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Abstract: Global warming presents a significant threat to the sustainability of agricultural systems,
demanding increased irrigation to mitigate the impacts of prolonged dry seasons. Efficient water
management strategies, including deficit irrigation, have thus become essential, requiring continuous
crop monitoring. However, conventional monitoring methods are laborious and time-consuming.
This study investigates the potential of aerial imagery captured by unmanned aerial vehicles (UAVs)
to predict critical water stress indicators—relative water content (RWC), midday leaf water potential
(ΨMD), stomatal conductance (gs)—as well as the pigment content (chlorophyll ab, chlorophyll a,
chlorophyll b and carotenoids) of trees in an olive orchard. Both thermal and spectral vegetation
indices are calculated and correlated using linear and exponential regression models. The results
reveal that the thermal vegetation indices contrast in estimating the water stress indicators, with the
Crop Water Stress Index (CWSI) demonstrating higher precision in predicting the RWC (R2 = 0.80),
ΨMD (R2 = 0.61) and gs (R2 = 0.72). Additionally, the Triangular Vegetation Index (TVI) shows
superior accuracy in predicting the chlorophyll ab (R2 = 0.64) and chlorophyll a (R2 = 0.61), while the
Modified Chlorophyll Absorption in Reflectance Index (MCARI) proves most effective for estimating
the chlorophyll b (R2 = 0.52). This study emphasizes the potential of UAV-based multispectral
and thermal infrared imagery in precision agriculture, enabling assessments of the water status
and pigment content. Moreover, these results highlight the vital importance of this technology in
optimising resource allocation and enhancing olive production, critical steps towards sustainable
agriculture in the face of global warming.

Keywords: irrigation management; precision agriculture; vegetation indices; chlorophyll content;
carotenoid content; water stress indicators

1. Introduction

Water scarcity poses a significant challenge to socio-economic development and ranks
as the most critical current risk according to the World Economic Forum’s annual risk
report [1]. Notably, agricultural irrigation is responsible for 70% of global freshwater con-
sumption, increasing the competition between agriculture and other economic sectors [2].
Consequently, adopting water-efficient agricultural systems and irrigation strategies be-
comes imperative for ensuring sustainable production.
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Precision irrigation is a strategic approach aimed at enhancing the agricultural yield
while simultaneously conserving valuable water resources and mitigating adverse environ-
mental impacts. This topic is of particular significance, especially for developing nations
and small-scale agricultural farms [3]. However, the advanced nature of precision irrigation
technology from developed countries presents substantial challenges in countries such
as China, Brazil and India, including technology disparities, real-time data processing
limitations and high implementation costs. Given that small-scale farms contribute signifi-
cantly to irrigated agriculture in developing nations and are expected to play an even larger
role in the future, it is imperative to develop cost-effective, data-driven approaches for
water management to support socio-economic development [4]. The adoption of balanced
precision irrigation techniques is expected, as addressed to the specific socio-economic
conditions prevailing in developing countries and small-scale farming contexts. These
practices offer opportunities to enhance agricultural irrigation efficiency in such regions
while mitigating adverse environmental impacts.

In the specific case of olive trees, numerous irrigation strategies have been developed
and assessed to improve water use efficiency, with a primary focus on enhancing yield
losses and potentially improving olive oil quality [5]. Based on the physiological response
of crops to water stress, the adoption of deficit irrigation (DI) has been the subject of
substantial focus in various investigations [6–9]. DI, a rational water-saving approach,
subjects crops to controlled water stress levels in order to optimise water productivity while
minimising the impact on the yield [10]. Primarily, two DI strategies have been extensively
studied in olive trees: regulated deficit irrigation (RDI) and sustained deficit irrigation
(SDI) [10,11]. The divergence between these strategies lies in the fact that RDI ensures the
absence of water stress during phenological phases sensitive to water scarcity, imposing
water stress exclusively during the pit-hardening phase through the reduction or cessation
of irrigation. Conversely, SDI imposes a consistent water restriction across the entire
irrigation season, maintaining a uniform stress level throughout. In the context of olive
growing in Portugal, both RDI and SDI have been studied, providing valuable insights that
demonstrate their ability to increase the net farm income, enhance the yield, reduce costs
and conserve water [6,10,12]. However, to successfully implement these methods in practice
and minimise any negative impact on the yield, it is crucial to thoroughly understand how
the crops react to water stress. This knowledge, combined with continuous monitoring of
water stress, becomes exceptionally important. Commonly adopted water status indicators
include the relative water content (RWC), leaf water potential at predawn (ΨPD) or midday
(ΨMD), and stomatal conductance (gs).

Conversely, indirect methods for monitoring water stress in plants can also be per-
formed, including the quantification of the photosynthetic pigment content of leaves, such
as the total chlorophyll (Chl ab), chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids.
The content of these pigments within leaves has a strong correlation with the plant’s physi-
ological condition, photosynthetic efficiency, developmental stage, productivity and level
of water stress [13]. Higher pigment concentrations are typically evident in non-stressed
plants characterised by optimal growth, in contrast to those experiencing stress due to
abiotic and biotic factors [14].

The conventional methods for determining the water status indicators and leaf pig-
ment content frequently require labour-intensive and invasive procedures. Quantifying the
water status indicators demands specialised equipment, such as Scholander pressure cham-
bers and porometers, while analysing the pigment content demands costly methodologies
such as spectrophotometry and high-performance liquid chromatography [15]. Never-
theless, these methods possess a significant limitation as they focus solely on individual
samples, offering restricted insights from single leaves or branches without considering
the entirety of the crop. As a result, an urgent requirement arises for more efficient tools to
support decision-support systems for farmers and agronomists.

Recently, emerging technologies such as remote sensing have shown significant po-
tential in optimising agricultural practices and resource allocation to enhance production
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efficiency while reducing costs and mitigating yield losses [16]. The use of remote sensing
for crop monitoring through satellites or unmanned aerial vehicles (UAVs) has gained
prominence across extensive geographical domains [17], including several crops, both an-
nual and perennial. Examples include olive trees [18], chestnut trees [19], lemon trees [20],
vineyards [21], corn [22], winter wheat [23], lettuce [24], Bermuda grass [25], barley [26],
and others. This technology provides data that can be processed to formulate vegetation
indices (VIs) for various applications, including inventory management, dendrometric
estimations, identification and monitoring of plant biotic stress, irrigation optimisation and
soil properties estimation [16]. The efficacy of this methodology lies in its capacity to infer
fluctuations in crop vigour, density, water status, and productivity.

Over the last few decades, this technological innovation has gained considerable
adherence, particularly in countries where economic activities are interlinked with crop
cultivation. An example of this phenomenon is observed in Mediterranean countries, where
the olive tree stands as a prominent crop. The olive tree (Olea europaea L.) is a crucial crop
within the Mediterranean region, playing a substantial role in the economic development of
these nations [27]. In Portugal, olive cultivation extents over an expansive 373,500 hectares
and includes about 120,000 farms [28]. The country ranks seventh globally and fourth
within the European Union in olive oil production, generating over 100,000 tonnes of this
product [29]. Notably, olive oil constitutes about 7% of Portugal’s agricultural exports,
which have demonstrated remarkable growth since 2000.

