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Abstract: Numerous riverbeds and floodplains in the Western Mediterranean Area (WMA) have
been affected by anthropogenic modifications during the last centuries. In recent decades, an increase
in floods in the coastal WMA has been observed. Variations in the rainfall regime and anthropisation
have influenced the relevant geomorphological processes. The coastal floodplains analysed include
those in Italy, France, and Spain. Geomorphological and land use changes that occurred in the
last two centuries were examined using historical and recent maps, historical data, and European
big data since the 1800s for 65 basins, for which over 670 flood events and more than 1300 victims
were identified. Anthropogenic activities have changed the patterns of floodplains. In most cases,
narrowing of the riverbeds, especially in the lower river sections, has been observed. The riverbeds
have also changed from braided- to single-channel morphologies. GIS analysis shows reductions in
the coastal watercourse widths ranging from 10% to 95%, with an average of 55%. Other changes are
related to the deviation in the watercourses, with trends that did not respect the natural river flow. In
some cases, the watercourses were covered and have vanished from recent maps. This aspect has
reduced or eliminated the perception of the risk not only for the residents but also for land planners.

Keywords: coastal floodplain; anthropogenic modification; riverbed narrowing; flood; European
Western Mediterranean Area; historical data

1. Introduction

Several authors [1–8] have assessed the increase in extreme precipitation and the
associated increases in the frequency and magnitude of river floods. River flooding is
strongly dependent upon complex catchment characteristics and land use patterns [9–11].
Indeed, the frequency and magnitude of river floods have changed in the past several
decades in some regions, with impacts across human and natural systems [12–23]. Analyses
of in situ streamflow measurements showed both increases and decreases in the frequency
of river floods during 1960–2020 in Europe [24–26], as well decreases or variability in some
areas in the Mediterranean [27,28].

Annually, floods affect 21 million people worldwide in different ways, and this num-
ber is expected to rise to 54 million by 2030 [29]. In the areas of central and southern
Europe, climate change, in recent years, has led to an increase in extreme geohydrologi-
cal events, with intense rainfall and damaging effects along river areas due to flooding.
For example, in May 2014, a low-pressure cyclone affected a large area of Serbia and
Bosnia–Herzegovina, which suffered the most severe damage. In total, 50 deaths oc-
curred in Serbia alone, and around 32,000 people were evacuated [30]. The impacts of
floods on humans are likely increasing, which can be seen when examining the figures
for flood fatalities in the past decades. In the 30 years between 1980 and 2009, globally,
floods led to over 540,000 casualties and injured over 360,000 people [31]. The flood fre-
quency/intensity and associated damage are expected to increase because floods depend
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on both climate change and factors related to human activities, such as urban develop-
ment in flood-prone areas and/or hazardous behaviours [32]. Coastal areas seem to be
more sensitive to climate effects. All scenarios for climate change in the Mediterranean
regions indicate warming and changes in rainfall [33,34], as well as ongoing warming of
the sea and the atmosphere. The projected increases in climate hazards will impact large
numbers of vulnerable natural systems and socio-economic sectors [35–37]. In addition,
the temperature is generally expected to increase in the Mediterranean region up to 1.5 ◦C
due to global warming. Groundwater recharge and soil water contents are also expected
to consequently decline [38,39], in addition to the creation of high instability in marine
ecosystems [36,38,40–43] and increased sea levels [1,42,44].

Global precipitation is projected to decrease by approximately 4% for warming levels
above 2 ◦C for all seasons in the central and southern basin [45–47]. In addition, precipita-
tion extremes are projected to increase for global warming levels above 2 ◦C, along with an
increase in flash floods [48,49].

The Mediterranean basin is located in a transition zone for the circulation regimes [40].
This aspect has made the impacts of the observed climate change unbalanced between
northern and southern EU countries, where the available time series often did not allow
for the reconstruction of the past climate evolution on a sufficiently long time scale [41].
Future warming rates are anticipated to be higher, resulting in altered frequencies of flash
and pluvial floods across the Mediterranean [16,24,37,41–45].

The length of the coastline for the EU member states with sea borders is estimated
to be about 136,000 km. European coastal regions (about 1.5 × 106 km2) account for
43% of the total EU area and are occupied by 206 million citizens [46]. The EU public
budget for protecting coastlines from the risk of erosion and flooding was expected to reach
EUR 5.4 billion a year for the period of 1990–2020 [47], but no evidence to date confirms
this intent.

Mediterranean coastal regions correspond to about 29% of European coastal regions
and cover about 33% of European coastlines [47] (Figure 1).
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Figure 1. Pie charts showing the following: (a) EU coastal area percentages by Mediterranean state;
(b) EU coast length percentages by Mediterranean state. Slovenia and Malta were not considered
because their percentages were lower than 1%.

The magnitude and impact of extreme floods vary significantly in Mediterranean
areas, with differences in some sectors [48]. Usually, western areas are more prone to
intense events with high impacts [49–51] due to oceanic climatic influences at latitudes
where eastward atmospheric flows dominate [52,53], as well as the presence of reliefs close
to the Western Mediterranean Area (WMA).
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The WMA extends (from west to east) from the Strait of Gibraltar to the west coast of
Sicily (Italy) (Figure 2).
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The coastal morphology induces the convergence of low-level atmospheric flows and
the uplift of warm and humid air masses from the sea towards the interior of the coasts.
Under these conditions, active convection is triggered and, as a result, short, intense rainfall
occurs [51].

Since recorded history, powerful storms have unleashed torrential rain, resulting in
widespread flooding in southern Spain, France, Italy, and western Greece [54–59]. This
factor confirms the increased frequency of extreme flooding along the Mediterranean Sea
coasts [59,60]. The 2019 Cecilia storm, named by Spain’s State Meteorological Agency,
struck the Iberian Peninsula, southern France, and Italy, where deaths were reported. In
recent years, intense rainfall has occurred across parts of Spain, south-eastern France, and
north-western Italy, and has finally begun impacting southern Italy and Greece [61,62].

