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Abstract: The greening of land plays a meaningful role in improving human settlements by regulating
ecosystem functions in the central coast region of China. However, research on the spatiotemporal
heterogeneity of green land changes in different urbanized regions and the cooling temperature effect
of the different green land densities are still lacking in this region, which limits the understanding
of the effect of greening of land on land thermal properties. To address this issue, we integrated
several approaches to establish a comprehensive way of ‘human–computer interactive interpretation
method—urban interior mixed pixel model—surface radiation energy balance model’ using data
from remote sensing images and the national land use/cover database of China, focusing on Rizhao
city. The conclusions are as follows: The total greening of land from 2000 to 2022 was monitored,
and it was found that its cover improved within the built-up area of the city, with the proportion
of green land increasing from 25.34% in 2000 to 42.98% in 2022. Differences in the amount of green
spaces in different urbanized regions were first observed, namely, the urban greening rate was 37.78%
in the old urban area in 2022, while it was as high as 46.43% in the newly expanded urban area
in 2022, showing that more attention should be given to the construction of urban green spaces
during urban expansion. Thermal comfort indicators in the study area were evaluated in terms of
latent heat flux (0–457.83 W/m2), sensible heat flux (0–645.09 W/m2), and total available energy
(254.07–659.42 W/m2). We also found that the cooling temperature effect in the middle- and high-
density green land regions were 1.05 ◦C and 2.12 ◦C higher than those in the low-density region, and
the established comfort/discomfort zones in terms of land surface temperature were depicted. These
results provide a new practical reference for exploring the spatiotemporal heterogeneity change in
green land and its impact on land-surface thermal properties in coastal regions.

Keywords: land use; urban green spaces; land surface thermal properties; central coast of China

1. Introduction

Greening land has significant benefits in terms of reducing the land’s thermal prop-
erties and regulating ecosystem services. In hot summers, people are often attracted to
the cooler climate of coastal cities [1]. However, in the context of rapid urbanization [2],
reinforced concrete buildings may introduce the urban heat wave agglomeration effect
and form a thermal discomfort region for residents in coastal urban areas [3–5]. A rea-
sonable layout of urban green spaces can usually alleviate damage from extreme summer
temperatures and avoid discomfort, such as heatstroke, for local residents or tourists,
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thereby improving ecosystem services in this region [6,7]. Currently, China is still under-
going a rapid urbanization process, shifting from the old mode of unilateral pursuit of
urban expansion to the new mode of rational urban land planning with a harmonious
coexistence between people and natural environments [8,9]. In the context of the current
urban construction of sponge cities, livable cities, innovative cities, and ecological cities
in China, greening of land plays an increasingly important role in providing comfortable
living environments and regulating ecosystem services [10]. Especially in the face of the
aim of reaching a carbon peak in 2030 and carbon neutrality in 2060 in China, the city’s
carbon digestion capacity further requires the improvement of green land distribution
patterns [11–13]. Studies monitoring the spatiotemporal heterogeneity changes in green
spaces and analyzing their impact on residents’ thermal comfort from the perspective of
land-surface thermal properties have become hot topics.

Scholars have conducted extensive research on the spatiotemporal heterogeneity
of the process of greening land and its change [14,15]. Early green land area surveys
mainly relied on manpower and manual measuring equipment such as level gauges and
theodolites. This type of measurement required many professionals, and the efficiency of
the measurement was not high [16–18]. With the development of Earth remote sensing
observation technology, satellite sensors can be used to obtain Earth’s land surface types,
such as green land cover [19–21]. The imaging resolution for monitoring land use and
cover changes has increased from 1000 m to 300 m, 30 m, 10 m, or even sub-meter. In
the context of current big data and cloud platforms, land cover monitoring has become
more popular at the local, regional, and global scales [22]. In this process, many green land
mapping products have emerged using remote sensing satellites, such as the global 30 m
land mapping products from the National Bureau of Surveying and Mapping in China, the
10 m resolution global land cover mapping, 2017, from Tsinghua University, and the vector
dataset of land use/cover changes across China from the Chinese Academy of Sciences [23].
Based on these green land data monitoring products, global land cover was becoming
increasingly green (i.e., greening Earth) [24], which was especially prominent in China and
India. China accounted for 25% of the global net increase in leaf area while accounting
for only 6.6% of global vegetated area. The greening in China was mainly from forests
(42%) and croplands (32%), but in India, the increased greening of land came mainly from
croplands (82%), with a minor contribution from forests (4.4%) [24]. In urban areas, the
cities were also becoming greener, especially in arid and semi-arid regions in Africa [25].
Meanwhile, among these typical land use products, the vector land product released by the
Chinese Academy of Sciences has multiperiod data, including for 1980, 1995, 2000, 2005,
2008, 2010, 2013, 2015, 2018, and 2020, which can be used for a continuous analysis of the
land status and its change trend. These data contained 25 land classification types, showing
a very extensive land cover mapping ability. In many previous studies, these data achieved
good land mapping and land change analysis results in all of China in both regional and
local scale investigations [26–28]. Considering the relevance of multiple periods and the
diversity of land classifications from the land use/cover data from the Chinese Academy
of Sciences, these land data were applied in this study.

