
Citation: Liu, J.; Wang, T.; Skidmore,

A.; Sun, Y.; Jia, P.; Zhang, K.

Integrated 1D, 2D, and 3D CNNs

Enable Robust and Efficient Land

Cover Classification from

Hyperspectral Imagery. Remote Sens.

2023, 15, 4797. https://doi.org/

10.3390/rs15194797

Academic Editor: Dino Ienco

Received: 6 September 2023

Revised: 25 September 2023

Accepted: 29 September 2023

Published: 1 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Integrated 1D, 2D, and 3D CNNs Enable Robust and Efficient
Land Cover Classification from Hyperspectral Imagery
Jinxiang Liu 1,2 , Tiejun Wang 2 , Andrew Skidmore 2,3 , Yaqin Sun 1, Peng Jia 4,5,6 and Kefei Zhang 1,7,8,*

1 School of Environment and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China; j.liu-5@utwente.nl (J.L.); syqin@cumt.edu.cn (Y.S.)

2 Faculty of Geo-Information Science and Earth Observation, University of Twente,
7500 AE Enschede, The Netherlands; t.wang@utwente.nl (T.W.); a.k.skidmore@utwente.nl (A.S.)

3 Department of Environmental Science, Macquarie University, Sydney, NSW 2109, Australia
4 School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China;

jiapengff@hotmail.com
5 Hubei Luojia Laboratory, Wuhan 430079, China
6 International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan 430072, China
7 Satellite Positioning for Atmosphere, Climate and Environment Research Center, School of Science,

Royal Melbourne Institute of Technology (RMIT University), Melbourne, VIC 3000, Australia
8 Bei-Stars Geospatial Information Innovation Institute, Nanjing 210000, China
* Correspondence: profkzhang@cumt.edu.cn

Abstract: Convolutional neural networks (CNNs) have recently been demonstrated to be able to
substantially improve the land cover classification accuracy of hyperspectral images. Meanwhile, the
rapidly developing capacity for satellite and airborne image spectroscopy as well as the enormous
archives of spectral data have imposed increasing demands on the computational efficiency of CNNs.
Here, we propose a novel CNN framework that integrates one-dimensional (1D), two-dimensional
(2D), and three-dimensional (3D) CNNs to obtain highly accurate and fast land cover classification
from airborne hyperspectral images. To achieve this, we first used 3D CNNs to derive both spatial
and spectral features from hyperspectral images. Then, we successively utilized a 2D CNN and a
1D CNN to efficiently acquire higher-level representations of spatial or spectral features. Finally, we
leveraged the information obtained from the aforementioned steps for land cover classification. We
assessed the performance of the proposed method using two openly available datasets (the Indian
Pines dataset and the Wuhan University dataset). Our results showed that the overall classification
accuracy of the proposed method in the Indian Pines and Wuhan University datasets was 99.65%
and 99.85%, respectively. Compared to the state-of-the-art 3D CNN model and HybridSN model,
the training times for our model in the two datasets were reduced by an average of 60% and 40%,
respectively, while maintaining comparable classification accuracy. Our study demonstrates that
the integration of 1D, 2D, and 3D CNNs effectively improves the computational efficiency of land
cover classification with hyperspectral images while maintaining high accuracy. Our innovation
offers significant advantages in terms of efficiency and robustness for the processing of large-scale
hyperspectral images.

Keywords: computational efficiency; convolutional neural network; deep learning; classification
accuracy

1. Introduction

Hyperspectral remote sensing technology, or image spectroscopy, utilizes hyperspec-
tral sensors for the simultaneous imaging of the target area using continuously subdivided
bands [1]. Compared to multispectral imaging, hyperspectral imaging contains more
information, allowing it to accurately detect the properties of ground features and use
them in some tasks, especially in land cover classification [2,3]. Recently, numerous small

Remote Sens. 2023, 15, 4797. https://doi.org/10.3390/rs15194797 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15194797
https://doi.org/10.3390/rs15194797
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9613-7762
https://orcid.org/0000-0002-1138-8464
https://orcid.org/0000-0002-7446-8429
https://orcid.org/0000-0003-0110-3637
https://orcid.org/0000-0001-9376-1148
https://doi.org/10.3390/rs15194797
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15194797?type=check_update&version=2


Remote Sens. 2023, 15, 4797 2 of 16

and cost-effective hyperspectral sensors have been introduced for aviation drones [4,5].
Meanwhile, several space-borne hyperspectral imagers, such as Zhuhai-1 [6], PRISMA [7],
and EnMAP [8], have also been launched. The acquisition of large volumes of hyperspec-
tral data requires fast and efficient analytical methods [9]. However, the high spectral
dimensionality and increasing spatial resolution generate large volumes of hyperspectral
data, thereby posing numerous challenges in image classification [10,11].