Traditionally, olive trees were cultivated under rainfed conditions, given their ro-
bust resilience to drought and ability to weather water stress [30]. Despite this notable
drought tolerance, the growth, development and yield of olive trees remained primarily
influenced by atmospheric circumstances [31], particularly precipitation and air tempera-
ture. Within this traditional olive production system, an alternating cycle of high and low
yields emerged, a pattern that has been intensified by global warming, leading to extended
periods of hot and dry seasons. These conditions have adversely affected the productivity
of olive trees.

To enhance productivity and establish consistent yield patterns, the imperative of
irrigating olive orchards has gained dominant importance. This significance has been
underscored by numerous studies conducted across diverse regions [32]. In several areas,
the allocation of land for irrigating olive orchards has been expanding to respond to the ad-
verse complications of drought and to increase olive oil production, aligning with the rising
demand for this product due to its recognised health benefits [33]. Consequently, remote
sensing techniques have found extensive application in optimising irrigation management
for this specific agricultural cultivation.

In the literature, UAVs equipped with thermal and hyperspectral sensors are com-
monly used for monitoring the plant water status and estimating the chlorophyll content.
Egea et al. [34] established correlations between the thermal Crop Water Stress Index
(CWSI) and physiological parameters, including the ΨMD, gs and leaf transpiration rate,
in super-high-density olive orchards. The CWSI showed notable suitability in monitoring
water stress and assessing the water status variability, with a coefficient of determination
(R2) over 0.6. In a different investigation, Ben-Gal et al. [35] explored the disparity between
empirical and analytical CWSI methodologies for estimating the ΨMD and gs. Remarkably,
both approaches yielded congruent outcomes. However, the analytical CWSI showcased
a distinct advantage due to its relative practicality, with higher correlation between the
canopy temperature and CWSI (R2 > 0.8), but with a weak correlation with water stress in-
dicators such as the ΨMD and stomatal resistance (R2 < 0.5). More recently, Caruso et al. [36]
conducted an analysis employing thermal images captured by a UAV to monitor the water
status, canopy growth and yield of “Frantoio” and “Leccino” olive cultivars under dif-
ferent irrigation regimes. The CWSI derived from thermal imaging showed a consistent
relationship with the ΨMD (R2 = 0.83) across both cultivars. Effectively characterising the
seasonal water status and discerning differences between irrigation strategies, the CWSI
emerged as a powerful tool. Moreover, significant associations were identified between
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the CWSI and the canopy growth, fruit yield and oil yield, underscoring its utility as an
indicator of olive trees’ water status. These findings emphasise the crucial role of the CWSI
in evaluating irrigation management and its consequent impact on crop productivity. In
a distinctive approach using different wavelengths, Marino et al. [37] investigated the
potential of the Photochemical Reflectance Index (PRI) [38], Water Index (WI) [39], and
Normalised Difference Vegetation Index (NDVI) [40] to detect plant responses to seasonal
drought. The authors concluded that these indices effectively discriminate the effects of
drought on rainfed trees and their subsequent recovery. Notably, the WI exhibited the
most robust correlation with the photosynthesis rate (R2 = 0.62), gs (R2 = 0.59), and sap
flux density (R2 = 0.69), while the NDVI displayed stronger relationships with the ΨMD
(R2 = 0.68). While hyperspectral sensors involve higher costs compared to multispectral
(MSP) sensors, Zarco-Tejada et al. [41] effectively employed them to estimate the Chl ab
content. The most favourable performance was achieved through the ratio of the Mod-
ified Chlorophyll Absorption Ratio Index (MCARI) [42] to the Optimised Soil Adjusted
Vegetation Index (OSAVI) [43], resulting in an impressive R2 value of 0.69.

However, the aforementioned studies have exclusively applied singular methodolo-
gies to compute the CWSI and have assessed only a subset of the core optical indices.
Furthermore, none of these investigations have established correlations among the diverse
indices and the RWC—an indispensable and precise water status indicator. Additionally,
the existing literature predominantly focuses on the analysis of the Chl ab content. To over-
come the identified limitations of prior investigations, the principal aim of this study is to
assess the viability of several spectral and thermal VIs derived from UAV-acquired imagery
to estimate water status indicators (RWC, ΨMD, and gs) and physiological performance
through an analysis of the leaf pigment content (Chl ab, Chl a, Chl b, and carotenoids)
within olive trees cultivated under field conditions in the northeast region of Portugal.
Additionally, our investigation includes a comprehensive examination of two thermal VIs
(CWSI and Stomatal Conductance Index—Ig) and a list of 37 optical VIs. Additionally,
five distinct methodologies are employed to compute the CWSI, while three distinct meth-
ods are applied to calculate the Ig. To accomplish this, we analyse a series of linear and
exponential regression models to predict the aforementioned parameters.

2. Materials and Methods
2.1. Study Site, Climate and Soil Characterisation

This study was conducted during three consecutive years (2019 to 2021) in a 2 ha irri-
gated olive orchard (Cv. “Cobrançosa”) located in the Vilariça Valley (Vilarelhos: 41.33◦N,
7.04◦W; 240 m altitude), a representative olive cultivation region in northeast Portugal,
which belongs to the olive oil denomination “DOP—Azeite de Trás-os-Montes”. The exper-
iment involved 25-year-old olive trees spaced at 6 m × 6 m (278 trees/ha) and showing
uniform characteristics: 4 m in height, 52 cm in trunk diameter and a crown diameter of
3.8 m, corresponding to an average crown area of 11 m2.

The study site experiences a Mediterranean climate, classified as Csa according to the
Köppen climate system [44]. Meteorological parameters, including the solar radiation, air tem-
perature, relative humidity, rainfall and wind speed were collected by an adjacent automated
weather station. The highest average annual temperature was 16.4 ◦C in 2020, contrasting
with the lowest of 15.5 ◦C in 2019 (Figure 1). During the summer months, July 2019 reached
the highest average monthly temperature of 25.6 ◦C, July 2020 reached 28.4 ◦C, and August
2021 recorded 25.7 ◦C. The peak absolute daily temperatures were 40.9 ◦C (DOY 232) in 2019,
40.0 ◦C (DOY 219) in 2020, and 41.9 ◦C (DOY 225) in 2021. The annual precipitation and
reference evapotranspiration (ET0) were, respectively, 744 mm and 1004 mm in 2019, 660 mm
and 981 mm in 2020, and 519 mm and 968 mm in 2021. Throughout the irrigation period
(June–October), the effective rainfall (calculated as 75% of the daily rainfall) and ET0 measured
61.0 mm and 547.0 mm in 2019, 58.7 mm and 559.8 mm in 2020, and 96.5 mm and 542.3 mm
in 2021.
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Figure 1. Monthly values of the reference evapotranspiration (ET0, mm), rainfall (mm) and mean
monthly air temperature (◦C) observed at the study site from 2019 to 2021.

The soil characteristics were determined in 2019 via sampling at three depths (0–0.2;
0.2–0.4 m and 0.4–0.60 m). The soil was classified as Eutric Leptosols developed on
metamorphic rocks (schists) of sandy loam [10]. The organic matter content in the soil was
low (10 g kg−1), and the pH was 6.6 and the apparent bulk density varied from 1.29 t m−3

in the topsoil layer (0–0.20 m) to 1.26 t m−3 in the deepest layer (0.60 m), with an overall
average of 1.30 t m−3.