In Italy, an increase in geohydrological processes in small basins over the last
30–50 years has been confirmed [63,64]. If they are concentrated on reliefs close to the
coasts, then these precipitations characterised by convective events (with cumulative rain-
fall greater than 100 mm in a few hours) can generate flash floods [59,65,66]. Affected areas
are often limited to much-localised areas, measuring about a few square kilometres, with
rapid hydrological responses between the peak rainfall intensity and peak downstream
runoff [43].

Coastal urban flooding is a complex process that may be the result of high-intensity
rainfall (pluvial flooding), inadequate drainage, and the overtopping of containable floods
in channels or watercourses. A study of events in some Italian coastal urban cities showed
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that the most severe flood scenarios occurred due to a combination of surface flooding and
the overtopping of watercourses [55]. For several parts of the world, urban flooding is a
serious problem because it damages property and can cause casualties. Losses suffered
due to flooding can be reduced with adequate knowledge of the expected processes and
their impacts. Studies of past events make it possible to correctly estimate the extent of the
flooding and flood risks under different flow conditions, enabling appropriate responses
and intervention strategies to be prepared in advance.

The consequences of flash floods and ground effects in densely urbanised areas are
amplified by the large number of vulnerable elements that may occur [67–70]. These
areas are usually intersected by channelled watercourses that have been narrowed over
time through infrastructure to acquire new urban spaces [71,72], making the river space
inadequate for floodwater runoff.

Flash floods characterised by severe ground effects are generally triggered by in-
tense and strongly convective rainfall events of short durations [73] over limited areas
(<100 km2) and generate the local flooding of small watercourses that usually have areas of
<40 km2 [74]. At the mesoscale, convective systems can produce stationary rainfall amounts
of more than 200–300 mm in a few hours [75]. Significant examples of this phenomenon
include three severe cloudbursts that impacted the Ligurian coasts (Italy) in recent years.
Rainfall of 539.0 mm/24 h was recorded during the famous Cinque Terre flood event in
October 2011 [76]; 556.0 mm/24 h was recorded near Genova in November 2011 [55]; and
883.8 mm/24 h was recorded near Genova and Savona during the event that occurred in
October, 2021. The 4 October 2021, event was one of the largest recorded flooding events in
Europe in terms of the 1, 3, 6, 12, and 24 h rainfall data recorded [77]. On some occasions,
heavy and prolonged rainfall may be part of large-scale perturbation lasting several days.
In situations such as the Ligurian cases, extreme rainfall accumulation may be observed
locally. Rainfall of 700 mm over 6 days (up to 1800 mm in October and November) caused
floods and loss of life in the Liguria region during the events of 21–22 October 2019, and
23–24 November 2019 [78]. These events generally cover large areas from hundreds to
thousands of km2.

Along the Italian coasts, the so-called “Meteorological Fall” is the main season for
flash floods that cause severe damage, and often casualties, due to their suddenness. This
season is particularly severe for mesoscale convective systems that produce long-lasting
and stationary rainfall events, leading to strong responses by the corresponding watersheds
(i.e., high runoff rates due to soil saturation) and substantial agreement between the peak
rainfall and flood peaks in small hydrographic basins (<250 km2). The recent severe event
of 15–17 May 2023, which affected the east coast of Italy (the Emilia Romagna region), is also
an example of the Mediterranean area experiencing heavy rainfall. In this event, recorded
rainfall peaks of 300 mm/48 h led to extensive flooding and more than 500 landslides on
hilly areas [79]. This event followed an event a few days earlier in the same area. For
48 h, this event represented the most intense rainfall recorded in the entire region for
two consecutive days since 1997, and the most intense in the spring season since 1961
(>200 mm and 150 mm/24 h, higher than the historical maximums recorded) [80].

In flood risk management, floodplains play an important role in relation to river
discharge and protecting societies and economic activities from damage.

The structural measures put in place to protect properties and assets from the effects
of catastrophic floods are often expensive and impracticable for the space available and,
sometimes, inadequate.

The coastal regions of Spain, France, and Italy considered in this paper exemplify
the whole WMA and thus represent a homogeneous field of investigation. The present
re-search focuses on these areas, especially in relation to the large number and severity of
geohydrological events that have occurred, the high number of people exposed, and the
intense urbanisation processes that have affected and transformed the flood-prone land. In
order to highlight the consistency of the changes induced on the territory, the anthropogenic
activities over the past two centuries were considered in terms of the following: (i) the
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geomorphological patterns on streams, riverine areas, and floodplains; (ii) the urban sprawl;
(iii) the sealed areas and land use; (iv) the distribution and frequency of flood events; (v) the
reduction in riverbed widths in the lower sections; (vi) the evolutionary mechanism scheme;
and (vii) the exposure of the population to flood risk over time (inhabitants and tourists).

2. General Settings
2.1. WMA Coasts

The WMA coasts, which include Spain, France, Italy (western coasts), and Malta, are
permanently inhabited by 13 million people and visited by more than 23 million tourists
per year [56] (figure based on the average pre-COVID-19-pandemic period).

The coastal regions of Spain, France, and Italy bordering the western Mediterranean
cover an area of approximately 31 × 104 km2, for a linear developed coastline of approx-
imately 11 × 103 km. Mediterranean basins are prone to geohydrological hazards due
to their physical geographic characteristics [54,81], especially when the thermal contrast
between air and seawater increases. The slopes are near to coasts and the Mediterranean
Sea itself, which acts as a large source of moisture and heat. This context produces a rapid
uplift of moist and unstable air that is responsible for triggering instability processes [81].

Therefore, the coastal regions of France, Spain, and the Italian Peninsula are exposed
to severe geohydrological processes. These regions are surrounded by the Mediterranean
Sea, with very urbanised coastal areas characterised by steep slopes and coastal complex
lithology [22,82].