From the perspective of land surface thermal properties, land use/cover changes alter
the surface thermal radiance, causing cooling or warming as well as energy effects, which
can be used to assess the thermal comfort of residents. Previously, studies mainly focused
on evaluating the effects of a building’s thermal environment on workers [29]. Subse-
quently, the Universal Thermal Climate Index (UTCI) was proposed, in order to investigate
the relationship between human settlements and factors of land surface convection, thermal
radiation, and water evaporation [30,31]. Additionally, the impact of greening of land on
the comfort of human settlements was continuously explored, considering the impact of
vegetation’s horizontal and vertical characteristics on the environment. Specifically, vegeta-
tion has a natural physical shielding property, which affects air flow and heat exchange
through horizontal blocking effects, resulting in a decrease in ambient temperature, and
vegetation further intercepts solar radiation through vertical shading, creating relatively



Remote Sens. 2023, 15, 4785 3 of 21

low-temperature areas under vegetation through shading [31,32]. Then, scholars conducted
research on the comfort of the living environment from a perspective of greening land,
using the temperature and humidity index, comfort index, and wind efficiency index in
regions where urban spaces were being greened [33,34]. The popularization of remote sens-
ing technology has led these studies to move from statistics to spatialized land mapping
results, such as spatialized land-surface thermal property maps of land surface temperature,
air temperature, net radiation, the Bowen ratio, latent heat flux, available flux, and sensible
heat flux [35–38], and thus, this has become a popular research approach for investigating
the impact of land use changes on surface thermal properties.

The central coastal region of China attracts tourists from all over the country due to
the advantages of the natural environment such as a suitable climate and high levels of
green vegetation. Currently, the investigation of changes following greening of land in
this region is insufficient, which limits the understanding of the impact of green spaces
on residents’ comfort in this region. Rizhao city is located in the central coastal region of
China. Since 2000, the urbanization process has been accelerating. In 2009, Rizhao won “the
United Nations Habitat Award” for its outstanding achievements in “improving housing
and infrastructure, and building a green home”, and it was the only region in China to
receive this honor that year. Subsequently, Rizhao entered a faster stage of urbanization
and obtained more Chinese awards such as that of being a “greening city”. Considering
the suitable natural climate and high coverage of green land, Rizhao city is a typical area in
terms of green land changes and its thermal property effects on the central coastal region
of China.

Currently, the understanding of the spatiotemporal heterogeneity of land changes as a
result of greening in the central coastal region of China is still insufficient. In particular, a
comparison of green land changes at different urbanization levels and the cooling tempera-
ture effect of the different green land densities are lacking in this region, which restricts the
exploration of the land surface thermal property effect of green land changes. Therefore,
the aims of this study are to effectively monitor spatiotemporal changes in green land and
analyze their impact on surface thermal properties. Specifically, the objectives are to (1) pro-
vide effective monitoring of the spatiotemporal heterogeneity of green land and capture
its new spatiotemporal features from 2000 to 2022; (2) reveal the different levels of green
land at different stages of urban development and provide the specific quantitative values;
and (3) analyze the impact of green land density and its thermal protective effect on the
residential environments and map the spatial distribution characteristics of uncomfortably
cold and hot areas for urban residents. Finally, three aspects of are discussed, namely, a
very green and livable region on the central coast of China is discussed, the different green
land changes in different regions of China and worldwide are compared, and the positive
effects of dense greening of land on the comfort of urban residents are investigated.

2. Materials and Methods
2.1. Study Area

Rizhao is located in the mid-latitude region of the Earth’s northern hemisphere, with
a total area of 5330.72 km2 in 2022, a longitude range of 118◦25′~119◦39′E, and a latitude
range of 35◦04′~36◦04′N (Figure 1). Regarding the natural environment of the study area,
the terrain exhibits a high numerical value in the middle and a flat surrounding area. This
region has a temperate monsoon climate with a small temperature difference among the
four seasons, meaning that the temperature in summer and winter is moderate, and the
area holds abundant water resources. From the perspective of administrative division,
a branch of socio-economic environments, Rizhao city contains over 30 administrative
sub-regions.

Rizhao is an ecologically coastal, livable, tourism-based, modern port and the portside
industrial base in China. It is also known as the “Capital of Water Sports” and “Oriental
Sun City”. Rizhao won the United Nations Habitat Award for its beautiful environment.
Rizhao was also awarded the titles of National Civilized City, National Forest City, Na-
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tional Environmental Protection Key City, and National Ecological Demonstration Zone
Construction Pilot City. The pleasant ecology, livable environment, and high coverage of
green land make Rizhao a suitable area for exploring the spatiotemporal features of green
land changes and its effect on land thermal properties from the perspective of land surface
radiation energy balance on the central coast of China.
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2.2. Data Collection and Preprocessing
2.2.1. Collection of Land Use Data

Land use data were very important for this study. Before the start of the study, we
reviewed the datasets from Tsinghua University, from Wuhan University, from the Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
from the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, etc.
All these data had good time series with high data consistency to use for studying land use
and the monitoring of land use changes, but the data formats that were publicly available
on the internet were grids [39–42]. Perhaps, the vector format of land use data was more
convenient for calculation and statistics. As members of the land dataset group at the
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, we obtained the vector land dataset for the years of 2000 and 2015. To include the
most recent land use change monitoring data, we extended the land use time to 2022. Then,
the land data for the years of 2000 and 2022 were used in this study.

The land use/cover dataset from the Chinese Academy of Science was developed using
the process of human–computer interactive interpretation of remotely sensed information to
interpret the Landsat digital images covering China, and to construct the national land-use
database [43,44]. For areas not covered by Landsat image data or covered with poor-quality
data, supplemental data from the CCD multispectral data from the Huanjing-1 satellite
(HJ-1) were used. The land changes were labeled with attribute codes using professional
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geoscience knowledge, and the codes can simultaneously reflect the land use type of the
dynamic plots during the different stages. The uniform quality control and integration
checking for each dataset was used to ensure high-quality and consistent interpretation.
The overall accuracies of datasets were above 91% [26,44] and meet the requirement of the
user mapping. According to the land use classification system from the Chinese Academy
of Sciences data, the first-level land types included 6 categories (i.e., cropland, forest land,
grassland, water land, construction land, and unused land), and the second-level types
included 25 categories. Rich land classification systems can monitor the land cover and its
change more effectively [42,45].