2.2. Irrigation Treatments and Experimental Design

The experimental layout included seven adjacent blocks, each consisting of three rows.
Only the central trees were selected for sampling, and they were subjected to seven distinct
irrigation regimes (Figure 2) from late spring to early autumn (June–October). The water
application was determined through the computation of the crop evapotranspiration (ETc),
as calculated using the FAO method [45], expressed by ETc = ET0 × Kc. The estimation of
the crop coefficient (Kc) during the irrigation period was estimated by implementing the
model outlined by Orgaz et al. [46] on a weekly basis. The irrigation treatments included
the following: (1) full irrigation (FI100), defined as the control treatment, receiving 100% of
the estimated evapotranspiration (ETc); (2) over full irrigation (FI120), receiving 120% of the
estimated ETc; (3) two sustained deficit irrigation regimes (SDI60 and SDI30), respectively
receiving 60% and 30% water of FI100 and sustained throughout the irrigation season;
(4) two regulated deficit irrigation regimes (RDI100 and RDI60), with RDI100 being irrigated
equivalently to FI100 except during pit-hardening, when the irrigation was decreased to 10%,
and RDI60 being irrigated as SDI60 except during pit-hardening, when the irrigation was
ceased; and (5) farmer irrigation (FMI) with 8 h of irrigation twice weekly. Drip irrigation
was scheduled daily across all seven regimes, with the drippers spaced at 1 m intervals, each
with a flow rate of 4 L h−1. For the assessment of the water status indicators, the pigment
content quantification and the estimation of the average values for several VIs, a random
selection of five olive trees were chosen along the central line of each irrigation regime.

2.3. Soil Water Content and Plant Water Status Indicator Measurements

To monitor the volumetric soil water content (θv), six access tubes were vertically
inserted into the soil per irrigation treatment (excluding the FMI). These tubes were placed
within three olive trees (two per tree) to a depth of approximately 80 cm, positioned at
30 cm from the trunk and adjacent to the drippers. The measurements were performed
from an initial depth of 20 cm, progressing with 20 cm intervals. For this purpose, a TDR
T3 probe (TRIME-FM, IMKO GmbH, Ettlingen, Germany) was used. However, due to
logistical limitations concerning potential access tubes damage, these measurements were
unattainable in 2021.
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Figure 2. Layout of the irrigation experiment in the olive orchard (Cv. Cobrançosa) submitted to
different irrigation regimes: full irrigated 100% (FI100), over full irrigated 120% (FI120), sustained
deficit irrigation 60% (SDI60), sustained deficit irrigation 30% (SDI30), regulated deficit irrigation
100% (RDI100), regulated deficit irrigation 60% (RDI60) and farmer managed irrigation (FMI), during
2019–2021, located in the northeast of Portugal (41.33◦N, 7.04◦W).

The water status of the olive trees was determined through the measurement of the
ΨMD. For this purpose, young leafy shoots were collected from sunlit positions within the
crowns of three representative olive trees within each irrigation treatment. These shoots
were promptly sealed within a plastic bag to prevent water loss and then transferred to
a PMS 1000 pressure chamber (PMS Instrument, Albany, NY, USA). Additionally, the gs
was measured at midday within the same olive trees. Using an SC-1 porometer (Decagon
Devices Inc., Washington, DC, USA), measurements were taken from two leaves per each
of the three olive trees. Each measurement derived from a one-year-old leaf, selected from
a sunny crown position, and the porometer was set to auto mode for a 30 s interval.

Furthermore, the RWC, a method associated with reduced time and labour inten-
siveness compared to the ΨMD and gs, was assessed. Five olive trees from each irrigation
treatment were used for this evaluation. From each chosen olive tree, three one-year-old
leaves were detached, sealed within glass tubes, preserved in a cooled container and
transported to the laboratory. Estimation of the RWC followed the protocol outlined by
Marques et al. [47].

2.4. Quantification of Chlorophyll a, b and Total Carotenoid Pigment Content

Leaf pigment samples were obtained on DOY 199 (2019) and DOY 207 (2021). In each
irrigation treatment, ten leaves of identical age were collected from the same set of five
previously selected olive trees. These leaves were promptly placed within a refrigerated
container, ensuring preservation during transport to the laboratory, and subsequently
stored at −80 ◦C for biochemical analysis. The quantification of the chlorophyll and
carotenoid pigments was conducted following the methodologies outlined in [48], with
necessary adaptations.

To extract the pigments, 100 mg of dried leaf mass was introduced into centrifuge
tubes, into which 5 mL of 80% acetone was added. The samples were shaken at 30 Hz
for five minutes, followed by centrifugation for five minutes (4000 rpm). Then, 200 µL of
supernatant from each sample was transferred into a 96-well microplate and the absorbance
was measured at 470, 645, and 662 nm against a blank using a microplate reader.
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The obtained absorbance values were adjusted to the path-length-corrected absorbance
for 0.5 cm, as outlined by Marques et al. [47]. The pigment content was calculated based on
this corrected pathlength. All the analytical procedures were conducted in triplicate.

2.5. Remote Sensing Data Collection

Remote sensing data were collected using two UAVs: a fixed-wing UAV, the eBee
(senseFly SA, Lausanne, Switzerland), and a rotary-wing UAV, the Phantom 4 (DJI, Shen-
zhen, China). The Phantom 4 was equipped with a Parrot Sequoia sensor, enabling the
acquisition of MSP data spanning the green (530–570 nm), red (640–680 nm), red-edge
(730–740 nm), and near-infrared—NIR (770–810 nm) spectral ranges, with a resolution
of 1.2 MP. RGB imagery was also acquired for visualisation purposes using the 12.4 MP
camera on the Phantom 4. Radiometric calibration was achieved using in-flight irradiance
data, with the reflectance data obtained pre-flight using a calibration target.

For the thermal infrared (TIR) imagery acquisition, the eBee UAV equipped with
a thermoMAP sensor was used, collecting data within 7500 nm to 13,500 nm, with a
resolution of 640 × 512. The UAV flights were performed from May to September between
2018 and 2021, excluding 2020 due to UAV technical issues, limiting the thermal flights to
2018, 2019, and 2021. Both thermal flights and ground measurements of the water status
indicators were conducted at midday. For the MSP and RGB flights, scheduling near solar
noon was chosen to minimise the shadow incidence.

The UAV flight campaigns from both UAVs were performed at an 80 m flight height,
with a 90% longitudinal overlap and 70% lateral overlap. This configuration produced data
with spatial resolutions of around 0.03 m, 0.16 m, and 0.07 m, respectively, for the RGB,
TIR, and MSP data. Table 1 summarises the performed flight campaigns.

Table 1. UAV flight campaigns for the multispectral and thermal data acquisition. TIR: thermal
infrared; MSP: multispectral.

DOY Model Applicability Data Type Platform

253 (2018) Prediction TIR eBee

199 (2019) Regression RGB and MSP Phantom 4
TIR eBee

261 (2019) Regression RGB and MSP Phantom 4
145 (2020) Regression RGB and MSP Phantom 4
189 (2020) Prediction RGB and MSP Phantom 4

207 (2021) Regression RGB and MSP Phantom 4
TIR eBee

2.6. UAV Data Processing

To ensure the precise alignment of the RGB, MSP, and TIR imagery, aluminium targets
were strategically positioned across the olive orchard. The data were processed using
Pix4Dmapper Pro (Pix4D SA, Lausanne, Switzerland), using structure-from-motion (SfM)
algorithms to construct a high-density point cloud from the captured images. Using inverse
distance weighting (IDW), the point cloud was interpolated, producing orthorectified
raster outputs, including the digital surface model (DSM), digital terrain model (DTM)
and reflectance maps of the MSP bands. Additionally, the canopy height model (CHM)
was derived by computing the difference between the DSM and DTM, producing a model
uninfluenced by the terrain slope and enabling object height determination above ground
level [33]. This methodology ensured precise and uniform data representation, supporting
subsequent analysis and interpretation.