The stretch of coastline examined lies within the administrative territory of three
neighbouring European states: Spain, France, and Italy. The study area consists of fourteen
areas, defined as the Nomenclature of Territorial Units for Statistics (NUTS) by Regulation
(EC) No. 1059/2003 of the European Parliament and the Council of 26 May 2003 for
the European Office for Statistics [83]. The fourteen NUTS were chosen on the basis of
the spatial distribution of representative coastal areas in the WMA. The selection was
based on the homogeneity of the available statistical and spatial information (historical
cartography, land use, riverine area changes, urbanisation, terrestrial and aerial images,
etc.), and for which reports of historical flood events for a significant (at least 150 years)
and homogeneous period were also available. Nine areas almost continuously cover the
mainland coast from Cannes (France) to Grosseto (Italy), three NUTS cover a portion of the
Corse (France) and Sardinia (Italy) coasts, and the remaining two NUTS are in Barcelona
and Valencia (Spain). Thirty-eight major cities within these fourteen NUTS were chosen to
analyse the urban sprawl and interactions between the cities and their major water streams
(Figure 3).

The main river courses flowing into the Mediterranean Sea were identified in these
areas. In total, 65 watercourses were examined to analyse the development of the overall
hydrographic network. This study focused particularly on the terminal sections of these
watercourses in relation to the transformations over the last 150 years (Figure 4).

2.2. Population at Risk

The sectors connecting floodplains to coastal areas have been rapidly and intensively
transformed over the past 150 years. Economic needs, with exchanges of goods by sea and
summer tourism, and climatic–environmental conditions with mild temperatures all year
round have facilitated the relocation of large numbers of people to coastal areas throughout
the WMA. In particular, for the coastal areas analysed, the number of tourists has increased
with the post-World War 2 economic recovery, while economic exchanges have intensified
due to the presence of new ports, airports, and commercial areas along the coasts.
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(Nomenclature of Territorial Units for Statistics) of the third level, created by the European Parliament
(2003), in order to apply a common statistical standard [83]. The numbers from 1 to 22 indicate
the additional major cities not explicated in the (A–E) boxes; (A–E) boxes location showed in the
navigator (bottom left).
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Figure 4. Hydrographic network and morphological elements of the examined area. For the identi-
fication of (A–E) boxes, see Figure 3. The blue lines represent the major streams and the light-blue
lines represent the river networks. the numbers 1–65 indicates the watercourses, numbered in Table 5.
Some of the highest elevation points are indicated with brown triangles (the number indicates the
peak elevation, in meters above sea level).
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Increases in residents, tourists, and businesses have led to increased connections
and services, such as dense networks of roads, highways, and railways. These intensely
urbanised areas have become tourist destinations with population influxes that are 10-fold
higher in the summer seasons (Figure 5). The tourism data in [83] take into account
numerous possible accommodations (hotels, holiday, and other short-stay accommodations,
as well as campsites, recreational vehicle parks, and caravan parks).
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The increases in the tourist presence, relative to the resident populations in critical
areas, aggravate the geohydrological risk conditions. There has been a reduction in tourists,
largely connected to the COVID-19 pandemic. In some NUTS, decreases in the resident
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populations can also be observed. However, the percentages of people exposed to flood
risks, both residents and tourists, are increasing. Figure 5 presents the current situations of
the resident populations and tourism, which have oscillated considerably in the number of
frequentations along the WMA coast since 1990. For example, in 1990, the city of Barcelona
welcomed 1.7 million tourists; in 2012, it reached over 4.7 million tourists; and in 2017, it
reached almost 32 million, increasing the actual population by 20 times [83]. The tourist
presence in 2019 (considered to avoid pandemic-related variations) was up to 831% higher
for Corse (France) and, on average, about 280% higher than the resident population. The
areas examined are also important for their socio-economic aspects, particularly as sources
of increased local welfare and economic resources. These increases translate into local
GDPs, with a maximum of EUR 180 × 103 million among the Spanish NUTS (Barcelona
and Valentia), followed by Nice, Genova, and Pisa (Figure 6).
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3. Materials and Methods
3.1. Urban Impact Analysis

Numerous cartographic databases, aerial photos, and regional, national, and European
databases were used to analyse the important transformations of the coastal areas, which
allowed for the reconstruction of the Anthropocene evolution for all the NUTS areas from
the 19th century to 2022 (Table 1). The possibility of using homogeneous territorial units
(NUTS) for the analyses enabled an objective comparison of the parameters, including the
growth of settlements within the NUTS.

Table 1. Data sources for territorial analysis and urban transformations.

Data Data Description Source

Coastal area and length Vectoral shapefile [56]
NUTS lv.2 border Vectoral shapefile [56]
NUTS lv.3 border Vectoral shapefile [56]

Gross Domestic Product (GDP) at current market prices by NUTS lv.3 Number [56]
Arrivals at tourist accommodation establishments by NUTS lv.2 Number [56]

Population density by NUTS lv.3 region Number [56]
Coastline variation (1960–2012) for Italian regions Vectoral shapefile [84]

European Corine Land Cover (CLC) 1990 Vectoral shapefile [85]
European Corine Land Cover (CLC) 2018 Vectoral shapefile [85]

Sardinia historical (1950) urban delimitation Vectoral WMS [86]
Corse historical (1951) orthophotos Raster [87]

Tuscany historical (1954) orthophotos—GAI flight Raster [88]
Liguria historical (1938) cartography Raster CNR-IRPI archive

Provence–Alpes–Côte d’Azur historical (1948–1950) orthophotos Raster [87]
Catalonia historical orthophoto Raster WMS [89]

Catalonia historical maps Raster [89]
Sardinia 2022 urban delimitation Vectoral WMS [86]

Historical cartography (period 1830–1850) Raster [90]
Liguria 2019 orthophoto Raster WMS [91]
Tuscany 2019 orthophoto Raster WMS [88]
Sardinia 2019 orthophoto Raster WMS [86]

Cartographic analyses were carried out to assess the extent of the built-up areas
from the middle of the 1800s onwards. For homogeneity, the analytical evaluations were
undertaken using coeval maps via georeferencing in a GIS project, based on which trans-
formations of the territory were reconstructed (Figure 7). In the GIS project, the historical
documentation was georeferenced at a scale of 1:10,000 (by selecting cartographic doc-
uments that allowed this level of detail). For the measurement of the areas of urban
transformations, land use, and the analysis of the extent of riverine areas (e.g., basin width
and floodplain extent), the detail was increased to a scale of 1:500.

