.1. Grouping

Figure 4 shows the attention of one of the branches in the grouping. where linear
denotes the linear layer, matmul denotes matrix multiplication, and softmax denotes the
softmax activation function. Q, K, and V stand for query, key, and value, respectively. For
input X ∈ RN×C, where N = H×W

P is the number of embedding blocks, we use a linear
mapping to obtain the query Q. H and W are the spatial dimensions of the input features,
and P = h× w is the spatial size of the embedded block. h and w are the height and width
of the embedded block. To obtain different sizes of embedding blocks, we reshape the
two-dimensional input features X ∈ RN×C into three-dimensional features X1 ∈ RC×H×W

in the spatial dimension. Then, the spatial dimension is compressed using deep convolution
with the compression coefficients S0, S1, · · · , Sn. Specifically, we use kernel sizes and strides
of S0, S1, · · · , Sn to achieve this operation, as shown in Figure 4. DWConv1 with kernel
sizes 1 × 1 or 2 × 2 is illustrated as an example. Finally, the compressed feature x1 is
reshaped into a 2D feature map to obtain key K and value V. We perform self-attention
calculation on the three mappings of Q, K, and V. To refine the final feature output, we
introduced DWConv2 to refine the value of K to enhance the modeling capability of this
block. This process can be expressed as follows:

Q = Linear(X)

K, V = Conv(X → X1)

Attention(Q, K, V) = So f tmax((
QKT
√

dk
)(V + Depthwise3×3(V))

(3)

where linear is a fully connected operation, dC = C
k denotes the channel dimension of a

single head in the group, C stands for the dimension of the input channel, and k is the
number of attention heads in the group.

The AMT can be easily expanded into multiple branches by expanding the number of
groupings of attention heads. In order to be able to clearly express the overall idea of the
method in this paper as well as to facilitate carrying out the validation of the method, the
AMTs mentioned in the following are all two-branch examples.
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Linear DWConv1

Q K V

MatMul

SoftMax

Linear

DWConv2

Output

MatMul

𝑋:𝑁 × 𝐶

𝑁 × 𝐶 𝐶 × 𝐻 ×𝑊

𝑘 × 𝑑𝐶 × 𝑁′

𝑘 × 𝑁 × 𝑑𝐶

𝑘 × 𝑁 × 𝑁′

𝑘 × 𝑁 × 𝑁′

𝑘 × 𝑁′ × 𝑑𝐶

𝐶 × 𝐻′ ×𝑊′

𝐶 × 𝐻′ ×𝑊′

𝑁 × 𝐶

𝑁 × 𝐶

𝑘 × 𝑁 × 𝑑𝐶

𝑘 × 𝑁′ × 𝑑𝐶

Figure 4. The overall architecture of attention computation in a single branch. DWConv1 can merge
neighboring embedding blocks, and DWConv2 can refine the final feature output of K.

2.4.2. Selection

Weight coefficients were used to implement the selection of multiple receptive fields
while discarding the complex attention mechanism. As the weight coefficients are adap-
tively adjusted during network training, there may be negative weights. To avoid this
situation, we used RELU as the activation function with non-negativity. We propose a
novel form-efficient normalized weight using adaptive weights for multi-scale selection.

The initial attention mechanism can be expressed as Out = ∑i wi · xi, where Out is
the feature output after fusion; wi is a learnable weight coefficient, which expresses the
contribution of different perceptual fields; and xi is the output of a certain scale. In order
to reduce the computational cost, we used scalars as weights. However, since scalars are
unbounded, weights with large differences can make network training difficult. To avoid
this problem, we performed a normalization operation on the weights.

Softmax is a common normalization function that is widely used in deep learning. The
contribution of each scale can be expressed by adjusting the weights to between 0 and 1, as
shown in Equation (4).