The reflectance values from each MSP band were used for the spectral VI computa-
tion. The selection of VIs was based on their documented effectiveness in the literature
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(Appendix A Table A1). Moreover, the thermal VIs were also calculated via TIR imagery,
specifically the CWSI and Ig [49], as defined in (1) and (2):

CWSI =
Tc − Twet

Tdry − Twet
(1)

Ig =
Tdry − Tc

Tdry − Twet
(2)

where Tc represents the plant canopy temperature, and Twet and Tdry represent the lower
and upper baseline temperatures, respectively, in similar meteorological conditions. The
upper baseline characterises the temperature of a non-transpiring leaf with fully sealed
stomata, while the lower baseline relates to the leaf temperature with fully opened stomata
(undisturbed transpiring leaf). The CWSI was calculated using five distinct methodologies
and the Ig by three approaches, as outlined in [22]. For the first four CWSI methodologies
(CWSI1, CWSI2, CWSI3 and CWSI4), the Tdry and Twet were determined as per Table 2.
Notably, the application of the non-water stress baseline (NWSB) insight was recommended
for the CWSI computation according to previous studies [50,51]. Therefore, CWSI5 was
calculated according to Equation (3), wherein ∆T2 represents the difference between the
canopy and air temperature, while the values of ∆T1 and ∆T3 were derived as detailed in
Table 2.

CWSI5 =
∆T1 − ∆T2

∆T1 − T3
(3)

Table 2. Lower and upper temperature limits for calculating the Crop Water Stress Index (CWSI) and
Stomatal Conductance Index (Ig).

Index Lower Temperature Limit Twet/∆T1 Upper Temperature Limit Tdry/∆T3

CWSI1 Wet reference temperature Dry reference temperature
CWSI2 Wet reference temperature Air temperature plus 3 ◦C
CWSI3 Wet reference temperature Severe-water stress canopy temperature
CWSI4 Well-watered canopy temperature Air temperature plus 3 ◦C

CWSI5
Temperature difference of the
well-watered canopy and air 3 ◦C

Ig1 Wet reference temperature Dry reference temperature
Ig2 Wet reference temperature Air temperature plus 3 ◦C

Ig3
Temperature difference of the
well-watered canopy and air 3 ◦C

The Ig calculation methods were applied similarly to the prior approach. The Tdry and
Twet for Ig1 and Ig2 were determined following the procedures in Table 2. The Ig3 approach
was computed using Equation (4), with the ∆T1, ∆T2, and ∆T3 being identical to those
provided for CWSI5.

Ig3 =
∆T3 − ∆T2

∆T3 − T1
(4)

Two methods were used to estimate the lower and upper reference temperatures.
Initially, the temperature of the both upper and lower sides of the water-sprayed leaves
(Twet) was recorded. Then, the non-transpiring leaves’ temperature (Tdry) was obtained by
measuring the leaves covered with petroleum jelly [24]. These measurements established
the reference temperatures for further calculations.

Moreover, the average Tc value derived from the TIR imagery of the non-stressed olive
trees (FI100) served as a reference for the well-watered canopy conditions. This reference
temperature was used for the parameter estimations in CWSI4, CWSI5, and Ig3. Conversely,
the average Tc of the olive trees near the study area, under rainfed conditions and severe
water stress, was used as a dry reference for estimating CWSI3. The air temperature was
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monitored using a humidity and temperature data logger (SSN-22, Hairuis Instruments,
Shenzhen, China) to ensure precise temperature readings throughout the measurements.

2.7. Imagery Segmentation

In remote sensing, the Normalised Difference Vegetation Index (NDVI) is widely
applied for segmentation, distinguishing vegetation from non-vegetation areas. In this
study, the NDVI was applied to segment and identify olive trees. However, the presence of
spontaneous vegetation growing within irrigated rows led to image disturbances (Figure 3c).
To address this, the CHM was integrated into the segmentation, considering only heights
exceeding 1 m (Figure 3b). This inclusion effectively removed the undesirable vegetation,
enhancing the final image quality.
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Therefore, the process used to generate the binary image for delineating the olive tree
crowns included the following stages, as delineated by Marques et al. [19]: (1) implementing
Otsu’s method [52] on the NDVI image to create a binary representation of the vegetation
pixels; (2) integrating CHM into the segment, considering only heights greater than 1 m;
(3) merging both binary images; and (4) performing morphological operations such as
opening and closing. The resultant image enabled olive tree crown border detection and
delineation, allowing for the extraction of the mean values of the spectral and thermal VIs.

2.8. Design of the Statistical Analysis and Regression Model Assessment

The data were examined and processed using the statistical software SPSS Statistics
26 (IBM, Armonk, NY, USA). The mean differences in the ΨMD, gs, RWC, and pigment
content (Chl a, Chl b, Chl ab and carotenoids) among the irrigation treatments were assessed
through conventional analysis of variance (ANOVA) followed by the Tukey HSD test at
p < 0.05 for significance. Exponential and linear regression equations were established from
the VIs against the water status indicators and pigment content. These regression models
were then used for the prediction, and the linear correlation between the observed and
predicted values was evaluated. The suitability of the regression models and their relation
to the original data were assessed using R2. To assess the precision of the linear regression
model in predicting the water status indicators and leaf pigment content, three statistical
measures—root mean square error (RMSE), mean absolute error (MAE) and relative error
(RE)—were used to quantify the deviations between the predicted and observed data.

3. Results
3.1. Soil Water Content

Figure 4 illustrates the variation in the θv under the different irrigation strategies dur-
ing 2019 and 2020. As expected, the reduced water application corresponded to decreased
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θv levels. Notably, among the irrigation regimes, FI120, FI100, and RDI100 (excluding the
pit-hardening phase) showed the highest θv values, maintaining relative stability within the
0.25 to 0.32 cm3/cm3 range. Conversely, SDI30 displayed the lowest values (0.13 cm3/cm3)
throughout both years’ irrigation seasons. SDI60 and RDI60 (excluding the pit-hardening
phase) displayed intermediate θv values, ranging from 0.15 to 0.20 cm3/cm3.
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Figure 4. Evolution of the mean values of the volumetric soil water content during the irrigation
season of 2019 (a) and 2020 (b) under different irrigation treatments: full irrigated 100% (FI100), over
full irrigated 120% (FI120), sustained deficit irrigation 60% (SDI60), sustained deficit irrigation 30%
(SDI30), regulated deficit irrigation 100% (RDI100) and regulated deficit irrigation 60% (RDI60). The
grey region represents the cutoff irrigation phase in the regulated deficit irrigations and the dashed
lines represent the beginning and end of the irrigation season.