The CORINE Land Cover (CLC) categories were merged to highlight the main trans-
formations of the territory. The NUTS considered are characterised by different land uses
and divided into four macrocategories based on the degree of anthropisation and type of
land management: anthropised areas, agricultural areas, natural areas, and water.

Anthropised areas include buildings, infrastructures, public and private adjacent ar-
eas, and roads (i.e., primary and secondary roads, helipads, and airports), harbour areas,
port areas, commercial ports, and private and public docks. Agricultural areas consist
of arable crops, agricultural woody crops (i.e., olive groves, vineyards, and orchards)
(terraced or non-terraced), and heterogeneous agricultural areas (permanent crops, veg-
etable gardens, and agricultural areas with large natural spaces). Natural areas include
wooded and semi-natural vegetated areas and permanent lawns (characterised by herba-
ceous vegetation, spontaneous grass emergence, and, commonly, unworked wooded and
semi-natural vegetated areas, as well as semi-natural non-vegetated areas). Water areas
consist of watercourses and rivers and streams, lakes, canals, and wet areas.
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Figure 7. Examples of diachronic built-up area mapping in three representative urban contexts of
the study: Valencia (Spain; Box C, Figure 3), Cannes (France; Box A, Figure 3), and Massa (Italy;
Box A, Figure 3). Anthropic growth was reconstructed through three periods: the mid-19th century,
mid-20th century, and the present.

With regard to land use, we considered the CLC 2018 classes derived from the third
level. The most accurate CLC data with a higher level of detail are the CLCs of the fourth
level, which were available only until 2012. These more detailed CLCs (2012) made it possi-
ble to assess changes over an interval of approximately 22 years (yielding a comparison
between 1990 and 2012) for each territorial unit for statistics, highlighting the various land
use percentages and related transformations (Figure 8). The major processes of urbanisa-
tion occurred during the period prior to the first CLC considered (1990). In some cases,
the primary transformation occurred after World War 2 (e.g., Olbia and Italy; see Box D,
Figure 3). In other cases (e.g., Genova, Italy; see Box A, Figure 3), this transformation oc-
curred immediately after industrialisation in the first decades of the 20th century. Therefore,
the increase in anthropised areas in the floodplains shown in Figure 8 represents a residual
evolution of a trend started well before the first CLC available at a European scale.
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Figure 8. Land use changes through CLC 2012 and CLC 1990 third-level maps in three representative
urban contexts: Valencia (Spain; Box C, Figure 3), Nice and St. Laurent du Var (France; Box A,
Figure 3), and Grosseto (Italy; Box E, Figure 3).

In some cases, it was possible to extend the period of analysis using historical maps
highlighting the urbanised areas of the main cities from the mid-19th century onwards. For
most coastal and riverine cities, the second post-war period was their moment of major
expansion. However, an initial urban boom also occurred during industrialisation at the
turn of the 19th and 20th centuries. This analysis of historical maps enables us to better
highlight anthropic impacts on the floodplains (Figure 9). The historical maps selected for
relevance, quality, and original scale of representation, referring to the mid-19th century,
were georeferenced via GIS. The maximum historical urbanised areas referable to the main
cities of the NUTS considered were then drawn and compared with the current extent.
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3.2. Hydro-Meteorological Hazards in Study Area

Several coastal regions of the western Mediterranean have suffered numerous flooding
events affecting the corresponding river networks. The north-western coasts of Italy have
been historically subject to flash floods, especially the Ligurian coasts, along with the
Tuscan coasts and coasts in Sardinia [55,92]. For this research, the period between 1850
and 2022 was considered. Specific historical research based on unpublished documents,
reports, monographs, newspapers, and online news reports (preferring official sources
from competent bodies, technical–scientific reports and articles, and government databases)
was used to uncover damaging geohydrological events that affected the various NUTS on
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a sub-basin scale. The events considered “major” and “main” floods are those that pro-
duced damaging effects, without considering the hydraulic characteristics (e.g., discharge,
hydrometric levels, velocity, etc.) or associated solid transport.

At least 675 flood events have been recorded since 1850 (Table 2). In addition, torrential
rain caused devastation in south-eastern Spain during the 25–26 September 2022 flood
event. During this event, heavy rain triggered flooding and landslides. More than 29 mm
of rain was recorded in just 10 min, and more than 86 mm was recorded in an hour [93].
Firefighters reported that one person died, and several were rescued, while emergency
services responded to dozens of callouts, including flood rescues across 19 municipalities.
Flooding and landslides caused damage to homes, streets, and vehicles and affected the
regions of Catalonia, Barcelona, and Valencia in coastal eastern Spain on 16 September
2022. Furthermore, floods in south-east Spain left six dead and thousands evacuated on 16
September 2019.