Out = ∑
i

ewi

∑i ewi
· xi (4)

However, softmax can affect the inference speed of the network, so we used a novel
form-efficient normalized weight, as shown in Equation (5). Specifically, each branch
weight is divided by the sum of the values of all weights to obtain the normalized value.
To avoid the case of a zero denominator, we added correction terms to the denominator.
Finally, the normalized weights were multiplied with each branch output feature to obtain
the final output.
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Out = ∑
i

wi · xi

∑j wj + ε
(5)

After comprehensive consideration, the output of selection can be can be expressed
as follows:

Out = ∑
i

RELU(wi) · xi

∑j RELU(wj) + ε
(6)

where xi is the output features of different branches, wi is the weight coefficient, and ε is
the correction term. ReLU was adopted to realize the normalization.

2.4.3. Fusion

The fusion of multi-scale information is achieved through two hybrid operations.
Concat: This fusion method is similar to the multi-level feature fusion in DenseNet.

It can avoid information lossing of input, but compared to the addition operation, its
computational cost is relatively high.

Add: Add operation superimposes the information of each channel without increasing
the number of channels. This operation increases the proportion of beneficial information
with less computational cost compared to concatenation.

2.5. Lightweight Feed-Forward Network (L-FFN)

In the standard vision transformer, the feed-forward network (FFN) consists of two
fully connected layers with LN before the FFN [31]. To improve the network inference
speed, we removed the layernorm before the FFN and replaced the fully connected layer
with efficient deep convolution and point convolution.

We show three common feed-forward neural networks in Figure 5. The multi-head
self-attention module extracts information in the spatial dimension, while the FFN extracts
information between channels through a fully connected layer. Specifically, the standard
FFN interacts within the channel dimension and does not operate in the spatial dimension.
PVTv2 [51] and SSA [53] add a 3× 3 deep convolution between two fully connected layers
to refine spatial features. But this does not completely solve the problem of large parameter
counts. The lightweight FFN(L-FFN) proposed in this work remedies this problem. We used
deep convolution with a kernel size of 3× 3 to extract information in the spatial dimensions
and then used point convolution to enable the interaction of information between channels.
This structure not only reduces the number of network parameters but also compensates
for the disadvantage of the traditional FFN, which is insensitive to spatial dimensions.
The specific computational process of the lightweight feed-forward neural network can be
expressed as follows:

FFNout1 = GeLU(BN(Depthwise3×3(X))

FFNout2 = GeLU(BN(Conv1×1(L− FFNout1))

FFNout = X + LFFNout2

(7)

where Depthwise3×3 is the depth convolution with kernel size of 3× 3, X is the input feature
of FNN, FFNout1 is the spatial information output of L-FFN, and FFNout2 is the channel
interaction output.
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FC

FC

GELU

(a)ViT

DWConv 3 ∗ 3

FC

FC

GELU

(b)PVTv2

DWConv 3 ∗ 3

FC

FC

GELU

(c)SSA

Figure 5. Comparison of different feed-forward networks. FC denotes fully connected layer.

2.6. HAM-Transformer Net Architecture

As with the existing backbone network, we constructed three variants of HAM-Transformer
Net, namely HAM-Transformer Net-S/M/L. The architectural specification is shown in Table 1,
where c represents the output channel, b represents the number of branches of the adaptive
multi-scale transformer block, n represents the number of heads, and s is the compression factor
of each branch. S, M, and L refer to three variants with small, medium, and large size, respectively.

Table 1. Configurations of HAM-Transformer Net-S/M/L.

Stage Output
Size Layer Name HAM-Transformer Net-S HAM-Transformer Net-M HAM-Transformer Net-L

Stem H
2 ×

W
2

Convolution
Layer Conv3× 3; c = 32; s = 2 Conv3× 3; c = 48; s = 2

Stage 1 H
4 ×

W
4

Patch Embedding Conv3× 3; c = 64; s = 2 Conv3× 3; c = 96; s = 2

CLB Block [CLB base block× 1, 64]× 1 [CLB base block× 2, 64]× 2 [CLB base block× 3, 96]× 3