The convolutional neural network (CNN) offers a promising solution for hyperspectral
image classification, efficiently extracting spectral–spatial features and making it a prevalent
algorithm today [12,13]. Previous studies have shown that CNN methods are capable of
achieving high classification accuracy in hyperspectral image classification tasks [14–16].
There are three widely used hyperspectral classification methods based on dimensional
CNN methods, i.e., one-dimensional (1D), two-dimensional (2D), and three-dimensional
(3D) CNNs [17,18]. Within this context, 1D CNN is responsible for extracting spectral
details, while 2D CNN is tailored for spatial information extraction [19,20]. Conversely, 3D
CNN, comprising 3D convolution kernels, extracts both spatial and spectral attributes [21].
Although 3D CNN excels at spatial–spectral feature fusion, its complexity can elevate
network computing costs [22]. Given the surging data volumes, complex models often
fall short in classification accuracy and computational efficiency [14,23]. Consequently,
integrated CNNs have been proposed to overcome this problem [24].

Integrated CNNs are recognized as an effective approach, utilizing a combination of
two CNNs, specifically from 1D, 2D, and 3D CNNs, for accurate land cover classification
results from hyperspectral images [25,26]. For instance, Roy et al. [26] introduced an inte-
grated CNN method called HybridSN that used 3D CNNs to derive spatial–spectral joint
features from three dimensions using hyperspectral 3D cubes, while also employing 2D
CNNs to process spatial details from spectral images. HybridSN offers enhanced computa-
tional efficiency and improved classification accuracy compared to 3D CNN [26]. However,
HybridSN lacks the capacity to fully extract spectral features from the hyperspectral data
and performs poorly in classifying certain land cover types [27,28]. Zhang et al. [29] also
introduced an integrated CNN model, called 3D-1D CNN, which used a 3D CNN to derive
high-level spectral–spatial semantic information, followed by a 1D CNN to learn abstract
spectral details. This approach has been shown to improve CNN’s computational per-
formance in the classification of certain land cover types from hyperspectral images [29].
However, the 3D-1D CNN method fails to effectively account for spatial characteristics and
is not suitable for multiclass classification tasks.

In the real world, hyperspectral data typically contain various categories of objects,
with some exhibiting distinct spatial feature differences and others being more distin-
guishable based on spectral features. Consequently, the simple integration of two CNNs
cannot achieve optimal accuracy and efficiency results, particularly in scenarios involving
multiclass classification tasks and handling large volumes of hyperspectral images [30,31].
Here, for the first time, we propose a novel CNN framework that integrates 1D, 2D, and 3D
CNNs to achieve highly accurate and computationally efficient land cover classification
results from airborne hyperspectral images. We firstly assess the new model using two
open datasets (the Indian Pines dataset and the Wuhan University dataset), and secondly,
we compare the performance of our method against four existing CNN methods (1D CNN,
2D CNN, 3D CNN, and HybridSN).

2. Materials and Methods
2.1. Description of the Dataset

We selected two hyperspectral image datasets to assess the performance of our method,
including the Indian Pines dataset (https://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes, accessed on 1 October 2022), and the Wuhan
University dataset (http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm, accessed on
16 October 2022) [32,33]. The two datasets differ in spectral resolution, spatial resolution,
data volume, and land cover types.

https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
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2.1.1. The Indian Pines Dataset

The Indian Pines dataset, acquired in 1992 using the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS), covers a test region in Indiana, USA. The dataset comprises
145 × 145 pixels, covering 224 spectral bands from 400 to 2500 nm, at a 20 m spatial reso-
lution. With a data volume of 5.67 MB, it includes 16 land cover classes. Table 1 provides
the specifics on these classes and the distribution of the training and test samples, while
Figure 1 depicts the true color composite 3D hyperspectral image cube alongside the
ground reference map.

Table 1. The land cover classes within the Indian Pines dataset, detailing training and test samples
for each.