2.2.2. Remote Sensing Image Download

The remote sensing images from 2022 were downloaded and preprocessed in this
section (Section 2.2.2) and served as the basic data for producing land use maps for 2022.
The United States Geological Survey (USGS) provided the free, universal, and better
spectral characteristics of land resource satellites, and this was also the main data source
for the land use data production process of the Chinese Academy of Sciences. To match
the consistency between this image data source and the Chinese Academy of Sciences’
land data, we used the remote sensing satellite from the USGS to obtain land use maps
for 2022. For the satellite data quality inspection, Landsat OLI images with poor quality,
bad pixels, and cloud cover were removed. This means that we focused on high-quality
images covering the study area. For the time of image acquisition, we selected the summer
of 2022, as the different types of land surface covers were relatively easy to identify in
summer. Then, images with available observations and of high quality were downloaded
for 2022, with the images’ path and row number being 120,035. False color band synthesis
was performed on these Landsat images. The data used in this study are displayed below
(Table 1).

Table 1. The data used in this study.

Data Type Data Name Spatial
Resolution/Format Data Source/Links

Land use data National land use/cover database
of China in 2000 and 2015 vector

The Institute of Geographic
Sciences and Natural Resources

Research, Chinese Academy
of Sciences

Remote Sensing data

Landsat Thematic Mapper
30-m

https://glovis.usgs.gov
(accessed on 15 December 2022)(TM)

Operational Land Imager
30-m

https://glovis.usgs.gov
(accessed on 15 December 2022)(OLI)

Digital Elevation Model
30-m

https://glovis.usgs.gov
(accessed on 15 December 2022)(DEM)

Google Images 0.5-m http://www.91weitu.com
(accessed on 15 December 2022)

Basic Geographic data Administrative division vector https://www.resdc.cn
(accessed on 15 December 2022)

2.3. The Technical Process of This Study

Main technical process of this study is shown in Figure 2. This technical process mainly
included four steps. The objectives of steps 1 to 4 were to obtain the updated land use in
2022, the classified land covers within the built-up areas, and the calculated land surface
temperature as well as the land surface thermal property indicators, and to perform the
comprehensive analysis, respectively. Each step is explained in detail below.

https://glovis.usgs.gov
https://glovis.usgs.gov
https://glovis.usgs.gov
http://www.91weitu.com
https://www.resdc.cn
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The first step was to obtain the latest land use mapping for the year of 2022, so that
we could extract the built-up areas in the years of 2000 and 2022. We obtained land use
data for the years of 2000 and 2015 from the Chinese Academy of Sciences. Based on the
2015 land use data, the traditional human–computer interactive interpretation process of
remotely sensed information to interpret the Landsat digital images was applied in order
to establish new land use maps for 2022 on the ArcGIS software platform. After producing
the land use data, the accuracy evaluation was conducted using the method of layered
random sampling through creating random points functions in the data management tools.
Then, the land use data for the years of 2000 and 2022 were used to extract the built-up
areas in the years of 2000 and 2022 for this study.

The second step was to obtain the greening of land within the built-up area, so that
the spatiotemporal patterns of green land within the built-up area in different urbanization
regions (i.e., the old and new urban regions) could be compared in order to delve deeper
into the differences in land changes. For generating land cover within built-up areas, the
vegetation–impervious surface area–soil model (V-I-S) from the ENVI software platform
was used to obtain the optimal endmembers of the different types of land covers. In this
model, the principal component transformation first concentrated the spectra of surface
objects in the first three bands. A 2D scatter plot and band choice were used to combine
the first three short waves in pairs. In these different combinations of windows, the land
type features presented different scatter points. The land type spectrums of vegetation,
impervious surface area, and soil can be obtained using the region of interest tool to select
the corner points of these scatter points. These endmembers were input in the least squares
mixed pixel decomposition model to generate the densities of high albedo objects, low
albedo objects, vegetation objects, and bare soil objects. These four densities, as well as
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other indexes, were used to generate the land cover of impervious surface areas, vegetation,
bare soil, and water bodies, using the decision tree classifier method and unsupervised
classification method. The vegetation cover was extracted using the select tool in the extract
module on the ArcGIS platform. By using spatial overlay analysis tools, we superimposed
urban built-up areas with vegetation data, and further analyzed the differences in area and
proportion changes of vegetation between original and expanded urban built-up areas.

The third step was to obtain the land surface temperature retrieval and various ther-
mal comfort indicators. The split window algorithm was used to generate the surface
temperature pattern. The combination of the surface radiation energy balance model, the
pixel component arranging and component algorithm model (PCACA), and temperature
vegetation dryness index model (TVDI) was then used to obtain various thermal comfort
indicators, such as the sensible heat flux, latent heat flux, and available flux on the ArcGIS
and ENVI software platforms.

The fourth step was the comprehensive analysis to provide effective monitoring of
the spatiotemporal heterogeneity of green land space and capture its new change char-
acteristics from 2000 to 2022, reveal the different green land levels in different regions
of urban development and provide their specific quantitative values, and to reveal the
cooling temperature effect within different green land densities as well as the thermal
comfort indicators.

2.4. Methodology of Digitizing the Land Use Map, Classifying the Green Land Density and Its
Cover, and Retrieving the Land Surface Thermal Properties
2.4.1. Producing the New Land Use Map to Include the New Built-Up Area during
2000–2022

For generating the land use maps for 2022 in this study, we used the traditional process
of human–computer interactive interpretation, which was the same method as was used
for the data production process of 2000 and 2015 by the Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences. Using the land use map
of 2015 as the basic data source, the spatial land map of 2015 was superimposed onto
the corresponding images from 2022 on the ArcGIS software platform. In the 2015 land
use map, a 2022 attribute table field was added, which was used to obtain the land cover
types in the year of 2022. Then, the human–computer interactive interpretation method
of remotely sensed information was used to interpret the Landsat digital images using
professional knowledge by identifying the color and texture of different land features on the
Landsat images. The identified land type results were placed in the attribute table’s 2022
field. After identifying the entire research area, a 2022 land spatial map was generated. To
ensure the accuracy of the 2022 data, the land use dynamic patches during 2015–2022 were
obtained through the calculation of the attribute table’s 2015 and 2022 fields, and different
remote sensing professionals conducted multiple reviews of these dynamic patches. Finally,
a spatial land use map for 2022 was generated. Then, the different built-up areas in the
years of 2000 and 2022 were extracted and calculated using the spatial statistics analysis
tools on the ArcGIS software platform.