Stage 2 H
8 ×

W
8

Patch Embedding Conv3× 3; c = 128; s = 2 Conv3× 3; c = 192; s = 2

CLB Block [CLB base block× 2, 128]× 2 [CLB base block× 4, 128]× 4 [CLB base block× 6, 192]× 6

Stage 3 H
16 ×

W
16

Patch Embedding Conv3× 3; c = 256; s = 2 Conv3× 3; c = 384; s = 2

CLB Block [CLB base block× 2, 256]× 2 [CLB base block× 4, 256]× 4 [CLB base block× 6, 384]× 6

Stage 4 H
32 ×

W
32

Patch Embedding MPE, c = 512 MPE, c = 768

AMT Block [AMT × 1, b = 2, n = 1, s = (1, 2)]× 1 [AMT × 2, b = 2, n = 2, s = (1, 2)]× 1 [AMT × 4, b = 2, n = 8, s = (1, 2)]× 1

Params 9.9 M 14.0 M 45.3 M

2.7. Dataset

We merged various scenarios from five publicly available datasets to expand the
original VisDrone DET [54], namely Roundabout Aerial Images for Vehicle Detection [55],
LEVIR [56], NWPU VHR-10 [57], UCAS-AOD [58], and UAVDT [59]. Our dataset has
a total of 17,912 images and 12 categories, including pedestrians, people, bicycles, cars,
minivans, trucks, tricycles, tricycles with canopies, buses, motorcycles, airplanes, tanks,
and ships. The merged dataset has more categories and more complex scenes.

3. Experimental Results
3.1. Implementation

HAM-Transformer Net was trained using stochastic gradient descent (SGD) with
the following parameter settings: momentum = 0.9 and weight decay = 5 ×10−4. The
learning rate was adjusted using cosine annealing, and the initial learning rate was set
to 0. During training, an exponential moving average (EMA) strategy with a decay of
0.9998 was used. The traditional data enhancement methods were adopted such as random
cropping, random level flipping, color distortion, and multi-scale training. The rest of the
models were kept with default parameter settings. To fairly compare the performance of
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the models, no pre-training was carried out with the models. The images with resolution
of 640× 640 were for training and testing.

3.2. Comparisons with State-of-the-Art Models

The comparison with the state-of-the-art model is shown in Table 2, where param
denotes the number of parameters of the method used. FLOPs denotes the number of
floating point operations, which can be used to measure the complexity of the model.
mAP denotes the mean average precision, which reflects the average precision of all classes.
AP50 and AP75 represent the average precision of a model when the intersection over
union (IoU) between the predicted bounding box and the ground truth bounding box is
50% and 75%, respectively. Latency represents the time to be consumed for detecting an
image. As shown in Table 2, HAM-Transformer Net achieves the best balance between
accuracy and FLOPs. Specifically, with a similar number of parameters, we compared
HAM-Transformer Net with CNN- and transformer-based algorithms such as YOLOv8,
YOLOv7, ConvNeXt, and the Swin transformer. Compared with the state-of-the-art CNN-
based method, HAM-Transformer Net-S improves AP by 4.1% over YOLOv8-S with similar
number of parameters. The AP improvement over YOLOv6-S is 5.9%, but the number of
parameters is only half that of YOLOv6-S. Compared with transformer-based methods,
HAM-Transformer Net-S has fewer parameters but higher accuracy. Specifically, HAM-
Transformer Net-S has 3× fewer parameters but 2× improved accuracy compared to Swin-T.
Compared with the recently proposed ConvNet, the accuracy is improved by nearly 15%.
The accuracy rate of HAM-Transformer Net-M reached 37.6%, which improved by 0.4%
compared with that of HAM-Transformer Net-S. Compared with HAM-Transformer Net-S,
the accuracy of HAM-Transformer Net-L improved by 2.9%. These results show that the
proposed HAM-Transformer Net is an effective network structure.

Table 2. Comparison with state-of-the-art models.