No. Land Cover Classes Total Samples Training
Samples

Test
Samples

1 Alfalfa 46 14 32
2 Corn-notill 1428 428 1000
3 Corn-mintill 830 249 581
4 Corn 237 71 166
5 Grass-pasture 483 145 338
6 Grass-trees 730 219 511
7 Grass-pasture-mowed 28 8 20
8 Hay-windrowed 478 143 335
9 Oats 20 6 14
10 Soybean-notill 972 292 680
11 Soybean-mintill 2455 737 1719
12 Soybean-clean 593 178 415
13 Wheat 205 62 144
14 Woods 1265 380 886
15 Buildings-grass-trees-drives 386 116 270
16 Stone-steel-towers 93 28 65
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2.1.2. The Wuhan University Dataset

The Wuhan University dataset was obtained using the unmanned aerial vehicle
(UAV)-borne visible/near-infrared Headwall Nano-Hyperspec hyperspectral systems in
Hanchuan City, Hubei Province, China on 17 June 2016. The dataset features images
measuring 1217 × 303 pixels, encompassing 274 spectral bands within a 400 to 1000 nm
wavelength range. With a 0.109 m spatial resolution, the data size amounts to 262 MB.
The dataset primarily encompasses 16 land cover classes, predominantly varied croplands.
Table 2 details these classes along with their associated training and test samples. Figure 2
displays a true color composite 3D hyperspectral image cube and its associated ground
reference map.

Table 2. The land cover classes within the Wuhan University dataset detailing training and test
samples for each.

No. Land Cover
Classes Total Samples Training

Samples Test Samples

1 Strawberry 44,735 13,421 31,315
2 Cowpea 22,753 6826 15,927
3 Soybean 10,287 3086 7201
4 Sorghum 5353 1606 3747
5 Water spinach 1200 360 840
6 Watermelon 4533 1360 3173
7 Greens 5903 1771 4132
8 Trees 17,978 5393 12,585
9 Grass 9469 2841 6628
10 Red roof 10,516 3155 7361
11 Gray roof 16,911 5073 11,838
12 Plastic 3679 1104 2575
13 Bare soil 9116 2735 6381
14 Road 18,560 5568 12,992
15 Bright object 1136 341 795
16 Water 75,401 22,620 52,781
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2.2. Related Works

In this section, we will highlight some significant works related to the integrated CNNs
topics. Figure 3 illustrates the convolution architecture of the related CNN frameworks,
i.e., 1D, 2D, and 3D CNNs. The input hyperspectral data is presented in the form of a
three-dimensional cube, which can be converted into three different feature representations:
1D spectral, 2D spatial, or 3D spectral–spatial features.
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One-dimensional CNN models only use 1D convolution kernels to analyze the input
1D spectral features [34]. Each pixel vector is represented as 1D data and is then processed
via the 1D CNN to derive deeper spectral insights [35]. Given that this data processing
hinges solely on spectral signatures, discerning between various land covers becomes
challenging due to the spectral mixing effect [36].

Two-dimensional CNN models only utilize 2D convolution kernels to extract abstract
spatial information from 2D spatial features [26]. This approach brings clarity to the spatial
dynamics among neighboring pixels [37]. However, there is a possibility that the model
might sometimes neglect pivotal spectral correlations [26].

Three-dimensional CNN models employ 3D convolution kernels to discern local
variations in the spectral–spatial dimensions of 3D hyperspectral image features [38]. Their
approach renders them particularly effective for hyperspectral image tasks [25]. However,
3D CNN can instigate challenges such as increased computational complexity, susceptibility
to overfitting, gradient vanishing, and explosion, limiting their widespread application [29].

Recently, integrated CNNs have garnered considerable attention, resulting in enhanced
classification accuracy [26]. Two integrated CNN models have been devised to address the
limitations of earlier models: the fusion of 3D with 1D CNNs, and the union of 3D with 2D
CNNs [25,26]. Consequently, the layered application of different CNNs can capture more
descriptive information vital for hyperspectral image classification tasks. Nonetheless, the
classification precision for individual species remains suboptimal [17].