After producing the land use data for 2022, the layered random sampling scheme was
used to achieve accurate evaluation with a total of 300 sampling points for 2022 (Figure 3)
in the data management tools on the ArcGIS software platform. For the high-resolution
Google satellite images, the data were not freely accessible in China. We obtained them
on the paid and professional 91 bitmap platform. The images contained the following
information: resolution: 0.5 m, date: from 1 July to 30 September 2016 and 2022, sensor:
QuickBird, vendor: DigitalGlobe and Google. Then, the ground truth distribution samples,
producer’s accuracy, user’s accuracy, total classified pixels, and other indicators of per land
class were calculated in the accuracy evaluation matrix (Table 2). The overall obtained land
use accuracy was 92.67% in 2022. This means that the land use data achieved good accuracy.
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Table 2. Confusion matrix of land use validation according to Google images in 2022. The evaluated
indicators such as overall accuracy (OA), user’s accuracy, producer’s accuracy, and kappa coefficients
are also provided in this table [46].

Ground Truth (GT) Samples Total
Classified

Pixels

User’s
AccuracyYear Land Use

Type
Crop
Land

Forest
Land

Grass
Land

Water
Land

Construction
Land

Other
Lands

2022

Cropland 111 3 1 1 1 0 117 94.87%
Forest land 2 27 1 0 0 0 30 90.00%
Grassland 0 1 24 1 0 1 27 88.89%
Water land 1 0 0 30 1 1 33 90.91%

Construction land 2 1 1 0 73 1 78 93.59%
Other lands 1 0 0 1 0 13 15 86.67%

Total GT pixels 117 32 27 33 75 16 300 OA = 92.67%
Producer’s accuracy 94.87% 84.38% 88.89% 90.91% 97.33% 81.25% Kappa = 0.88

2.4.2. Green Land Density Generation

Mapping of the density of green land can be used to comprehensively analyze the
pattern change in the green land component and also to provide basic land data for
investigating the cooling temperature effect from greening of land. To obtain different land
type density maps (i.e., the area ratio of a land use type ranged from 0.01% to 100% within
each grid pixel), the image band fusion technology was first used to upgrade the resolution
of the satellite images from 30 m to 15 m [47] so that the land terrain pattern could be clearly
depicted [48] on the ENVI software platform. After the band fusion, the minimum noise
fraction rotation approach and the principal component analysis technology concentrated
the spectral information on ground objects on the first three main bands. Through the V-I-S
model, we obtained the endmembers in the land surface types of high and low albedo
objects, greening land objects, and soil objects. Then, the endmembers were continuously
optimized to obtain different land surface types of pure pixels, since the endmembers of
pure pixels can obtain high-density maps of high and low albedo objects, greening land
objects, and soil objects. In this process, we also used 0.5 m resolution Google satellite
images to obtain different interpretation samples from some sample areas to assist in the
density decomposition. After obtaining the endmembers of pure pixels, the least squares
mixed pixel decomposition model was applied to obtain the density maps of different
surface types (i.e., high and low albedo objects, greening land objects, and soil objects),
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accompanied by corresponding density values of 0.01–100.00% at each grid pixel after the
continuous end element optimization using the ENVI software platform.

In this study, the least squares mixed pixel decomposition model was applied, because
it can effectively perform linear decomposition of different land use types with the advan-
tage that the DN values of abundance maps for each end element within each pixel range
from 0 to 1. The principle of the model is described as follows:

Riλ =
n

∑
k=1

fkiCkλ + εiλ (1)

where Riλ is the albedo in the i-th pixel from band λ, fki is the proportion of the area
occupied by k components in the i-th pixel, Ckλ is the albedo in the k components from
band λ, and εiλ is the residual value.

2.4.3. Green Land Cover Classification

Green land classification was used to analyze the distribution of green land changes
within the built-up area, further providing the differences in green land levels within
different urbanization regions. To obtain green land classification data, we used a combi-
nation of supervised classification (i.e., decision tree) and unsupervised classification to
elaborate the urban interior land classification map based on the different surface density
data obtained in Section 2.4.2 using the ENVI software platform, thereby extracting the
spatial distribution characteristics of green land. In the process, the improved normalized
water body index was first input into the decision tree classification, with a threshold
greater than 0 to obtain water coverage. Then, the high and low albedo object densities
were used to generate impermeable surface areas and greening land density, normalized
difference vegetative index (NDVI) was used to obtain vegetation coverage areas, and soil
density was used to obtain soil coverage, resulting in the corresponding thresholds of 0.21,
0.18, 0.17, and 0.30 from impermeable surface areas, green land density, NDVI, and soil
density, respectively. There were still some small areas that could not be classified by the
remote sensing spectrum. Unsupervised classification divided these small mixed pixel
distribution areas into 200 categories. Manual interpretation identified the land cover type
that each classification belonged to. Then, the classification of green land within urban
areas was composed of two-parts, including the decision tree results and the small patches
of unsupervised classification results.