Methods Param (M) FLOPs (G) mAP (%) AP50 AP75 Latency (ms)

YOLOv5-S [16] 7.1 16.0 28.2 46.8 28.5 4.9
YOLOX-S [17] 8.9 26.8 30.3 50.3 31.7 6.3
YOLOR [18] 9.1 15.6 20.3 30.7 - 10.3

PP-YOLOE-S [19] 7.7 16.6 30.3 48.9 32. 6.7
YOLOv7-tiny [15] 6.1 13.3 30.0 51.5 - 4.8

YOLOv8-S 9.5 24.6 33.1 53.2 36.0 3.8
HAM-Transformer Net-S 9.9 32.0 37.2 57.8 40.3 4.5

YOLOv6-S [20] 18.5 45.3 31.3 50.9 33.2 3.6
YOLOF [21] 44 86 25.1 42.2 27.1 15.6
PVTv2 [32] 33.71 75.45 22.4 36.1 24.7 49.1

Deformable DETR [33] 40.51 79.19 27.1 46.9 27.9 50.7
DCNv2 [29] 42.06 80.34 22.1 35.9 24.5 37.1
Swin-T [34] 37.07 85.53 19.0 31.4 20.6 35.3
GCNet [30] 51.19 90.92 20.9 35.0 22.8 39.3

ConvNeXt [50] 66.74 126.41 23.0 36.7 24.8 46.7
HAM-Transformer Net-M 14.0 40.0 37.6 58.6 41.0 7.1
HAM-Transformer Net-L 45.3 103.8 40.1 62.0 43.9 15.1

3.3. Ablation Study and Visualization

In order to prove the effectiveness of our proposed blocks, ablation experiments were
conducted. For the convenience of the experiments, HAM-transformer Net-S was adopted
as the baseline.

3.3.1. Impact of Convolutional Local Feature Extraction Block

In order to prove the validity of the CLB proposed in this work, we replaced the CLB
in HAM-Transformer Net with a classical bottleneck block structure, such as the bottleneck
in ResNet-50, the inverted residual in MobileNetV2, the ConvNeXt block in ConvNeXt,
and DarkNet53. As shown in Table 3, the CLB improves accuracy by 2.7% over ConvNeXt,
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0.3% over inverted residual bottleneck blocks, and 0.6% over DarkNet53, with similar
parameters and FLOPs. The experiment verified that the CLB is effective.

Table 3. Comparison of different convolution blocks.

Block APval Param (M) FLOPs (G)

Residual block [48] 36.2 9.1 30.8
ConvNeXt [50] 34.4 9.9 33.8

Inverted residual block [49] 36.5 9.3 31.4
DarkNet53 block [60] 36.6 9.4 31.8

CLB (ours) 37.2 9.9 32.0

3.3.2. Impact of Efficient Layer Aggregation Network

To demonstrate the effectiveness of the ELAN in the CLB, we compared it with the
classical path aggregation method, CSP, as shown in Table 4. From the experimental results,
we can see that the ELAN is 0.4% higher than CSP. And the param FLOPs of both are
similar. This also proves the effectiveness of the ELAN in this paper.

Table 4. Comparison of different layer aggregation networks.

Method APval Param (M) FLOPs (G)

CSP [61] 36.8 9.8 31.2
ELAN (ours) 37.2 9.9 31.4

3.3.3. Impact of Multi-Scale Position Embedding Block

We further investigated the effect of multi-scale position embedding blocks on HAM-
Transformer Net, as shown in Table 5, where we compared the CPE, overlapping convolu-
tional position-encoding block (OPE), and the multi-scale position-encoding block (MPE)
proposed in this work.

Table 5. Comparison of different position-encoding blocks.

Method APval Param (M) FLOPs (G)

CPE [51] 36.3 8.6 30.9
OPE [32] 36.8 9.3 31.4

MPE (ours) 37.2 9.9 32.0

As the experimental results show, the CPE is less accurate than the other two position-
coding methods, although the number of parameters is less. This also proves that the
application of convolutional position coding in aerial remote sensing images is lacking.
The multi-scale position-coding block achieves the optimal accuracy of these three position-
coding blocks with almost the same FLOPs, which also proves the effectiveness of the MPE.