Reducing the irrigation volume by 10% in RDI100 and completely interrupting the
irrigation in RDI60 during the pit-hardening phase (from DOY 205 to DOY 232 in 2019 and
from DOY 209 to DOY 237 in 2020) rapidly lowered the θv values, aligning with expectations
and leading to swift drops in the values. In RDI60, the θv slightly dipped below SDI30 and
approached the soil’s lower content capacity, whereas in RDI100, the values were slightly
above those observed in SDI60 during the same period. As for the θv values before the
irrigation reduction or interruption, RDI100 and RDI60 experienced reductions of 60% and
57% in 2019 and 85% and 77% in 2020, respectively. Upon irrigation reestablishment, these
treatments recovered, reaching θv levels comparable to similar treatments.

Comparing the minimum θv values observed during the irrigation interruption, RDI100
showed a 42% recovery in 2019, while RDI60 presented a 21% recovery. In 2020, due to
the more significant declines during the cutoff phase, the recovery was more pronounced.
Specifically, RDI100 achieved a 92% recovery, whereas RDI60 recorded a 61% increase in
the θv.
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3.2. Water Stress Indicators

Throughout the irrigation season across the three years of the study, measurements of
water stress indicators such as the RWC, ΨMD, and gs were carried out, and the corresponding
data are presented in Figure 5. The RWC measurements were conducted before the beginning
of the irrigation season on DOY 134 (2019), DOY 145 (2020) and DOY 148 (2021). At this point,
no statistically significant differences among the irrigation treatments were detected. The
recorded values exceeded 90% of the RWC, indicating non-stressed conditions for the olive
trees, consistent with prior research [50]. The RWC values for the FI100 and FI120 irrigation
treatments remained relatively stable, close to 90%, over the three-year irrigation season.
Conversely, during the irrigation period, the RWC values gradually declined across all the DI
treatments, with significant differences emerging between them. By the end of July in both
2019 and 2020 (DOY 211), RDI60, SDI60, and SDI30 showed notable drops in the RWC. In 2019,
these treatments reached minimum RWC values of 82%, 84%, and 77% respectively; in 2020,
the corresponding minimum values were 79%, 85%, and 73%, indicating moderate water
stress conditions [50]. In 2021, the distinction between the non-stressed and DI treatments
emerged earlier, around mid-June (DOY 162), although the values remained stable until late
July. Unlike 2019 and 2020, the year 2021 showed minor variations, with the DI recording
higher RWC values and lower differences between them.

During the irrigation interruption phase, the RWC values of RDI100 and RDI60 ex-
perienced a significant decline across all the study years. RDI100 showed lower values
compared to SDI60, while RDI60 demonstrated lower values than SDI30. Within this specific
period, RDI100 and RDI60 indicated minimum values of 83% and 69% in 2019, followed by
83% and 73% in 2020 and 86% and 82% in 2021. A comparison of the RWC values for these
irrigation strategies before the interruption period revealed the most significant decrease in
2019, when RDI100 and RDI60 presented reductions of 9% and 21%, respectively. During
this specific period, in 2019 and 2020, RDI60 indicated values representing severe water
stress [50]. Following the reestablishment of irrigation, a recovery was observed, with
RDI100 reaching values similar to FI100 and RDI60 matching the values of SDI60. Moreover,
in 2019 and 2020, SDI60 and SDI30 displayed a gradual decrease throughout the irrigation
season, except for a minor recovery at DOY 246 in 2020 due to a 39 mm rainfall event
recorded during the previous week. By early autumn of 2019 and 2020, SDI30 reached
minimal RWC values of 64% and 68%, respectively, representing reductions of 28% and
23% compared to the control treatment (FI100) on the same DOY.

As carried out in the estimation of the RWC values, the ΨMD measurements were
performed at the beginning of the study, prior to the irrigation starting, except in 2021.
At this point, no significant disparities were observed between the irrigation treatments,
with the ΨMD values ranging from −1.7 to −2.1 MPa. However, over the three study years,
around DOY 190, RDI60, SDI60 and SDI30 began to manifest disparities with the values
of the control treatment. These values showed a mean decrease of 31%, 28% and 38%
compared to FI100, indicating significant differences.

Notably, in 2020, ΨMD measurements were not performed during the irrigation inter-
ruption phase due to logistical challenges arising from the COVID-19-related limitations
on acquiring N2 gas. During this phase, in 2019, a decrease of 50% and 55% was verified in
RDI100 and RDI60, respectively. Similarly, in 2021, the decline reached 54% and 61% in these
irrigation strategies. Specifically, the average ΨMD value for RDI60 was−6.2 MPa, represent-
ing a 60% decrease compared to the control treatment. Following irrigation reestablishment,
the ΨMD values in RDI100 regained comparability to those observed in FI100 across all the
study years. Conversely, all the DI strategies showed statistical differences from the FI100,
which were more pronounced in 2019.
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each date (p < 0.05).

Among the assessed water stress indicators, the gs emerged as the parameter revealing
the most significant disparities at an earlier stage. At the beginning of July (DOY 185), the
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mean gs value for SDI30 was 240 mmol m−2s−1, representing a decline of 23%, 36%, and
38% in 2019, 2020, and 2021, respectively, in comparison to the control treatment (Figure 5).
This outcome suggests that the gs proved to be the most sensitive indicator of water stress,
detecting changes even before the critical periods of elevated temperatures observed in
the following months. However, it was also identified as the least consistent indicator,
with the values in the non-stressed treatments showing notable fluctuations throughout
the irrigation season. During the irrigation interruption phase, the gs values for RDI100
and RDI60 experienced noticeable declines, reflecting the patterns observed with the RWC
and ΨMD. The reduction was more pronounced in 2019, with RDI100 and RDI60 showing
decreases of 37% and 22%, respectively. Similar to the RWC findings, RDI60 demonstrated
the lowest gs value at the end of the irrigation interruption period, with an average of
210 mmol m−2s−1. This indicated a 35% decrease compared to the control treatment. These
observations underscore the potential of the gs to function as an early indicator of water
stress in plants.

3.3. Leaf Pigment Content

The assessment of the pigment content revealed notable distinctions among the irriga-
tion treatments in the years 2019 and 2021, as presented in Table 3. Among the analysed
pigments, the Chl a content showed the most significant disparities, leading to the iden-
tification of five distinct homogeneous subsets in 2019. In contrast, the Chl b content
demonstrated minimal statistical variations between the irrigation strategies, resulting in
only two homogeneous subsets in both years. Specifically, in 2019, contrasts were observed
exclusively in the FI120 treatment when compared to the other treatments.

Table 3. Mean values of leaf pigment content by irrigation strategy. Different lower-case letters
represent significant differences between the irrigation treatments within each date (p < 0.05).