2.4.4. Calculation of Land-Surface Temperature

Considering the differences in the meteorological and environmental conditions dur-
ing the different years of 2000 and 2022 and further avoiding systematic temperature errors,
we used only remote sensing images from the summer of 2022 as an example to calculate
the land surface temperature as well as to retrieve the land surface thermal property in-
dicators. Land surface radiation energy is typically used to assess the effect of cold and
heat on residents. For the surface energy distribution, the spatial distribution of the surface
temperature should be presented first [36]. The split window algorithm model was used to
produce spatiotemporal differences in temperature patterns, mainly based on the thermal
infrared band of Landsat images and the related parameters in the python module on the
ArcGIS platform. The main principles of the model are as follows [44]:

Ts = A0 + A1T10 − A2T11 (2)

A2 = D10/(D11C10 − D10C11) + [D10(1− C11 − D11)/(D11C10 − D10C11)]/b11 (3)

A1 = 1+D10/(D11C10 − D10C11) + [D11(1− C10D10)]/(D11C10 − D10C11)]b11 (4)

A0= [D 11(1− C 10−D10)/(D 11C10−D10C11)]α10 − [D10(1− C11 − D11)/(D11C10 − D10C11)]α11 (5)
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Ci = εiτi(θ) (6)

Di = [1− τi(θ)][1 + (1− εi)τi(θ)] (7)

where, in Equation (2), Ts is the temperature of the land surface, T10 and T11 are the bright-
ness temperatures obtained from Landsat images, and A0, A1, and A2 are the transition
parameters that can be calculated from Equations (3)–(7). For Equations (3)–(7), τi and εi
represent the surface emissivity and atmospheric transmittance, which is also obtained
from the calculation process of Landsat images.

2.4.5. Retrieval of Land Surface Thermal Property Indicators

On the basis of the calculated spatial surface temperature data, the surface radiation
energy balance model was then used to obtain variously spatialized thermal comfort indica-
tors, including the sensible heat flux, latent heat flux, and available flux. In this calculation
process, some procedural parameters such as downwelling shortwave/longwave and
upwelling longwave radiation were also calculated, using the parameter model to obtain
the different flux data. The sensible heat flux was used to identify heat generation regions
to explore its impact on residents, latent heat flux was used to explore suitable regions for
residents’ leisure activities, and available flux was used to evaluate the total energy that
residents obtained on the ArcGIS and ENVI software platforms. The main principles of the
model are as follows [45]:

a = 0.356 × p2 + 0.13 × p4 + 0.373 × p5 + 0.085 × p6 + 0.072 × p7 − 0.0018 (8)

Rn = (1− α)Rsd + Rld − Rlu (9)

Rn= S + L + Gsoil (10)

L = LAFR(R n−Gsoil) (11)

S = SAFR(R n−Gsoil) (12)

LAFR = tvdi (Ts&ndvi) (13)

SAFR = 1− tvdi (Ts&ndvi) (14)

Gsoil = (Ts − 273.15)/α(0.0038α + 0.0074α2)(1− 0.98NDVI4)Rn (15)

AF = S + L (16)

where, in Equations (8) and (9), α is the land albedo from Landsat band2, band4, band5,
band6, and band7; and Rsd, Rld, and Rlu represent the indicators of shortwave radiation,
downwelling longwave radiation and upwelling longwave radiation from the Landsat cal-
culation parameters, respectively. In Equation (10), S, L, and Gsoil are the sensible heat flux,
latent heat flux, and soil heat flux. These indicators were obtained from Equations (11)–(15).
For Equations (11)–(15), the temperature vegetation dryness index (TVDI) was used as a
process parameter for calculating vegetation cover and land surface temperature based on
optical and thermal infrared remote sensing channel data in Landsat images. The SAFR
and LARF are the proportional parameters that are calculated from the pixel component
arranging and component algorithm model (PCACA) using the land surface tempera-
ture from Landsat images and NDVI from the near-infrared band and infrared band. In
Equation (16), AF is the available flux, which can be calculated using the sensible heat flux
and latent heat flux.
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3. Results
3.1. Analysis of Spatiotemporal Patterns of Green Land Cover within Different Urbanization
Regions from 2000 to 2022
3.1.1. Different Green Land Cover Proportion Changes in Built-Up Areas in 2000 and 2022

The green land covered an area of 13.27 km2 in the built-up area, with an urban
greening rate of 25.34% in 2000 (Figure 4a). Regarding its spatial distribution, green land
tended to be distributed intensively at the edge of the built-up area; in contrast, it was
mainly distributed sporadically within the built-up area. Then, the coverage of the built-up
area reached 130.89 km2, with a total increment of 42.98 km2 from 2000 to 2022. This result
indicated that the increase in green land area was as high as 323.94% during the study
period (Table 3). Therefore, by 2022, the urban greening rate of the study area reached
42.97% (Figure 4b), showing a very high proportion of green land coverage.
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Figure 4. Spatial distributions of green land and non-green land cover within built-up areas. Notes:
(a) 2000 land cover within built-up areas of 2000 and (b) 2022 land cover within built-up areas of 2022.
The design of (a,b) was used to display the different land covers within the different built-up areas of
2000 and 2022, respectively. For (c), the 2022 land covers within the built-up areas of 2000 are shown,
and (d) shows the 2022 land covers within the expansion region of built-up area during 2000–2022.
The design of (c,d) was used to compare the different 2022 land covers within the boundary of the
2000 built-up area and the boundary of the expanded built-up area of 2000–2022, respectively. In the
upper left corner of (a–d), we added the corresponding location figure of this region to the whole
Rizhao city, in which the red regions represent the enlarged land covers within the built-up areas
in (a–d), respectively. For the abbreviations in the legend of Figure 4, GLS: green land space, ISA:
impermeable surface area.
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Table 3. Statistics on the proportion of green land space in different urbanization regions.