3.3.4. Impact of the Number of Attention Heads in the Branch

The number of attention heads is the key element of the AMT. To study its effect on
the AMT, we conducted comparison experiments with two branches.

As shown in Table 6, we kept the number of attention heads the same for both branches.
The best results are obtained when the number of attention heads is 1. As the number
of attention heads increases, the accuracy decreases. Experiments show that the number
of attention heads has an effect on the accuracy of the AMT. In the following ablation
experiments, we set the number of heads to 1.
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Table 6. Comparison of results of the number of attention heads.

Head APval Param (M) FLOPs (G)

1 37.2 9.9 32.0
2 37.1 9.9 32.0
4 36.4 9.9 32.0
8 36.7 9.9 32.0

3.3.5. Impact of the Compression Factor of Each Branch

We also studied the effect of different combinations of compression coefficients
on the AMT. In order to limit the search space, we set the compression coefficients to
1×, 2×, and 4×, and two branches were considered in the following experiments. As
shown in Table 5, 1× represents that the compression factor is 1, which is the original
feature dimension, and 2× represents that the number of embedded blocks is compressed
to half size.

As can be seen from Table 7, the combination with compression coefficients of 1× and
2× is optimal in the search space, and the number of parameters and FLOPs are similar to
other combinations.

Table 7. Comparison of results of the compression factor of each branch.

1× 2× 4× APval Param (M) FLOPs (G)

X X 36.7 13.8 31.8
X X 37.1 13.1 31.9
X X 37.2 9.9 32.0

3.3.6. Impact of the Weight Generation Method

As described in Section 2.4.2, we analyzed different methods of weight generation and
propose a efficient normalized weight generation method.

Table 8 shows the effects of different weight generation methods on the detection
accuracy and speed. As the results show, the efficient normalized weight has higher
accuracy and faster speed than softmax normalized weight.

Table 8. Comparison of efficient weight generation methods.

Method APval FLOPs (G) Latency (ms)

Non-weight 35.8 32.0 4.5
Non-normalized weight 36.8 32.0 4.5

Softmax normalized weight 36.8 32.0 4.6
Efficient normalized weight 37.2 32.0 4.5

3.3.7. Impact of the Branch Fusion Method

As described in Section 2.4.3, two different fusion methods are proposed in this paper.
These two methods are compared in this experiment.

It can be seen from Table 9 that the number of parameters and FLOPs of the fusion
method using Cat are increased, but its accuracy is decreased by 0.7% compared to Add.
This experiment verifies that the fusion method of Add is effective in the proposed network.

Table 9. Comparison of results of the branch fusion method.

Method APval Param (M) FLOPs (G)

Cat 36.8 10.3 34.8
Add 37.2 9.9 32.0
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3.3.8. Impact of the Lightweight Feed-Forward Network

To verify the impact of the L-FFN, we compared several FFN structures, such as the
ViT, pyramid vision transformer (PVT), and shunted self-attention (SSA).

As can be seen from Table 10, the accuracy of the FFN in the ViT is nearly 1% lower than
that of L-FFN, the accuracy of PVT and SSA is the same, the L-FFN accuracy reaches 37.2%,
and the numbers of parameters and FLOPs are much lower than those of the remaining
three FFNs. This further proves the effectiveness of our proposed L-FFN.

Table 10. Comparison of results of the lightweight feed-forward network.

Method APval Param (M) FLOPs (G)

ViT [62] 36.3 11.9 33.6
PVTv2 36.5 12.0 33.6

SSA 36.5 12.0 33.6
L-FFN (ours) 37.2 9.9 32.0

3.3.9. Visualization

To verify the superiority of the HAM-Transformer network, we visualize the detection
results and heat maps of HAM-Transformer-S and YOLOv8-S in Figure 6. The detection
results show that YOLOv8-S has a good detection effect for objects at close distances but is
less effective for overlapping objects and distant objects. HAM-Transformer-S has a better
detection effect for overlapping objects and distant objects. This also intuitively demon-
strates that our proposed HAM-Transformer-S can adaptively select different receptive
fields as the size of the object changes.