2.3. Proposed Integrated 1D, 2D and 3D CNNs (IntegratedCNNs)

Figure 4 illustrates the architecture of the IntegratedCNNs. The IntegratedCNNs
model uses all three types of dimensional CNNs (i.e., 1D, 2D, and 3D CNNs) in a sequential
manner to extract and simplify diverse features from the hyperspectral image cube. First,
3D patches are extracted from the 3D hyperspectral data to serve as the input for the model.
Subsequently, 3D CNNs derive combined spectral–spatial information from these 3D
patches. During this procedure, every feature map in the 3D convolutional layer interacts
with multiple spectrograms, thereby integrating both spectral and spatial data for a richer
understanding. Subsequently, a 2D CNN refines this by extracting higher-order spatial
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details from the 3D CNN output maps. Then, a 1D CNN, built on top of the 2D CNN,
enhances the learning of spatial representation. Finally, the classification is performed
using the information derived from the preceding stages. The IntegratedCNNs preserves
the spectral–spatial joint information extraction capability of the 3D CNN, while also
substituting some of the 3D convolution stages with 2D and 1D convolution processes.
Based on the convolution architecture of 1D, 2D, and 3D CNNs, the IntegratedCNNs
achieves both efficient feature extraction and improved computational efficiency compared
to traditional 3D CNN methods [39,40].
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In our proposed IntegratedCNNs approach, the input hyperspectral images cube is
represented by I ∈ RH×W×B. Here, H represents the height,W stands for the width, and
B indicates the spectral band count of an individual pixel. Within the input map I, each
pixel carries spectral details associated with a label vector y ∈ 1× 1×M, with M indicating
the number of classification categories for ground objects. In addition, the multitude of
narrow spectral bands in the hyperspectral data present challenges for the classification
tasks [41,42]. To tackle this, principal component analysis (PCA) has been employed for
dimensionality reduction [31]. By applying PCA, the high-dimensional input data of I
undergoes a reduction in spectral bands, resulting in the output data being represented
by X ∈ RM×W×D. Here, D corresponds to the count of spectral bands following the
reduction in dimensionality. For the experiments conducted on the Wuhan University
dataset, the optimal number of components after the PCA dimensionality reduction was
15. Conversely, for the Indian Pines dataset, this number was 30. Then, the data cube X is
further segmented into overlapping 3D patches, represented as P ∈ RS×S×D; here, S× S
is the spatial extent of each patch. The label of a patch P is assigned based on its central
pixel. Subsequently, the 3D patches are sequentially processed through four CNN layers,
resulting in the generation of output feature maps 1, 2, 3, and 4. Finally, the classification
results are obtained by passing the output feature maps through a flattening layer and
then through two fully connected (FC) layers. The flattening layer collapses the input
dimensions into a single dimension, thus reshaping the input into a format suitable for the
FC layers.
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The model parameters were determined from the outcomes of our experiments. Some
parameters of the experiments in the Indian Pines dataset were identical to those in the
Wuhan University dataset. In the process of the network training, we designated 20 epochs
and adopted a convolution window size of 25× 25 pixels. The experiment results indicated
that a learning rate of 0.001 yielded optimal classification outcomes, and this was thus
selected for our study. The Indian Pines and Wuhan University datasets were each divided
into training (30%) and test (70%) subsets, respectively, as depicted in Tables 2 and 3. Using
the Indian Pines dataset as a reference, the IntegratedCNNs has two 3D convolutional
layers, a 2D convolutional layer, and a 1D convolutional layer. In the first step, we used two
3D convolutional layers sizes at 8× 3× 3× 7× 1 and 16× 3× 3× 5× 8, respectively. The
notation 16 × 3 × 3 × 5 × 8 denotes the use of 16 3D convolution kernels, for convolution
calculation, applied to eight 3D input feature maps. The size of the 3D kernels was
3 × 3 × 5, where 3 × 3 represented the spatial convolution size, and 5 represented the
spectral convolution size. Similarly, 8 × 3 × 3 × 7 × 1 indicated the application of eight
3D kernels of 3 × 3 × 7 to process an input map. In the second step, we used a 2D
convolution layer with dimensions of 32 × 3 × 3 × 320 to process the output maps from
the 3D layer. In this configuration, 32 denoted the quantity of 2D convolution kernels,
3 × 3 represented their spatial dimensions, and 320 represented the count of input feature
maps. Finally, we employed a 1D convolution layer to optimize the spectral data further.
The dimensions of the 1D layer were 64 × 3 × 608, where 64 indicated the total convolution
kernels, 3 represented the spectral dimensions of these kernels, and 608 was the count of
spectral spectra maps. The final layer contained 16 nodes, aligning with the class count
in the Indian Pines dataset. The cumulative trainable parameters for this dataset stood
at 5361913. Weights were randomly initialized and subsequently optimized employing
the back-propagation algorithm with the Adam optimizer by using the softmax loss [26].
The network was trained without the use of batch normalization, a technique typically
employed to expedite training via input layer normalization [43]. Certain parameters
were established based on our empirical observations, whereas others were automatically
generated by the system. Among these, the system-generated parameters included the
input feature map of each convolutional layer and the trainable parameters. For more
detailed parameter information regarding the IntegratedCNNs model on the Indian Pines
dataset, please refer to Table A1. The IntegratedCNNs model code is available at https:
//github.com/liujinxiang23/IntegratedCNNs, accessed on 1 October 2022.