Urbanization Regions Area (km2) Proportion (%)

Green land cover in urban area 2000 13.27 25.34
Green land cover in urban area 2022 56.25 42.97

2022 green land cover in urban area 2000 19.78 37.78
Green land cover in urban area 2000–2022 36.47 46.43

3.1.2. Green Land Cover Levels in Different Urbanization Regions from 2000 to 2022

Here, the different green land levels in the old (Figure 4a) and new (Figure 4d) urban-
ization regions were compared. For the old urban region (i.e., the built-up area boundary in
2000 (Figure 4a,c)), which represents a fixed built-up area boundary scenario, the total area
of green land was 19.78 km2 in 2022 (Figure 4c), which was an increase of 6.51 km2 com-
pared with that in 2000 (i.e., 13.27 km2 (Figure 4a)). With the boundary of the built-up area
unchanged, the increase in green land space in the old urban regions means the improve-
ment of green land service functions for residents, such as more places to rest in summer,
more beautiful green landscapes, and more suitable green space temperature regulation.

Then, the green land levels in different built-up area scenarios (i.e., old and new built-
up areas (Figure 4c,d) in a fixed year (i.e., 2022) were compared. Here, the newly built-up
area was a region of urban expansion from 2000 to 2022 (Figure 4d). In 2022, the total area
of green land in the newly built-up area was 36.47 km2. Correspondingly, the greening rate
of the newly built-up area reached 46.43%, accounting for nearly half of the proportion.
Meanwhile, the greening rate of the old built-up area was 37.78% (Figure 4c). The data
indicated that the rate of greening of land in the new urban area was 9.96% higher than
that of the old urban area in 2022. Overall, we found that the order of greening level from
high to low was new built-up area in 2022 (Figure 4d), old built-up area in 2022 (Figure 4c),
and old built-up area in 2000 (Figure 4a).

3.2. Analyzing the Characteristics of Green Land Densities and Land Surface Thermal Comforts
That Affect Residents
3.2.1. Analysis of the Characteristics of Green Land Density in Built-Up Areas

To further display the distribution of green land in urban areas, a green land density
map was produced, with values in each grid pixel between 0.01% and 100%. The advantage
of measuring green land density is that it can accurately depict the proportion of green
land space per pixel. Figure 5 shows that the maximum green land density in the entire
urban area can reach 100%. Through calculation, the average green land density in the
entire area was shown to be 43.35%. For spatial patterns, the density of green land coverage
was generally high on both sides of the roads and in concentrated park areas, where green
land was widely planted, bringing comfort to residents. The low-value areas of green land
density were concentrated mainly in the southeast region, which was the port, where the
surface was mainly composed of roads, squares, and port construction facilities, and the
green land design was relatively lower.

3.2.2. Analysis of the Spatial Distribution Characteristics of Thermal Comfort Factors
Affecting Residents

From the perspective of residents’ actual and perceived energy, the sensible heat flux,
latent heat flux, and total available flux in built-up areas were selected to provide quantita-
tive values and analyze the potential thermal comfort effect on residents. In particular, the
sensible heat flux was used to understand the spatial pattern of heat generation. In contrast,
latent heat flux primarily identified the areas of supercooling. The total available flux
varied in different regions and at different latitudes, so this was also an important indicator
used to characterize the total available energy that people obtained in a specific region.
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For sensible heat flux, the distribution map of sensible heat flux shows (Figure 6a) that
the lowest value of the entire urban area was 0, indicating that some areas within the urban
area did not display any sensible heat energy, and there was no heat source in these areas.
The highest value was 457.83 W/m2, indicating that in local areas, the heat emission was
still very high. We found that the sensible heat flux in urban areas presented a significant
gradient feature, namely, the high value areas were concentrated mainly in the western
region, which was also mainly the old urban area where the construction of houses, roads,
and squares was relatively dense. In contrast, the low-value areas were distributed in the
eastern region, which had a large distribution of green land.

For latent heat flux, the highest latent heat flux was 645.09 W/m2 and was mainly
distributed in the eastern part of the urban area (Figure 6b), close to the seaside, which
was also the location of the Shanhaitian National Tourism Resort, indicating that this area
generally had a higher latent heat flux than other areas, providing residents with a more
cool and comfortable environmental feeling. Meanwhile, it was also seen that the highest
values generally occurred in water bodies. Thus, concentrated and contiguous rivers,
ponds, and fountains can provide a comfortable water environment for residents.
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For total available flux, the lowest available flux was 254.07 W/m2 (Figure 6c). We
further determined that the maximum energy value was 659.42 W/m2, which was the
maximum superposition of latent heat flux and sensible heat flux; thus, this value was
higher than the maximum value of a single latent heat flux or a single sensible heat flux.
The change in total available flux means a change in energy, which has impacts on residents’
comfort perception. Through calculation, the average value of available flux was shown
to be 492.75 W/m2. This is the first study to represent the average impact of the total
energy available per unit area of the study area on the thermal comfort of residents. Then,
spatial distribution maps of other thermal comfort factors such as soil heat flux, albedo,
and net radiation were calculated and are displayed in Figure 6 to provide the specific
quantification values of surface thermal properties.

3.3. Analysis of the Cooling Effect of Green Land and Its Impact on Urban Residential
Environments

The cooling temperature effect of the density of green land was investigated using
green land density data and land surface temperature data. The green land density data,
with values ranging from 0.01% to 100% at each grid pixel, were divided into three levels,
namely, low-, medium-, and high-density, with corresponding density values from 0.01%
to 33.33%, 33.33% to 66.66%, and 66.66% to 100.00%, respectively. By superimposing these
three density areas onto the land surface temperature, the cooling temperature values in the
middle- and high-green-land-density regions were determined; the values were 1.05 ◦C and
2.12 ◦C higher than the corresponding low-density values. Therefore, the land temperature
reduction effect of the green land became stronger as the green area coverage increased,
even by over 2 ◦C, compared with the low-green-land-density region on the central coast
of China.