DOY Irrigation
Strategy

Chl a
(µg/g)

Chl b
(µg/g)

Chl ab
(µg/g)

Carotenoids
(µg/g)

199
(2019)

FI120 1244 ± 25 a 589 ± 27 a 1833 ± 14 a 234 ± 7 a

FI100 976 ± 26 b 315 ± 46 b 1290 ± 65 b 128 ± 24 c

SDI60 860 ± 11 c 314 ± 49 b 1173 ± 50 b 192 ± 8 a,b

SDI30 567 ± 14 e 276 ± 12 b 843 ± 24 c 111 ± 12 c

RDI100 690 ± 20 d 241 ± 46 b 932 ± 74 c 149 ± 25 b,c

RDI60 799 ± 22 c 379 ± 49 b 1178 ± 47 b 164 ± 15 b,c

FMI 977 ± 38 b 267 ± 25 b 1244 ± 66 b 206 ± 40 a,b

207
(2021)

FI120 1275 ± 41 a 452 ± 24 a 1727 ± 38 a 353 ± 8 a,b

FI100 1177 ± 42 a,b 469 ± 42 a 1647 ± 53 a,b 361 ± 6 a,b

SDI60 899 ± 17 d 381 ± 8 a,b 1279 ± 20 c,d 330 ± 7 b

SDI30 844 ± 28 d 326 ± 10 b 1179 ± 37 d 288 ± 3 c

RDI100 1073 ± 46 b,c 465 ± 42 a 1537 ± 58 a,b 377 ± 21 a

RDI60 1043 ± 54 c 419 ± 25 a,b 1462 ± 63 b,c 378 ± 17 a

FMI 1085 ± 34 b,c 430 ± 51 a,b 1515 ± 63 b 384 ± 21 a

A comparison of the results between 2019 and 2021 exposed an overall escalation
in the pigment content in 2021, with average increases of 21%, 24%, 22% and 108% for
the Chl a, Chl b, Chl ab and carotenoids, respectively. These findings aligned with the
water stress indicators, particularly the RWC, which indicated that the DI treatments
revealed elevated values compared to preceding years, displaying reduced differences
among themselves. However, a consistent pattern emerged in both years: a more severe
water deficit corresponded to a lower pigment content.

3.4. Modelling the Water Stress Indicators and Pigment Content

The VIs listed in Appendix A Table A1 were applied to analyse and predict the water
stress indicators, including the RWC, ΨMD and gs, as well as the pigment content (Chl
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a, Chl b, Chl ab, and carotenoids). Moreover, linear and exponential regressions were
performed to explore the relationships between the previous parameters and several MSP-
and TIR-based VIs. The regression model with the highest coefficient of determination
is presented in Appendix B Tables A2 and A3. Examples of the mean VI values for the
olive trees, categorised by the irrigation treatment, were derived from UAV data acquired
51 days after the beginning of the irrigation season (DOY 199 in 2019), as illustrated in
Figure 6.
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treatment: full irrigated 100% (FI100), over full irrigated 120% (FI120), sustained deficit irrigation 60%
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deficit irrigation 60% (RDI60) and farmer managed irrigation (FMI). The different lower-case letters
represent significant differences between the irrigation treatments within each date (p < 0.05). The
vertical lines represent the standard deviation.

The thermal indices demonstrated greater efficacy in estimating the water stress
indicators. This can be attributed to the positive correlation between the Tc and plant
water stress and the negative correlation with the value of the water stress indicator. This
relationship is illustrated in Figure 7, where higher water stress leads to higher Tc values
and lower gs values. Moreover, despite the noted correlations between the thermal VIs
and RWC, with the highest coefficient of determination (R2 > 0.8), the gs emerged as the
indicator with the most Vis, showing a relatively proficient capability for its estimation
(Appendix B Tables A2 and A3).

Conversely, the MSP indices demonstrated more robust correlations with the pigment
content than the thermal indices. Particularly, the structural and chlorophyll-related vege-
tation indices (MCARI and Triangular Vegetation Index—TVI) showed higher correlations
with the pigment content, being outstanding for the carotenoid and dry matter-related VIs.
Interestingly, the carotenoid-related vegetation indices (Anthocyanin Content Index—ACI,
Anthocyanin Reflectance Index—ARI, and Modified Anthocyanin Content Index—mACI),
as well as the dry matter-related vegetation indices (Browning Reflectance Index—BRI and
Red Green Index—RGI), revealed the weakest performance in estimating either the water
stress indicators or pigment content. Their correlations were considerably low (R2 < 0.3).
Among the pigments analysed, a larger range of VIs demonstrated the capability for
accurate estimation of the Chl ab content, while no index proved proficient at precisely
estimating the carotenoid content (R2 < 0.38).

3.4.1. Model Development

This section describes the initial modelling phase, wherein linear and exponential
regression models were performed to establish the correlations among the water status
indicators and pigment content (VIs). The effectiveness of these models was assessed via
their respective R2 values. Afterwards, the regression approach yielding the highest R2

value was selected for prediction purposes in the model application phase. A graphical
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representation of the most proficient indices for estimating each water status indicator is
illustrated in Figure 8. The results demonstrate that, concerning the estimation of the water
stress indicators, the thermal indices (CWSI1, CWSI2 and CWSI3) show substantial correla-
tions with the RWC (R2 = 0.85, 0.74 and 0.70, respectively, p < 0.01). Among the MSP indices,
the chlorophyll-related index MCARI achieved the best performance (R2 = 0.58, p < 0.05).
For the estimation of the ΨMD, lower coefficients of determination were observed. Notably,
the thermal indices CWSI1 and Ig2 emerged as the most effective predictors (R2 = 0.66 and
0.64, respectively, p < 0.05). As for the gs estimations, all the variations of the CWSI demon-
strated robust performance (R2 > 0.75, p < 0.01), while the Ig2 also yielded significant results
(R2 = 0.57, p < 0.05). Furthermore, several MSP indices, including the Adjusted Transformed
Soil-Adjusted Vegetation Index (ATSAVI), Green Soil-Adjusted Vegetation Index (GSAVI),
Enhanced Vegetation Index 2 (EVI2), Excess RedEdge (eRE), Green Difference Vegetation
Index (GDVI), Gitelson and Merzlyak Index (GM1), Normalised Difference Excess Red
Edge (NDExRE), Optimised Soil-Adjusted Vegetation Index (OSAVI) and Soil-Adjusted
Vegetation Index (SAVI), demonstrated the capability to effectively estimate the gs with an
R2 > 0.65. Particularly, the eRE emerged as exhibiting the best performance, with an R2 of
0.71. Remarkably, within these VIs, the GM1 remains the only chlorophyll-related index,
while the remaining are structural.
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Regarding the prediction of the pigment content, the chlorophyll-related indices MCARI
and TVI showed the best performance, as illustrated in Figure 9. These two VIs revealed
closely aligned R2 values, although minor deviations were observed concerning the specific
type of pigment. While TVI produced a higher R2 for the Chl a (R2 = 0.68, p < 0.05) and Chl ab
(R2 = 0.73, p < 0.01), MCARI outperformed it in estimating the Chl b (R2 = 0.59, p < 0.05). As
previously mentioned, no VI achieved good results in estimating the carotenoid content, with
TVI yielding the highest coefficient of determination (R2 = 0.37).

3.4.2. Model Application

In the second phase of modelling, the regression models developed in the earlier stage
were applied to predict the water status indicators and pigment content values. For this
purpose, two UAV flights unused in the preceding phase, namely a TIR and an MSP flight
on DOY 283 (2018) and an MSP flight on DOY 189 (2020), were used. A detailed overview
of the errors associated with the regression models used for predicting the water status
indicators and pigment content values is provided in Table 4.
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Consistent with expectations from the model development phase, the thermal VIs
demonstrated higher R2 values when predicting water stress indicators such as the RWC,
ΨMD and gs. Conversely, the multispectral VIs showed superior performance in predicting
pigment contents such as the Chl a, Chl b and Chl ab. However, even though distinct R2

values were observed between the CWSI1, MCARI and TVI for predicting the RWC and
ΨMD, the corresponding MAE values were rather comparable, differing by 0.6% for the
RWC and 0.1 MPa for the ΨMD. Nevertheless, more pronounced disparities were evident in
the RMSE and RE, emphasising variations among the assessed VIs. Moreover, through the
analysis of the RE, it becomes evident that the estimations of the Chl a and Chl ab showed
the lowest values, both below 10%. However, the estimation of the Chl b resulted in an RE
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of 16%. As expected, due to its limited coefficient of determination value identified during
the model selection phase, the prediction of the carotenoids produced substantial errors
across all the indicators, showing an RE exceeding 30%. This highlights the lack of accuracy
in predicting this particular pigment. Furthermore, Figure 10 graphically represents the
correlation between the predicted and observed values of the water status indicators, while
Figure 11 illustrates the corresponding correlations for the pigment content.