2.4. Conventional CNN Models

We assessed the performance of our IntegratedCNNs method against four prevalent
CNN frameworks, including 1D CNN, 2D CNN, 3D CNN, and HybridSN. To evaluate
the classification performance across various CNN models, each model was uniformly
designed with four convolutional layers for a fair comparison. The following provides more
details about each model. (1) In the 1D CNN model, we employed four convolutional layers
with 1D filters of dimensions 8, 16, 32, and 64 to compute the results. The use of smaller
filter settings in the initial stages enhances the accuracy. Additionally, the architecture
includes a flattening layer, two dropout layers, and two dense layers. (2) For the 2D CNN
method, four 2D convolutional layers were applied, with each having a 3 × 3 kernel size.
(3) For the 3D CNN model, we used the same network architecture as the IntegratedCNNs
method. The only distinction is that the 3D convolutional layers were replaced with 2D
and 1D CNN layers. (4) For the HybridSN, we used the model structure proposed in the
study by Roy et al. [26] as a reference for our research. The architecture also includes 3D
layers and 2D CNN layers.

2.5. Computational Efficiency Assessment

To evaluate the computational efficiency of the IntegratedCNNs approach, we pri-
marily relied on metrics such as training duration and testing duration. In addition, we
assessed the convergence efficiency of our method by examining the trends in accuracy

https://github.com/liujinxiang23/IntegratedCNNs
https://github.com/liujinxiang23/IntegratedCNNs
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and loss across training and validation data collections. We also conduct an ablation study
using the Indian Pines dataset to assess different configurations of the model. All experi-
ments were carried out on an NVIDIA GeForce RTX 2080Ti graphics card using the Ubuntu
18 operating system, providing a consistent environment for accurate comparisons and
reliable results.

2.6. Accuracy Assessment and Statistical Tests

We utilized three metrics for accuracy assessment in our IntegratedCNNs approach:
overall accuracy, average accuracy, and kappa coefficient. Overall accuracy gives the
percentage of correct predictions out of the total test samples, serving as an indicator of
the model’s general efficacy [44]. On the other hand, average accuracy reflects the mean
classification accuracy for each category, allowing us to assess the model’s performance in
individual classes [45]. Given the uneven distribution of sample sizes in the two datasets,
the classification accuracy may be biased towards the larger categories and neglect the
smaller ones [46]. To address this issue, we used the kappa coefficient for consistency testing.
The kappa coefficient, which ranges between 0 and 1, measures the model’s consistency,
with a higher value signifying better consistency [47]. We also utilized a confusion matrix
to assess our model’s performance. Additionally, we applied McNemar’s test to ascertain
any statistically significant differences between the performance of the IntegratedCNNs
and other CNN models [48].

3. Results
3.1. Performance of the IntegratedCNNs Model

Figure 5 provides a side-by-side comparison of the classified maps produced by the
IntegratedCNNs model and the ground reference maps of the Indian Pines and Wuhan
University datasets. Overall, the classified maps are in close agreement with the ground
reference maps, with only a few misclassified points observed in certain areas.
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Figure 5. Classification results using the IntegratedCNNs method for Indian Pines and Wuhan
University datasets: (a,b) ground reference map and classification results for the Indian Pines dataset;
(c,d) ground reference map and classification results for the Wuhan University dataset.

Figure 6 illustrates the confusion matrix, presenting the accuracy measures of the
IntegratedCNNs method across both the Indian Pines and Wuhan University datasets. The
predicted pixels are predominantly aligned with the corresponding truth classes, with an
insignificant number of misclassified pixels observed.
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3.2. Model Comparison

Tables 3 and 4 show an overview of the testing accuracy and McNemar’s test for all
the compared CNN methods across the Indian Pines and Wuhan University datasets. The
IntegratedCNNs consistently outperformed the 1D, 2D, and 3D CNNs in metrics like overall
accuracy, average accuracy, and kappa coefficient, with statistically significant results.
Furthermore, on the Indian Pines dataset, the accuracy of IntegratedCNNs significantly
surpassed that of HybridSN. However, on the Wuhan University dataset, the results of
IntegratedCNNs did not exhibit a significant difference compared to that of the HybridSN.
More detailed results of the individual class accuracy obtained by all the compared models
on the Indian Pines and Wuhan University datasets can be found in Tables A2 and A3,
respectively. Visual comparisons between various classification techniques are illustrated
in the classification maps provided in Figures A1 and A2.