In addition to analyzing the cooling effect of green land areas, the discomfort from cold
and heat experienced by residents and caused by land surface temperature was analyzed.
The minimum land surface temperature in urban areas was 15.85 ◦C (Figure 7a) and this
was distributed mainly in areas where rivers were concentrated. In contrast, the maximum
land surface temperature was 36.64 ◦C and was mainly concentrated in the polymerization
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effect area of buildings. Therefore, the variation range of the temperature was 18.79 ◦C
and the average temperature was 25.86 ◦C. According to relevant references, we set a
temperature above 30 ◦C as a thermal discomfort zone (Figure 7 upper left figure, red
legend) and the temperature region below 18 ◦C as a cold discomfort zone (Figure 7, upper
right corner, blue legend). The spatial distribution of uncomfortable areas is displayed in
Figure 7b,c. The proportions of hot and cold uncomfortable regions were 4.22% and 5.15%
in the built-up area, respectively.
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4. Discussion
4.1. A Highly Green and Livable Region on the Central Coast of China

To explore the spatiotemporal heterogeneity of green land change on the central coast
of China, a typical region (i.e., Rizhao region) was investigated in this study. The first
important finding was that the study area was a highly green region in China. We found a
high coverage of green land areas, and evident differences in urban greening rates among
different urbanization regions were revealed. In 2000, the greening rate was 25.34% in the
built-up area, and it increased to 42.97% in 2022, with a percentage increment of 17.63%.
This means that the proportion of green spaces in urban development has significantly
increased. The green land coverage rate in the study area was amongst the highest in
China [49]. Urban design has paid more attention to the role of green spaces [49,50], which
are good for ecosystem service function for residents, for example, by reducing land thermal
properties, absorbing carbon dioxide, and releasing oxygen [51,52].

A high green vegetation rate holds a significant application value. From the monitoring
of this study, the urban greening rate reached 46.43% in the new urban area (i.e., the urban
expansion area from 2000 to 2022). This means that nearly half of the new urban area was
covered by green land/. According to our field investigation, in the newly built-up area,
the green land space included centralized and scattered park green spaces, community
green spaces, road shade areas, parking lot shaded areas, three-dimensional configuration
of grassland landscapes, the green of squares, trellises and flower racks, green boundary
regions, greening around sports grounds, and green roofs. A high coverage of green spaces
also attracted tourists from other places. The rich and beautiful green space design not
only provides local residents with a comfortable feeling, but also attracts large numbers of
foreign tourists. Also, it is more advantageous for urban planning departments to carry out
greener urban construction.

4.2. Comparison of the Differentiated Green Land Changes in Different Regions of China
and Worldwide

Urban green spaces under different climatic backgrounds were first compared in
China. In western China, especially in arid/semi-arid regions of northwest China [53–55],
large-scale greening of areas was usually carried out in urban areas to provide better
ecosystem services for residents. However, constrained by the arid climate, the proportion
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of green land was always less than 20% in urban regions in northwest China. In contrast, in
eastern China, a humid and semi-humid region [56–58], the proportion of green land areas
within cities was relatively high, such as in Beijing, the capital city of China, where the
proportion of green spaces was nearly 30% in built-up areas in the year of 2021. Further, in
the coastal regions, the proportion of green spaces in built-up areas has further increased,
such as in the study area of this paper, and the value rose to approximately 43% in the year
of 2022. Under different climate backgrounds, the proportion of urban land that is green
land resulted in huge differences.

Then, for different regions of the world, such as in Asia, green spaces in urban areas
were then discussed. Relevant research indicated that the proportion of urban green land
to the corresponding built-up area boundary decreased by 13.93% and 7.28% in capital
cities of East Asia and South Asia from 2000 to 2015 [59]. By contrast, increases happened
in the Middle East and Central Asia, with the incremental values of 12.61% and 15.36%,
respectively. As for Europe, the spatial patterns of the cities were basically stable, with
relatively small changes in green land. The increase in the proportion of green land was
only 1.57%.

4.3. Possible Positive Effects of Densely Green Land Space on Human Welfare

Differences in green land coverage in different urbanized regions were observed,
namely, the urban greening rate was 37.78% in the old urban area of 2022, while it was as
high as 46.43% in the newly expanded urban area of 2022, showing that more attention
should be given to the construction of urban green spaces during urban expansion. This
finding shows that the creation of a high green coverage in newly expanded urban areas
may have a positive impact on the living environment and residents’ walking and travelling.
First, it may increase aerobic exercise and improve the comfort of physical/mental health.
Photosynthesis of forest and grassland in spaces with high rates of greening may promote
the local production of a high-concentration “oxygen bar” environment [60], similar to a
business place, but for people to breathe oxygen. When residents walk and rest in such
a high-oxygen environment, their cerebral cortex and brain activities are strengthened,
which may promote the absorption of oxygen, accelerate blood circulation, invigorate
the spirit, eliminate fatigue, and improve immunity [61,62]. Second, it improves the
comfort of leisure and improves mood [63,64]. According to our survey, the service radius
required for Rizhao residents to reach parks and the centralized green space was less than
500 m. This was similar to the situation in areas of high greening in developed countries
in the Americas and Europe, which featured a large population and high coverage of
urban green spaces. Service radii shorter than 500 m from the park green space and the
centralized green space were convenient for residents to stroll there and relax [65]. Most
of their transportation methods for reaching these green regions are walking or cycling,
which are not only green and environmentally friendly, but also have a mood-enhancing
effect. However, if the service radius of park green spaces and centralized green spaces
to people is large [66], such as in regions of Africa and other arid regions, people have to
use private cars or public transportation to reach green land areas. This not only generates
noise pollution and is prone to traffic congestion, which affects residents’ moods, but also
makes the exhaust gas from fuel-powered vehicles more likely to pollute the environment
and generate greenhouse gas emissions, which is not conducive to the United Nations
Sustainable Development Goals (i.e., SDGs [67]) target.