Table 4. Regression characteristics of the observed versus predicted parameters. n: sample number;
R2: coefficient of determination; MAE: mean absolute error; RMSE: root mean square error; RE:
relative error. The units for the MAE and RMSE vary depending on the predicted parameter: RWC:
%; gs: mmol m−2s−1; ΨMD: MPa; pigment content: µg/g.

Parameter Index Regression Model n R2 MAE RMSE RE (%)

Water status indicators

RWC
CWSI1 RWC = −0.1911 × CWSI1 + 0.9638 35 0.80 2.3 2.7 2.8
MCARI RWC = −0.6407 ×MCARI + 1.0492 35 0.49 2.9 3.8 3.6

gs
CWSI1 gs = −327.79 × CWSI1 + 373.15 35 0.72 51.7 59.7 15.1

eRE gs = 209.05 × exp (1.919 × eRE) 35 0.62 73.3 81.5 20.7

ΨMD
CWSI1 ΨMD = −3.478 × CWSI1—1.2521 21 0.61 0.4 0.4 12.2

TVI ΨMD = −0.2 × TVI—1.0636 21 0.37 0.5 0.6 20.3

Pigment content

Chl a TVI Chl a = 205.87 × exp (0.2151 × TVI) 21 0.61 78.3 89.2 9.8
Chl b MCARI Chl b = 128.01 × exp (4.4233 ×MCARI) 21 0.52 55.1 62.4 16.4
Chl ab TVI Chl ab = 306.84 × exp (0.2077 × TVI) 21 0.64 103.7 116.8 9.2

Carotenoids TVI Carotenoids = 32.632 × exp (0.2934 × TVI) 21 0.29 116.1 144.5 30.3
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4. Discussion
4.1. Effects of Water Stress on Pigment Content

A water deficit has a notable influence on the water status of olive trees, as evidenced
by the water stress indicators illustrated in Figure 5. Throughout the study period, it
became evident that the treatments with a more pronounced water deficit showed consid-
erably lower values for these indicators, with a particularly pronounced decrease observed
towards the end of August. The substantial decline in the RWC can be attributed to the
increased transpiration rates and inadequate water replenishment. This phenomenon
reflects the plant’s inability to sustain optimal cellular hydration. Furthermore, the water
deficit led to a reduction in the ΨMD due to the limited availability of soil water. Therefore,
the plant restricted water transport from its roots to shoots as a conservation strategy.
Additionally, in response to water scarcity, plants enable a regulatory mechanism concern-
ing the gs, leading to stomatal closure. This strategy led to diminished CO2 uptake and
reduced water vapor loss. Thus, the rate of photosynthesis decelerated due to the restricted
CO2 availability [50,51]. The decrease in the chlorophyll content, an essential pigment for
photosynthesis, represents another significant outcome of the water deficit. The reduced
water availability restricts chlorophyll synthesis, causing its degradation and the following
decline in the pigment content [52,53].

The impact of the water deficit was particularly pronounced in SDI30, characterised
by sustained elevated water stress throughout the entire irrigation season. This treatment
showed consistently low gs (approximately 200 mmol m−2s−1) throughout the study’s
three years, primarily evident at the end of August. This underscores the significant
influence of the water deficit on olive leaf stomatal behaviour, detrimentally affecting the
chlorophyll content and subsequent photosynthetic processes. In fact, even before reaching
minimum conductance levels, the chlorophyll content of the SDI30 olive trees was already
compromised. Biochemical analysis results from DOY 199 (2019) and DOY 207 (2021)
revealed a significantly reduced chlorophyll content compared to the other treatments
(Table 3).

As for the leaf pigment content, the chlorophyll and carotenoid content declined under
the DI compared to FI strategies. The analysis of the pigment content based on the irrigation
strategies presented notable differences between the treatments in 2019 and 2021, as shown
in Table 3. Among the analysed pigments, the Chl a content showed the most pronounced
differences, with five distinct homogeneous subsets in 2019. Conversely, the Chl b content
showed minimal statistical differences between the irrigation strategies, with only two
homogeneous subsets in both years. Specifically, in 2019, only FI120 showed contrasts
compared to the other treatments. A substantial difference was noted when comparing the
most water-limited DI (SDI30) with the most well-watered irrigation (FI120) in 2019 and 2021.
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In 2019, reductions of 54%, 35%, 54% and 53% were observed in the Chl a, Chl b, Chl ab and
carotenoid content, respectively. In 2021, the decline was less pronounced, with reductions
of 34%, 28%, 32%, and 18% in the corresponding pigments. To clarify the pigment content
disparities between the two years, the average air temperature (Ta in ◦C), vapour pressure
deficit (VPD in kPa) and ET0 (mm) were analysed 15 days prior to the leaf collection for
biochemical analysis. Upon comparison, it was concluded that, in 2019, the average Ta and
ET0 were higher, while the VPD was lower in 2021. Specifically, 2019 showed an average
Ta of 25.9 ◦C, VPD of 2.71 kPa and ET0 of 5.5 mm, while 2021 recorded values of 25.5 ◦C,
2.30 kPa and 5.4 mm, respectively. Furthermore, 2019 recorded the highest minimum and
maximum values for these parameters within the defined timeframe compared to 2021.
Thus, these climatic fluctuations between the years may account for the observed pigment
content differences.

In general, the consistent declines in the pigment content observed in this study, as
reported in previous studies, may arise from the inhibition of chlorophyll biosynthesis
or degradation of existing chlorophyll molecules. Additionally, the overall chlorophyll
content reduction could be attributed to either degradation or deficiency in synthesis,
coupled with changes in the thylakoid membrane structure [54]. However, as high-
lighted by Marques et al. [18], the spectral response of olive tree leaves varies based
on the cultivar, growth stage, and water stress severity. Therefore, comprehending the
mechanisms underlying the plant’s response to water stress is essential in developing
effective strategies to mitigate the adverse impacts of this abiotic stressor on plant growth
and productivity.