Table 5 provides insights into the computational efficiency of the compared CNN
methods, focusing on training time and testing time. Notably, IntegratedCNNs reported
average computational efficiency gains of 60% over 3D CNN and 40% over HybridSN
across the Indian Pines and Wuhan University datasets, marking a notable enhancement
over the 2D CNN, 3D CNN, and HybridSN methods.
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Table 3. Comparison of testing accuracies (overall, average, and kappa coefficient) across various
CNN models on Indian Pines and Wuhan University datasets, with the best results emphasized
in bold.

Dataset Testing Accuracy 1D CNN 2D CNN 3D CNN HybridSN IntegratedCNNs

Indian Pines
dataset

Overall accuracy (%) 96.54 89.56 96.96 99.33 99.65
Average accuracy (%) 79.85 94.44 97.64 98.14 98.97

Kappa coefficient 0.96 0.84 0.97 0.99 1.00

Wuhan
University

dataset

Overall accuracy (%) 99.02 99.27 99.76 99.92 99.85
Average accuracy (%) 97.91 98.20 99.43 99.79 99.82

Kappa coefficient 0.99 0.99 1.00 1.00 1.00

Table 4. McNemar’s test of all compared CNN classifiers (1D CNN, 2D CNN, 3D CNN, HybridSN,
and IntegratedCNNs model) in Indian Pines and Wuhan University datasets. Note the values
followed by (*) are significant at α = 0.05.

Classifier 1D CNN 2D CNN 3D CNN HybridSN IntegratedCNNs

Indian Pines
dataset

1D CNN -
2D CNN 210.13 * -
3D CNN 472.20 * 155.86 * -

HybridSN 896.06 * 407.98 * 84.67 * -
IntegratedCNNs 957.46 * 459.58 * 196.83 * 32.50 * -

Wuhan
University

dataset

1D CNN -
2D CNN 770.82 * -
3D CNN 1122.80 * 70.45 * -

HybridSN 1618.20 * 348.37 * 128.30 * -
IntegratedCNNs 1706.59 * 385.41 * 137.54 * 0.12 -

Table 5. Training time and testing time of Indian Pines and Wuhan University datasets.

Dataset Efficiency 1D CNN 2D CNN 3D CNN HybridSN IntegratedCNNs

Indian Pines
dataset

Training time (s) 44.06 901.20 1477.93 968.71 600.77
Testing time (s) 5.33 6.51 18.04 20.04 13.37

Wuhan
University

dataset

Training time (s) 1108.34 4396.18 7935.22 5372.43 3228.42
Testing time (s) 76.02 27.30 148.71 149.47 114.47

3.3. Ablation Studies

Table 6 presents the results of an ablation study focused on the configurations of Inte-
gratedCNNs using the Indian Pines dataset. For clarity in evaluation, the model structures
are segmented into four primary categories: IntegratedCNNs (3D-2D-1D CNN), 3D-2D
CNN, 3D-1D CNN, and 2D-1D CNN. Notably, the IntegratedCNNs achieves classifica-
tion accuracy comparable to the 3D-2D CNN and 3D-1D CNN while offering superior
computational efficiency.

Table 6. Ablation study results of IntegratedCNNs’ 1D, 2D, and 3D CNN configurations on the
Indian Pines dataset. Note the CNNs denoted by (X) are utilized in the models listed on the left.

3D CNN 2D CNN 1D CNN Training
Time (s)

Testing
Times (s)

Overall
Accuracy

(%)

Average
Accuracy

(%)

Kappa
Coefficient

IntegratedCNNs X X X 600.77 13.37 99.65 98.97 1.00
3D-2D CNN X X 653.57 13.86 99.55 98.93 0.99
3D-1D CNN X X 663.51 13.81 99.45 97.05 0.99
2D-1D CNN X X 114.12 4.17 97.71 91.28 0.97



Remote Sens. 2023, 15, 4797 11 of 16

4. Discussion

Our results demonstrated that the IntegratedCNNs outperformed the other compara-
tive methods, including 1D CNN, 2D CNN, 3D CNN, and HybridSN when considering
both classification accuracy and efficiency. Our approach integrated all three CNN models,
resulting in robust representations in terms of accuracy and efficiency by combining 1D,
2D, and 3D CNNs into a novel method for integrating the concept of these three classifiers
into a single processing chain. Our findings were in alignment with Roy et al. [26] and
Zhang et al. [29], who had integrated two CNNs from the options of 1D, 2D, and 3D CNNs,
but we obtained a further significant improvement in classification accuracy and efficiency.
This success could be attributed to the effective integration strategy of combining the
extracted spectral, spatial, and spectral–spatial features from the 1D, 2D, and 3D CNNs re-
spectively, which significantly enhanced the representation ability of hyperspectral images
and reduced computing costs.