(a)YOLOv8-S

Figure 6. Cont.
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(b)HAM-Transformer Net-S

Figure 6. Object detection visualization with different algorithms.

Moreover, as shown in Figure 7, HAM-Transformer-S can focus on objects of different
sizes compared to YOLOv8-S. And YOLOv8-S is insensitive to smaller targets. This proves
that the SK-ViT has stronger feature aggregation ability.

To demonstrate the generalization ability of HAM-Transformer Net, we visualize
different application scenarios in Figure 8, including oceans, cities, and mountains. In the
figure, we can see that HAM-Transformer Net shows competitive detection ability in these
complex and changing scenarios.

(a)Input (b)YOLOv8-S (c)HAM-Transformer-S

Figure 7. Attention visualization of different structures. To more intuitively verify the effectiveness
of HAM-Transformer-S, we used GradCAM to visualize heat maps of network output features.
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(a)Sea (b)City (c)Mountain

Figure 8. Visualization of object detection. We extracted some representative images from our dataset
to demonstrate the performance of HAM-Transformer-S.

4. Discussion

UAV aerial images are affected by the shooting angle, resulting in a large number of
small and overlapping targets. This brings great challenges to the object detection algorithm
of UAV aerial images. To overcome the above challenges, we propose a novel object
detection method called HAM-Transformer, which combines both a CNN and transformer.
The method uses convolutional local feature extraction blocks to refine the information
of feature maps and adopts adaptive multi-scale transformer blocks to adaptively fuse
features for different receptive fields. Experimental results have shown that this method
represents a great improvement compared to current advanced methods.

Traditional object detection methods require extensive manual feature design, which
not only consumes time but also cannot guarantee robustness, which makes it difficult
to meet the requirements of UAV image target detection in complex scenes. In the past
two years, many scholars have combined transformer methods originating from natural
language processing with CNNs and achieved a new level of performance. Different from
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previous work, we propose a novel CNN–transformer feature extraction backbone network.
As shown in Table 2, the proposed method in this paper exhibits a 4.1% improvement
compared to YOLOv8-s and has similar speed. In addition, in order to prove the effec-
tiveness of our proposed blocks, we conducted a large number of ablation experiments in
experiments. As can be seen from Table 3, the CLB proposed by us has higher accuracy
than other classical convolution modules. As can be seen from Table 7, the L-FFN proposed
by us not only has fewer parameters but also higher precision than other methods.

Due to the limitations of the hardware environment, we limited the input format of the
model to 640 × 640 pixels. This is unfavorable for large-sized aerial images. Our approach
is based on images for object recognition, but for UAV remote sensing object recognition
other forms of data are also crucial. Therefore, in the future, we will further investigate
how to use the image form in conjunction with other forms of object detection data to
compensate for the deficiencies in images.

In summary, in this study, we propose a novel hybrid feature extraction backbone
network with the CNN–transformer method. After a large number of experiments, it was
proved that the method proposed in this paper has better performance compared to other
methods. HAM-Transformer can also be easily applied to other fields such as remote
sensing object tracking and object segmentation.

5. Conclusions

In this study, we constructed a remote sensing image dataset with multiple devices
and scenes and propose a CNN–transformer feature extraction backbone network, HAM-
Transformer. HAM-Transformer first refines the texture information of feature maps using
convolutional local feature extraction blocks. After that, multi-scale information is extracted
using multi-scale location coding, and finally the adaptive multi-scale transformer block
is used to extract features for different receptive fields and fuse them adaptively. The
experiments prove that the method is a significant improvement over the state-of-the-art
object detection algorithms. Although the experiment proves that our method is effective,
there is still a long way to go for practical applications. Adapting to the hardware at the
edge is one of the directions of our future research, along with balancing the algorithm
performance and the number of parameters.
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