On 3 October 2015, an exceptional rainfall event took place between Mandelieu-la-
Napoule and Nice [94]. This rainfall event delivered approximately 200 mm/2 h and
was comparable to a catastrophic event that occurred in 1966 in the same region [95],
corresponding to an occurrence larger than the 100-year event [96]. Near Cannes city,
rainfall of 175 mm/2 h was recorded, whereas the 100-year event was only 94.6 mm. This
rainfall event caused the river discharge to rapidly increase (>250 m3/s—again, larger
than the 100-year event) [95], and 20 people lost their lives during the event. Most of the
urban areas bordering the Mediterranean developed along the terminal stretch of a coastal
floodplain [97]. Since the early years of the twentieth century, anthropic activities have led
to significant transformations in the territory, impacting most of the riverbeds and their
floodplains [14,65,98–100]. The main consequences in watercourses are stream incision and
channel narrowing, often with a significant reduction in the outflow section (Figure 10). In
most cases, these alterations have also involved modifications of the river courses, which
have more-or-less slowly passed from intertwined channels to braided channels to single
channels.

All 675 identified flood events over the period of 1850–2022 are fully reported in the
Supplementary Materials (Table S1) with an extensive supporting bibliography [55,92–120].
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Table 2. Major geohydrological events in the examined areas, separated by each twenty-year interval
and organised by NUTS, along with the numbers of victims, if known. The complete list of 675 flood
events is given in the Supplementary Materials to this work.

State NUTS
Name

Total
Floods

No. of
Victims

Before
1859

1860–
1879

1880–
1899

1900–
1919

1920–
1939

1940–
1959

1960–
1979

1980–
1999

After
2000

ESP
Barcelona 59 446 * 3 5 3 3 3 4 4 11 23
Valencia 33 83 1 3 2 1 0 2 0 7 17

FRA
Alpes Maritt. 53 20 0 0 0 0 2 5 2 7 37
Corse du Sud 38 7 0 0 1 0 0 0 1 6 30

ITA

Cagliari 35 268 1 3 5 0 4 4 3 5 10
Genova 54 126 1 1 2 4 4 7 6 12 17
Grosseto 48 12 0 1 0 1 1 6 12 23 4
Imperia 45 12 0 0 1 6 1 4 8 16 9

La Spezia 57 11 1 0 1 1 9 8 16 18 3
Livorno 62 9 0 0 0 2 4 9 21 20 6

Massa-Carrara 38 6 0 0 0 0 0 4 9 19 6
Pisa 35 35 0 1 0 1 1 1 1 22 8

Sassari 65 16 0 0 0 3 20 18 6 11 7
Savona 52 57 2 2 4 4 8 8 6 10 8

* According to other authors [108], the number of victims was 820.

3.3. Riverine Area Morphological Analysis

Urban transformations on the floodplains and in natural riverine areas [12] have been
drastically reduced. To assess the incidence of the anthropogenic impact in each territorial
NUTS, 65 watercourses (47 in Italy, 14 in France, and 4 in Spain) that have caused damaging
geohydrological events, insisting on including densely urbanised areas, were selected.

For these watercourses, detailed analyses were carried out in a GIS project for the
period of 1836–2023. In particular, changes to the riverbed widths in the terminal sectors on
the floodplains were measured. In order to compare historical and recent river networks, it
was necessary to georeference, with high precision, the oldest maps (approximately 1850) in
which the hydrographic networks were represented with morphological detail (Figure 11).

The increase values of the urbanised areas in the lower sectors of the floodplains
were compared through historical maps (19th century) and an analysis of recent satellite
imagery (Google Earth). An area 1 km (the small coastal area is considered in relation to
the homogenous extension of the overall floodplains (e.g., in Italy, where the floodplain
is constrained between the sea and the mountains)) in width towards the inland, starting
from the current coastline, was considered to evaluate the floodplain urbanisation.
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Figure 11. Width reductions in the terminal stretches of watercourses in coastal plains measured via
GIS using historical maps and current satellite images. Examples of three representative cases: Barca
(Valencia, Spain; Box C in Figure 3), Le Var (St. Laurent du Var, France; Box A in Figure 3), and Roja
(Ventimiglia, Italy; Box A in Figure 3).

For the morphological evolution of the floodplains, various evolutionary mechanisms
for the watercourses were highlighted [12] (Figure 12). The morphological evolution of the
WMA watercourses was affected by various evolutionary mechanisms (Figure 12). These
are presented in Figure 12 in their dynamics: Originally, single-threaded waterways (A)
were channelled (G), sometimes deleting certain riverbed paths (F). An initial braided
morphology (B) often evolved towards a transitional morphology (G or H) or, more often,
a single thread. Multi-thread catchments (C) were often deflected and lost a flow direction
(E, L). Braided torrents followed various developmental lines that led them to evolve into
narrow channels that were sometimes very culverted (M, P, or Q) and usually subject to
techno-coasts (N or O). In some cases (e.g., Olbia and Cagliari, Italy), swamp areas (D)
were drained via spread channelling (I). In many cases (e.g., N and P), a coastal sediment
progradation was made.
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Figure 12. Evolutionary mechanism scheme [12] based on incision and narrowing, as detected
through the cartographic analysis.

4. Results
4.1. Urban Sprawl

The analysis of the urban sprawl in the period of 1950–2022 highlighted an increase
in urbanised areas among the major cities of the NUTS. Normalising the data on the
number of years yielded increases ranging from 0.04 km2/year (e.g., Ventimiglia, Italy) to
4.57 km2/year (Barcelona, Spain), with an overall increase rate of 0.5 km2/year. Over a
period of about 60 years, the main cities of the NUTS grew by an average of 10.5 times, with
a minimum increase of 1.4 times (San Remo, Italy) and a maximum increase of 51.8 times
(Massa, Italy) (Table 3).