The integration of CNNs has the potential to improve the accuracy of hyperspectral
classification [17,26]. Our study presented compelling evidence that the IntegratedCNNs
model outperformed the individual 1D, 2D, and 3D CNN models in metrics such as
overall accuracy, average accuracy, and kappa coefficient. Specifically, for the Indian Pines
dataset, the IntegratedCNNs posted a notable overall accuracy of 99.65%, surpassing the
1D CNN model at 96.54%, the 2D CNN model at 89.56%, and the 3D CNN model at
96.96% (Table 3). Although the overall accuracy of IntegratedCNNs (99.65%) was only
slightly higher than that of HybridSN (99.33%), this difference was statistically significant
(Table 4), suggesting a measurable advantage for our proposed model. Parallel findings
were observed when applying the IntegratedCNNs model to the Wuhan University dataset.
Here, the IntegratedCNNs demonstrated greater statistical significance compared to the
1D, 2D, and 3D CNNs (Tables 3 and 4). Interestingly, despite a slightly lower overall
accuracy of the IntegratedCNNs (99.85%) in comparison to the HybridSN (99.92%), the
difference was not statistically significant (Table 4), further affirming the competitive nature
of the IntegratedCNNs model in achieving accuracy across various scenarios. Furthermore,
we evaluated the proposed model’s performance under scenarios with limited sample
availability. When trained using only 5% of the samples from the Indian Pines and 1%
from the Wuhan University datasets, the accuracies attained were 93.12% and 97.69%,
respectively, after 100 training iterations (Table A4). Therefore, we recommend integrating
CNNs to correctly classify land cover from hyperspectral images.

Our study expanded upon previous research that discussed the varying efficiencies of us-
ing 1D CNN, 2D CNN, 3D CNN, and IntegratedCNNs in hyperspectral classification [26,49].
The integration of 1D, 2D, and 3D CNNs demonstrated a higher efficiency than the 2D CNN,
3D CNN, and HybridSN models in terms of training time and testing time and had a fast
convergence. Specifically, among all the compared CNN methods, the 1D CNN showcased
optimal efficiency, the 2D CNN displayed intermediate efficiency, while the 3D CNN regis-
tered the least efficiency (Table 5). This was primarily due to the 3D CNN model’s increased
computational complexity and extended training and testing times, resulting from its uti-
lization of 3D kernels—an observation supported by Roy et al. [26] and Paoletti et al. [38].
The HybridSN model, which utilized both 3D and 2D kernels in the convolution calculation,
demonstrated moderate efficiency compared to the 2D and 3D CNN models, and this finding
was consistent with the results reported by Roy et al. [26]. Similarly, the IntegratedCNNs
incorporated 3D, 2D, and 1D CNN kernels, enabling the extraction of abstract spatial and
spectral information and facilitating additional data compression. Moreover, our ablation
analysis underscores that this integration bolsters computational efficiency without sacrificing
classification accuracy (Table 6). As a result, the IntegratedCNNs model exhibited shorter
training and testing times compared to the 2D CNN, 3D CNN, and HybridSN models across
all tested datasets. In addition, the IntegratedCNNs reached convergence within 20 iterations
(Figure 7), indicating its ability to achieve accurate results without requiring excessive training
time. Ultimately, these findings highlighted the distinct advantages that the IntegratedCNNs
holds in terms of classification efficiency.
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This study presented a novel approach for efficiently classifying large amounts of
hyperspectral image data using CNNs. Given the exponential increase in hyperspectral
imaging data, enhancing the efficiency of information extraction from these voluminous
datasets becomes crucial. The proposed IntegratedCNNs model demonstrated its potential
in addressing this challenge. Despite conducting the experiments on relatively small
datasets, our model showed significantly improved efficiency compared to the 2D CNN,
3D CNN, and HybridSN methods (Table 3). This finding underscored the promising
application prospects of the proposed model in the context of big data. There is no need to
construct a CNN model with a complex structure; instead, an integrated CNN model from
1D, 2D, and 3D CNNs can effectively achieve high accuracy and efficiency with land cover
classification when dealing with large quantities of hyperspectral image data.