4.4. Limitations of This Study and Future Prospects

The impact of large-scale regional climate simulations on cities should be thoroughly
investigated. This study focused on the central coastal areas of China, taking Rizhao City
as an example, to monitor urban green land changes and analyze their effect on land
thermal properties from a surface radiation energy balance perspective. Specifically, the
spatiotemporal heterogeneity of green land changes in different urbanized regions was first
revealed. The urban greening rate was 37.78% in the old urban area of 2022, while it was
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as high as 46.43% in the newly expanded urban area of 2022, showing that more attention
should be given to the construction of urban green spaces during urban expansion. Also,
the cooling land surface temperature effect in the middle- and high-green-land-density
regions was first studied, showing temperatures that were 1.05 ◦C and 2.12 ◦C higher
than those in the low-density region. Thermal comfort indicators in the study area were
also evaluated in terms of latent heat flux, sensible heat flux, and total available energy.
All these results were regional investigations. As is known, Rizhao is a coastal city, and
the sea should necessarily be taken into account at the regional climate scale. As a next
step, we will elevate the investigation from the regional scale to large regional scale to
comprehensively analyze the urban energy effect of green spaces and blue sea spaces using
the Weather Research and Forecasting Model (i.e., WRF). Then, the comprehensive impact
of green land and blue sea on the regional urban climate will be revealed.

More element indicators and green land types should be added. In the meanwhile,
the cooling temperature effect of the density of green land was investigated using green
land density data and land surface temperature data. The cold and hot discomfort zones of
residents caused by land surface temperature were analyzed. In the next step of research,
the proper comfort/discomfort zones based on more energy balance parameters should be
investigated to conduct a more in-depth analysis from the comprehensive perspective of
energy balance, such as by examining the factors of air temperature and relative humidity.
The combination of the air temperature and the relative humidity can usually provide a
comprehensive analysis of the impact of climate change on the comfort of urban living
environments. Furthermore, in this study, urban green space was taken as a whole to
explore the cooling effect of land surface on temperature. Although we obtained the
cooling effect of green spaces at different densities (i.e., the low-, medium-, and high-
density green land spaces), the different types of urban green such as shrubs, forested
areas, and different types of grasslands may have different cooling effects on the land
surface temperature. In future investigations, such a scientific issue will be summarized
using the combination of high-resolution satellite images and surface radiation energy
field observation.

More field observations on land surface temperature and its thermal properties should
be investigated to conduct more in-depth research. Further, for the monitoring of green
land areas, this study first analyzed the trend characteristics of green land changes through-
out the whole Rizhao city using land use data. However, this land use classification
system compiled the built-up area into one layer, which means that the monitoring of
the green spaces within the built-up area cannot be carried out. The combination of V-I-S
model—FCLS model—decision tree classifier—unsupervised classification was established
to estimate green land cover and its density data using remote sensing images. Then, the
green spaces pattern was monitored, and its cooling temperature effects were revealed
within the built-up area. But the cooling temperature effects outside the built-up area were
not investigated due to the relatively coarse 1 km resolution of the MODIS land surface
temperature product and the inconsistency in the time of different Landsat images. The
meteorological stations in the study were also relatively sparse. Therefore, more field
observations on land surface temperature and its thermal properties should be conducted
for more in-depth research, in order to reveal the cooling temperature effect of different
green land types outside the built-up area in our study area. Finally, in this study, when we
conducted land use accuracy assessments in 2022, high-resolution Google images were not
free, which may have affected the universality of the data for other studies. In subsequent
research, we will try our best to find free high-resolution remote sensing satellite data for
land use accuracy evaluation.

5. Conclusions

This study investigated the spatiotemporal heterogeneity of green land changes in
different urbanized regions and analyzed their effect on land thermal properties using the
comprehensive method of human–computer interactive interpretation method—urban
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interior mixed pixel model—surface radiation energy balance model to compensate for
the lack of research on green land and its environmental effects on the central coast of
China. For green land changes, remote sensing monitoring indicated that the green land
proportion in old urban areas was 25.34% in 2000, and that this proportion increased to
37.78% in 2022. The increase in old urban areas means an improvement in the green land
service function for residents. We also found that this proportion was as high as 46.43%
in newly expanded urban areas, thus providing better visual and environmental comfort.
The land thermal property indicators were also assessed, with values of 0–457.83 W/m2 for
latent heat flux, 0–645.09 W/m2 for sensible heat flux, and 254.07–659.42 W/m2 for total
available energy in the study area. Furthermore, the cooling temperature effect from green
land with different densities was revealed, with the lowered temperature values in the
middle- and high-green-land-density regions being 1.05 ◦C and 2.12 ◦C higher than those
of the low-density region. The minimum temperature was 15.85 ◦C and was distributed
mainly in areas where rivers were concentrated. The maximum temperature was 36.64 ◦C
and concentrated mainly in the polymerization effect area of buildings. Also, the spatial
patterns of uncomfortably hot and cold areas were depicted. These results/findings provide
a reference for the study of green land patterns and their impact on the land surface thermal
properties of human settlements in coastal areas of China. This study also investigated the
spatiotemporal heterogeneity of green land changes in different urbanized regions (i.e., the
old and new urban regions) and the cooling temperature effect of the different green land
densities in the central coast of China.

The contribution of this paper was to first compare the different greening levels in the
old and newly expanded urban areas in the period of 2000–2022 and to provide the latest
heterogeneity of green land changes on the central coast of China. The novelty was that
the cooling land surface temperature effect of different green land densities (i.e., the low-,
medium-, and high-density green space areas) was first revealed in the central coastal areas
of China, and the relevant indicators of surface radiation energy balance were evaluated.
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