The comparison of the 1990–2012 CLCs showed substantial growth in urbanised
areas, with percentages ranging from 22% (Corse du Sud, France) to 284% (Grosseto, Italy),
representing an average increase of about 91% when considering all the NUTS (Table 4).
For Genova, the greatest increase took place following the 1930s. In the twentieth century,
urbanisation began in the hillside area of the inland part of Genova, with a peak between
the 1950s and 1980s; to date, this process remains ongoing [55,124]. For the same period, a
comparison of the increase values of urbanised areas in the floodplain (coastal belts alone,
identified by considering an area of 1 km in width towards the hinterland, starting from
the current coastline) indicated general growth, with more anthropisation than the average
value calculated for the entire NUTS. This result was especially evident for Cagliari (202%),
La Spezia (93%), and Valencia (93%) (Table 4). This result indicates that, for several areas,
the increase in urbanisation was concentrated in areas close to the coast.
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Table 3. Growth rates of the urbanised areas of the main NUTS cities analysed. The abbreviations I
(Italy), F (France), and S (Spain) refer to the EU states; for the locations of the cities, see Figure 3. The
value ∆area represents the difference in the area in the period considered, and ∆years represents the
interval of time considered.

Conurbation Data Maps
(Old/Recent)

Area (km2)
(Old/Recent)

∆area
(km2)

Increasing
(∆area/Old Area)

Ajaccio (F) 1951/2018 1.07/20.67 19.60 18.4
Albenga (I) 1938/2018 0.30/4.02 3.72 12.4

Barcelona (S) 1957/2018 50.74/329.39 278.65 5.5
Cagliari (I) 1950/2022 8.37/51.93 43.55 5.2

Cannes–Antibes (F) 1950/2018 8.17/74.54 66.37 8.1
Carrara (I) 1954/2018 0.98/20.60 19.62 20.0
Cecina (I) 1954/2018 0.73/5.29 4.55 6.3

Chiavari–Lavagna (I) 1938/2018 1.96/8.70 6.74 3.4
Follonica (I) 1954/2018 0.72/9.40 8.69 12.1
Genova (I) 1938/2018 12.07/56.96 44.89 3.7
Grosseto (I) 1954/2018 2.25/16.60 14.35 6.4
Imperia (I) 1938/2018 1.63/7.86 6.24 3.8

La Spezia (I) 1938/2018 2.96/17.09 14.12 4.8
Livorno (I) 1943/2018 6.94/36.90 29.96 4.3
Massa (I) 1954/2018 0.54/28.45 27.91 51.8

Monaco–Menton (F) 1948/2018 3.18/25.07 21.89 6.9
Nice–St Laurent du Var (F) 1950/2018 14.81/108.99 94.19 6.4

Olbia (I) 1950/2022 1.04/16.84 15.80 15.2
Piombino (I) 1954/2018 1.49/13.14 11.65 7.8

Pisa (I) 1954/2018 4.92/36.60 31.68 6.4
Rapallo 1938/2018 0.56/6.30 5.74 10.3

Rosignano Solvay (I) 1954/2018 0.83/8.80 7.97 9.6
San Remo (I) 1952/2018 2.17/5.27 3.10 1.4

Savona (I) 1961/2018 3.73/18,42 14.69 3.9
Sestri Levante (I) 1938/2018 0.46/6.39 5.94 13.0

Valencia (S) 1957/2018 16.18/149.07 132.89 8.2
Varazze (I) 1938/2018 0.46/3.73 3.27 7.0

Ventimiglia (I) 1952/2018 0.68/3.13 2.45 3.6

Table 4. Changes in urbanised areas based on a comparison of the 1990–2012 CLCs (fourth level).

NUTS Name
CLC Urban Area of NUTS

km2 in 1990 km2 in 2012 %

Alpes-Maritimes 275.6 454.3 65%
Barcelona 706.8 952.9 35%
Cagliari 96.9 126.9 31%

Corse du Sud 73.9 90.4 22%
Genova 122.3 133.2 9%
Grosseto 61.1 234.5 284%
Imperia 29.5 47.1 60%

La Spezia 49.9 187.2 276%
Livorno 93.9 169.9 81%

Massa Carrara 68.9 109.2 59%
Pisa 104.3 237.2 128%

Sassari 164.7 257.1 56%
Savona 59.6 82.9 39%
Valencia 286.7 680.1 137%

4.2. Hydro-Meteorological Damaging Events

The temporal distribution of events (Table 2) shows a significant increase in damaging
flood events for almost all the NUTS considered since the beginning of the 1980s. Among
the NUTS considered alone, there were more than 1300 victims over the entire period of
about 170 years. There were also other victims not specified by the documentary sources.
In detail, 372 damaging flood events (over 55%) occurred after 1980, with one almost every
1.3 months and 27% in the last two decades (post-2000) (Figure 13).
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Figure 13. Temporal distribution of the 675 flood events that affected the coastal areas of the NUTS
analysed, broken down by 20-year periods starting in the middle of the 1800s [55,92–121] (see
Supplementary Materials).

The event data collection ended in the spring of 2022. However, recent flood events
in 2023 show an increase in the frequency of heavy rainfall in all areas considered, even
though these data are not included in the current analysis. Examples include the events
in Spain, France, and Italy on 23–26 May 2023 [125,126], and in Barcelona and Valencia
(Spain) on 30 May 2023 [127,128]. During the event on 23 May in the Murcia regions (Spain),
15 people were rescued from vehicles engulfed by floodwaters. Experts stated that the
Mediterranean regions of the Iberian Peninsula, which are most often exposed to floods,
receive 19% more rainfall during heavy rain periods compared to the 1960s [128].

The 30 April event in France and the 17 May 2023 event in Italy [129] are noteworthy.
The delicate coastal situation in Italy is dramatically highlighted by the repeated flooding
events that affected the Italian east coast (the Emilia Romagna and Marche regions) in May
2023, and produced 17 certain victims [130]. Flooding impacted about 30 watercourses and
more than 1000 landslides surveyed.

4.3. Riverine Area Transformations

A comparison of 19th century maps with recent maps and images revealed a reduction
in riverine areas, which were examined in comparable river stretches by measuring the
riverbed widths and changes in the physical geography of the floodplains. The width
measurements were replicated in significant stretches (generally at bridges or crossings).
In many cases, it was possible to carry out at least two measurements and then give an
average value for each watercourse. This value, expressed as a percentage, was extended
to a NUTS scale, indicating an average reduction in the river spaces in the lower stretches
of the watercourses in each NUTS.