5. Conclusions

This study proposed a novel IntegratedCNNs model for land cover classification
from hyperspectral images. Our experiment results confirmed a stable and excellent
classification accuracy across all land cover categories achieved via the IntegratedCNNs
model. Furthermore, the IntegratedCNNs model demonstrated an average computational
efficiency enhancement of 60% over the 3D CNN and 40% over the HybridSN. These
findings highlighted the advantages of integrating different types of CNNs in stages for
hyperspectral image analysis, resulting in notable efficiency improvements. Considering
the expected explosive growth of hyperspectral image data in the future, this integrated
approach holds great promise for enhancing efficiency in hyperspectral image applications.
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Appendix A

Table A1. A detailed breakdown of our IntegratedCNNs model layers, tailored for the Indian Pines
dataset.

Layer Output Shape Parameter Count Kernel

Input layer (None, 25, 25, 30, 1) 0
Conv3D (1) (None, 23, 23, 24, 8) 512 8 × (3 × 3 × 7)
Conv3D (2) (None, 21, 21, 20, 16) 5776 16 × (3 × 3 × 5)
Reshape (1) (None, 21, 21, 320) 0

Conv2D (None, 19, 19, 32) 92,192 32 × (3 × 3)
Reshape (2) (None, 19, 608) 0

Conv1D (None, 17, 64) 116,800 64 × (3)
Flatten (None, 1088) 0

Dense (1) (None, 256) 278,784
Dropout (1) (None, 256) 0

Dense (2) (None, 128) 32,896
Dropout (2) (None, 128) 0

Dense (3) (None, 16) 2064

Total number of parameters: 5,361,913
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Table A2. The correct rate of each feature sample in each model of the Indian Pines dataset (%).

No. Land Cover Classes 1D CNN 2D CNN 3D CNN HybridSN IntegratedCNNs

1 Alfalfa 78.13 97.37 100.00 87.50 100.00
2 Corn-notill 96.70 98.21 96.70 98.50 99.60
3 Corn-mintill 97.07 99.32 81.93 100.00 100.00
4 Corn 94.58 100.00 100.00 100.00 98.80
5 Grass-pasture 95.86 97.41 98.23 100.00 99.41
6 Grass-trees 99.61 98.66 99.80 100.00 99.61
7 Grass-pasture-mowed 0.00 100.00 100.00 95.00 90.00
8 Hay-windrowed 100.00 100.00 100.00 100.00 100.00
9 Oats 0.00 28.57 100.00 92.86 100.00

10 Soybean-notill 99.56 98.53 95.00 100.00 100.00
11 Soybean-mintill 98.84 98.84 99.77 99.01 99.77
12 Soybean-clean 92.53 97.44 97.83 98.31 99.28
13 Wheat 98.60 100.00 100.00 99.30 98.60
14 Woods 99.55 99.78 98.87 99.77 100.00
15 Buildings-grass-trees-drives 88.15 100.00 94.07 100.00 98.52
16 Stone-steel-towers 38.46 50.538 100.00 100.00 100.00

Table A3. The correct rate of each feature sample in each model of the Wuhan University dataset (%).

No. Land Cover Classes 1D CNN 2D CNN 3D CNN HybridSN IntegratedCNNs

1 Strawberry 99.58 99.68 99.96 99.99 99.99
2 Cowpea 99.46 99.57 99.96 99.92 99.97
3 Soybean 99.80 99.92 100.00 100.00 100.00
4 Sorghum 99.41 99.89 99.79 100.00 99.95
5 Water spinach 99.80 99.76 99.88 99.88 100.00
6 Watermelon 95.24 96.19 99.81 99.62 99.72
7 Greens 98.39 97.75 100.00 100.00 99.90
8 Trees 98.39 98.94 99.75 99.90 99.96
9 Grass 97.05 99.46 99.92 99.91 99.94

10 Red roof 98.40 99.01 99.69 99.99 99.93
11 Gray roof 98.70 99.21 99.98 100.00 99.47
12 Plastic 97.68 98.52 100.00 100.00 99.96
13 Bare soil 93.92 95.78 99.31 99.76 99.22
14 Road 99.44 98.71 100.00 99.99 99.38
15 Bright object 91.41 88.93 98.74 97.86 99.75
16 Water 99.94 99.96 100.00 100.00 99.93

Table A4. Testing results for Indian Pines and Wuhan University datasets using limited training
samples.

Testing Results
Indian Pines Dataset

(Training with 5% of Samples)
Wuhan University Dataset

(Training with 1% of Samples)

Train 20 Epochs Train 100 Epochs Train 20 Epochs Train 100 Epochs

Overall accuracy (%) 85.14 93.12 95.53 97.69
Average accuracy (%) 60.84 86.77 87.34 93.95

Kappa coefficient 0.83 0.92 0.95 0.97
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