Examining the morphological evolution of all the watercourses by adopting recent
methodologies [12] indicates that the various evolutionary mechanisms for the water-
courses often present an initial braided morphology that often evolved towards a transi-
tional morphology or, more often, a single-thread morphology (Figure 12).

In the literature, the term “techno-coast” has been used to categorise stretches of
artificial urban shores, modified to such an extent that the physical attributes of the original
shore are no longer visible or preserved [131].

The measurements obtained for each watercourse are shown in Table 5.
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Table 5. Watercourses examined (shown in Figure 4) and their widths measured on historical (1800) and current (2020) maps, averaged over the number of
measurements taken. The percentage reduction is reported. The average loss of useful discharge sections in the active riverbed is greater than 55%. The floodplain
changes are shown in terms of pattern changes, diverting/culverting rivers, and the presence of techno-coasts [131]. The column “Type of pattern adjustment” refers
to the evolutionary mechanism scheme in Figure 12.

NUTS No. Stream Name River
Network (km)

Narrowing
(%)

Floodplain
Urbanisation

(%)

Type of
Pattern Adjustment

River
Diverted or
Culverted

Techno-Coast

Valencia (S)
1 Barca 27.4 −85%

36%
A-G-M-P Yes Yes

2 Barranc de Carraixet 185.2 −28% A-G Yes No

Barcelona (S)
3 El Llobregat 3285.3 −41%

58%
A-F-N Yes Yes

4 Besòs 660.9 −52% B-H Yes Yes

Alpes
Marittimes (F)

5 La Siagne 353.8 −15%

76%

A-G-N Yes Yes
6 Le Béal 7.9 −75% A-F-M Yes Yes
7 Vallon du Riou 9.5 −61% A-G-M Yes No
8 La Cagne 69.6 −73% A-F-L Yes Yes
9 Vallon des Vaux 5.7 −96% A-G-M-P Yes Yes

10 Le Var 2612.0 −61% B-H-N Yes Yes
11 Le Magnan 14.4 −66% A-G-M Yes Yes
12 Vallon des Sablières 6.1 −83% A-G-M Yes Yes
13 Vallon de St. Pancrace 5.7 −88% A-G-M Yes Yes
14 Le Paillon 223.3 −51% A-G-M Yes Yes
15 Vallone di Carrei 18.3 −75% A-G-M Yes Yes

Corse
du Sud (F)

16 La Gravona 299.6 −73%
12%

C-E-L Yes Yes
17 La Gravona-Ovest 16.7 −55% A-F No No
18 La Gravona-Prunelli 258.6 −72% A-G No No
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Table 5. Cont.

NUTS No. Stream Name River
Network (km)

Narrowing
(%)

Floodplain
Urbanisation

(%)

Type of
Pattern Adjustment

River
Diverted or
Culverted

Techno-Coast

Imperia (I)

19 Roia 704.9 −77%

38%

B-H-N No Yes
20 Nervia 160.8 −76% B-H-N No Yes
21 Verbone 12.4 −30% A-G-M Yes Yes
22 San Bernardo 704.9 −85% A-G-M Yes Yes
23 San Romolo 9.7 −84% A-G-M-P Yes Yes
24 San Francesco 5.6 −42% A-G-M-P Yes Yes
25 San Lazzaro 6.4 −86% A-G-M-P Yes Yes
26 San Martino 7.8 −84% A-G-M Yes Yes
27 Armea 24.2 −86% B-H-M Yes Yes
28 San Lorenzo 24.2 −11% A-G Yes Yes
29 Prino 33.4 −59% A-G No Yes
30 Impero 68.8 −74% A-G No Yes
31 San Pietro 9.0 −48% A-G-N No Yes
32 Cervo 10.5 −68% A-G-N No Yes

Savona (I)

33 Merula 22.4 −41%

40%

A-G No No
34 Centa 384.7 −32% B-H Yes No
35 Aquila 14.9 − A-G-M Yes Yes
36 Fiumara 33.4 −49% A-G No Yes
37 Crovetto 5.2 −55% A-G-M Yes Yes
38 Segno 16.9 −44% A-G-N No Yes
39 Quiliano 39.0 −30% A-G No Yes
40 Letimbro 31.5 −26% A-G-N-O No Yes
41 Sansobbia 62.6 −34% A-G-N No Yes
42 Teiro 20.9 −54% A-G-M-P Yes Yes
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Table 5. Cont.

NUTS No. Stream Name River
Network (km)

Narrowing
(%)

Floodplain
Urbanisation

(%)

Type of
Pattern Adjustment

River
Diverted or
Culverted

Techno-Coast

Genova (I)

43 Chiaravagna 7.7 −43%

45%

A-G-N-O Yes Yes
44 Polcevera 91.5 −47% B-H-N-O Yes Yes
45 Bisagno 47.8 −50% A-G-M-P Yes Yes
46 Sturla 7.0 −55% A-G-M Yes Yes
47 Recco 8.5 −28% A-G-M Yes Yes
48 Boate 10.8 −18% A-F-L No Yes
49 Rupinaro 6.1 −32% A-G-N No Yes
50 Entella 248.2 −20% A-F-N-O Yes Yes
51 Gromolo 18.1 −29% A-F-M Yes Yes
52 Petronio 29.5 −41% A-F-N No Yes

La Spezia (I) 53 Ghiararo 9.0 −29% 37% A-G-N No Yes

Massa –
Carrara (I)

54 Carrione 44.0 −36%
81%

A-G-N No Yes
55 Ricortola 7.4 −70% A-G No Yes
56 Frigido 63.3 −53% A-G No Yes

Pisa (I) 57 Arno 5994.8 −47% 17% A-G-N No No

Livorno (I)

58 Ugione 23.7 −90%

25%

A-F-N-O Yes Yes
59 Della Cigna 23.7 −89% A-G Yes Yes
60 Maggiore 8.7 −96% A-F-M-P Yes Yes
61 Ardenza 16.3 −87% A-F-L Yes Yes

Grosseto (I) 62 Ombrone 2181.3 −64% 16% A-G No No

Cagliari (I)
63 Selargius 660.9 −82%

31%
D-I-N Yes No

64 Cungiaus 16.6 −78% D-I-N Yes No
65 San Bartolomeo 15.4 −61% D-I-O No Yes
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The percentage reduction in the riverbed width from 1800 to today based on stream
patterns varied between 11% and 96%. The average loss of useful discharge sections in
the active riverbed was greater than 55%. Floodplain urbanisation was from high to very
high for all watercourses, ranging from 12% to 81%. Additionally, 63% of the watercourses
resulted in streams with paths that had been changed or covered.

5. Discussion

The study highlighted the critical nature of the Mediterranean areas subjected to
considerable anthropic stress related to decades of uncontrolled urban sprawl, land use
changes, and the soil sealing of extensive areas; these results sharply contrast with the geo-
morphological concept of floodplains and resilience. Such factors are especially influential
when the drainage basin is closed between hilly and mountainous complexes and the sea,
with areas constrained by the morphology itself.

The problems related to anthropic influence are extremely widespread and in danger
of worsening due to the impacts of climate change [22] and the conditions of thermal
increases in the sea level, which are responsible for disturbance processes associated with
intense flooding events [12] that produce damage and casualties. The European coastal
sectors bordering the Western Mediterranean Sea between Spain and Italy were considered
for this study, as these areas exemplify the WMA. A natural continuation of the present
research should also analyse the remaining Spanish, French, Greek, and Maltese coasts, for
which data and historical documents are already being collected.

Increasingly frequent events, not only in number but also in magnitude and intensity,
are leading to critical situations related to increasingly anthropised land. Indeed, the loss
of natural areas over the past 20 years (1990–2012) is estimated to be 65% for the NUTS and
over 90% in coastal areas alone (data obtained via CLC comparison).

Furthermore, if the same rainfall event had happened in an urbanised context at the
beginning of the 20th century, it likely would have caused considerably less damage, refer-
ring to the damage that it would cause nowadays due to urbanisation. These considerations
can be justified considering the lower vulnerability of the territory in terms of the resident
population, a substantial absence of tourism, smaller impermeable areas, the low exposure
of exposed movable and immovable goods, low socio-economic investments, and more
adequate riverine spaces for the spreading of overflows.

A more in-depth study on this topic is also being considered. This study will represent
each exposed factor in terms of its “vulnerability weight” in order to achieve a more precise
flood risk calculation procedure.

The most significant factors related to the changes that have occurred during the
Anthropocene in riverine areas include the following: (1) up to 81% of urbanised areas
are located in floodplains; (2) a > 284% increase in urbanised areas was observed in the
period of 1990–2018; (3) the main coastal cities increased by up to 51 times compared to the
historical settlements; (4) flood events have increased in frequency; (5) physical geography
changes compared to the situation in 1850 were found in all watercourses analysed, with
the diversion and coverage of watercourses observed in more than 63% of the analysed
cases, thereby narrowing up to 96% of the historical riverbed; and (6) the presence of techno-
coasts was observed in more than 84% of the watercourses. These factors have dramatically
influenced the physical geography of the floodplains, exposing coastal areas to increases in
damaging floods. Additionally, the population exposed to this risk is constantly increasing,
with an average touristic presence about 280% higher than the resident population and a
peak of over 800% (Corse, France).

6. Conclusions

The drastic transformations of the physical geography of watercourses and floodplains
are related to historical and intensive human settlements. Activities necessary to mitigate
the harmful effects associated with geohydrological events must consider natural, economic,
and social aspects.
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The WMA coasts extend for nearly 3550 km between Spanish and Italian borders.
This stretch of land contains several hundred catchments characterised by medium–small
floodplains. In these sectors, the slopes are very steep, while the floodplains are typically
narrow and elongated.

Mediterranean floodplains were historically characterised by floods that caused mil-
lions of euros in damage and hundreds of fatalities. Increases in geohydrological events
have been observed since the 1980s due to variations in the rainfall regime and changes
in land use, which have heavily influenced the geomorphological processes related to the
dramatic increases in soil sealing.

The analyses performed in this study highlight some critical issues related to the
territory and areas exposed to potential damage by river floods. About 650 floods related
to 65 catchments were observed in only 14 NUTS out of the 51 WMA NUTS. These 14
NUTS represent almost 10% of the total Mediterranean coasts. In many cases, such disas-
trous floods can currently be identified as “exceptional”, but this term, in light of current
climate change, could become “ordinary” in the near future. A 2 ◦C increase in global
temperatures [22] would likely exacerbate this problem by significantly increasing the
frequency [132] and severity of flooding, with a higher probability of coastal floods, storm
surges, flash floods, and fluvial floods along the main rivers, as well as urban flooding in
many cities [133].

Exposure is increasing rapidly, especially in terms of people who could be affected
by damaging floods. The tourism factor is also extremely important in coastal areas due
to the attractiveness of such sites. This aspect often aggravates the alert and response
capabilities of the people involved. In many locations, the numbers of people exposed
to flood events have increased by up to 10 times compared to the resident populations.
It should be added that tourists are often unaware of the hydro-geological problems of
holiday resorts or are very unconcerned about them. This aspect should lead to further
sociological considerations and safeguard measures.

The various factors considered in this study should be part of an appropriate spatial
planning process and expressed in terms of the resilience of the population.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs15194798/s1, Table S1: Complete list of flood events in WMA
NUTS considered (period 1850–2022).
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