4.2. Effects of Water Stress on Leaf Reflectance and Vegetation Indices

Nowadays, in the precision agricultural management sector, the integration of multi-
spectral and thermal sensors has become essential. These sensors provide critical data for
informed decision-making, offering a complete perspective on crop health and environ-
mental conditions [16]. Thus, farmers and agronomists can optimise resource allocation
and enhance agricultural yields. MSP sensors offer wavelengths beyond the human eye’s
capacity, which can provide precise vegetation health assessments through reflected light
and VIs, providing insights into factors such as plant stress, nutrient deficiencies and
diseases [16]. This knowledge can, for instance, serve as a basis for targeted interventions,
significantly reducing the over-application of pesticides and fertilisers. Conversely, thermal
sensors outperform MSP sensors in detecting temperature variations throughout fields.
These sensors yield indispensable data on soil moisture levels, irrigation efficiency and crop
water stress. Crucially, thermal sensors play a key role in agricultural practices by enabling
the early detection of potential issues, thereby allowing farmers to mitigate crop losses
and efficiently manage their water resources [36]. Moreover, the combination of MSP and
thermal sensors demonstrated in this study provides vital data. The integration of vegeta-
tion health data from MSP sensors with thermal insights provides farmers with a complete
overview of crop conditions. This approach simplifies data-driven decisions concerning
irrigation scheduling, pest management and the optimal timing of harvesting [16,36].

Although the sensors used in this study do not enable continuous spectral reflectance
data collection from leaves (as performed by spectrometers or hyperspectral imaging
sensors), a comparison was conducted between the crown reflectance of the olive trees
under the two extreme irrigation strategies (SDI30 vs. FI120) on DOY 199 (2019) using four
wavelengths provided by the Parrot Sequoia sensor. It was evident that the olive trees under
SDI30 revealed the highest spectral reflectance across all four bands. In the absence of stress,
the olive tree canopies showed mean reflectance values of 9.4%, 9.3%, 23.2% and 32.5% in
the green, red, red edge, and NIR bands, respectively. Conversely, under stressed conditions
(SDI30), the corresponding average values were 9.5%, 10.3%, 23.9% and 33.8%, reflecting
an increase of 1%, 11%, 3%, and 4% in these respective bands in comparison to the non-
stressed plants. Specifically, the red spectrum displayed notably higher reflectance levels
under significant water stress. These results align with the findings reported in [18] for the
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same cultivar, although there are some discrepancies. In their study, the authors used a
spectroradiometer to investigate the effects of DI on leaf reflectance. As verified in our study,
an increase in leaf reflectance was observed in the DI treatments. However, in contrast to
our findings, where the red and NIR bands showed more significant percentual differences
when compared to the reflectance of the olive trees under FI, in [18] the results presented
the greatest disparities occurring in the green and NIR bands. Using different crops,
investigations have demonstrated that water stress induces variations in spectral reflectance,
depending on the plant and specific wavelengths. For example, in crops such as wheat [55],
potato [56], barley [57], sunflower [58] and corn leaves [59], water or nutrient stress tends to
increase reflectance in the green and red bands. This increase is attributed to the decreased
chlorophyll concentration, leading to reduced radiation absorption. Conversely, in other
studies including several plants, such as Bermuda grass [25], Cinnamomum camphora [60],
citrus [20], maize [61], cotton [62] and pine leaves [63], a water deficit has caused an overall
increase in the leaf spectral reflectance across the visible and NIR wavelength ranges. In
the context of olive trees, this effect was also confirmed, as the water-stressed olive trees
showed higher reflectance values [64].

In this study, variations in reflectance due to the different irrigation strategies resulted
in the distinct responses of the several analysed VIs, characterised by positive, negative
and neutral correlations between the water stress and VI values. While a subset of VIs
demonstrated higher values under the FI strategies compared to the DI, other VIs revealed
an opposite effect, with higher values under the DI strategies than the FI treatments. Con-
versely, a few VIs showed minimal differences between these two strategies, indicating
similar values. These distinct behaviours observed among the VIs are dependent upon the
specific bands used in their formulas and their interrelations. In other investigations con-
cerning the use of VIs in olive trees, Sun et al. [65] concluded that the Relative Depth Index
(RDI), Water-Correlated Reflectance Index (WCRI), Water Index (WI) and Photochemical
Reflectance Index (PRI) tend to decrease with lower gs and RWC values. This aligns with
the findings of Boshkovski et al. [66], who analysed the impacts of a water deficit on three
vegetation indices (NDVI, WI, and PRI) in three Greek olive cultivars. Among the studied
VIs, the WI manifested higher sensitivity to water stress, while the PRI demonstrated
comparatively minor disparities. Nevertheless, with the exception of the NDVI, it was not
feasible to use the aforementioned VIs in this study due to the incompatibility between the
spectral bands used in their formulation and the bands provided by the Parrot Sequoia
sensor employed in our research.

Regarding the impacts of water stress on the thermal VIs, it was observed that the
olive trees exposed to reduced water availability showed higher Tc values. This response
can be predominantly attributed to the closure of the stomata induced by water stress,
as discussed in the preceding section. Stomatal activity plays an essential role in plant
cooling through transpiration. However, when stomatal activity reduces due to stomatal
closure, the loss of water via transpiration decreases, consequently leading to a rise in the
leaf temperature [50]. As a consequence, this leads to higher values of the CWSI and lower
values of the Ig. These results are related to the divergent implications of the values of these
VIs, which are outcomes of their unique calculation variables. These outcomes align with
those reported by Marques et al. [33]. In their study, the authors conducted three types of
temperature analyses using TIR imagery, focusing on the pixel values of the olive canopy,
irrigation line and treatment block. Their results consistently demonstrated that the DI
treatments revealed higher temperatures than the FI treatments across all three approaches,
in which the most substantial temperature difference was observed in the canopy analysis,
as performed in our study. However, the authors exclusively investigated the impact of DI
on the olive tree canopy temperature, without investigating either thermal or optical VIs.
Furthermore, no regression analyses were performed to assess the relationships between
the canopy temperature and water status indicators.
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4.3. Model Performance in Estimating the Water Status Indicators

The relationships between the thermal and optical VIs and water stress indicators
(RWC, gs and ΨMD) were explored using multiple linear and exponential correlations.
While thermal VIs have traditionally been used for estimating water stress in olive trees,
this study also explored the correlations of optical VIs with the aforementioned indicators.
The findings demonstrated promising outcomes, with the CWSI showing superior perfor-
mance in predicting the values of all the analysed water stress indicators (as illustrated in
Table 4). Among the five variations of the CWSI evaluated, CWSI1 presented the highest
concordance with the ground measurements, yielding an R2 value of 0.80 and an RMSE of
2.7% for predicting the RWC. However, for the ΨMD (which showed the lowest prediction
performance), the R2 value was 0.61 and the RMSE was 0.4 MPa. In contrast, all the different
approaches used to calculate the Ig performed inadequately in the model for predicting
the desired values (as outlined in Appendix B), leading to their exclusion from the second
phase of the study. Among the optical VIs, the MCARI and eRE demonstrated relatively
satisfactory correlations with the RWC and gs, respectively. Specifically, the eRE showed an
R2 = 0.62 and an RMSE of 81.5 mmol m−2s−1, which were identical to the values achieved
with the CWSI. However, when evaluating the error indicators (MAE, RMSE and RE), the
thermal VIs outperformed the optical VIs, displaying lower deviations. The substantial
errors observed in the predictions of the optical VIs derived mainly from their inability to
discriminate between the intermediate treatments involving moderate water stress, such
as SDI60 and RDI60, and the other irrigation treatments. As illustrated in Figures 8 and 10,
the values of these irrigation treatments were generally overestimated, showing similar
values to the non-stressed olive trees. Among the water status indicators, the predictions of
the RWC values demonstrated the least errors, both in the thermal and optical VIs. This
finding was corroborated by the RE values, where the RWC predictions revealed RE values
between 2% and 4%, whereas for the other indicators, the RE exceeded 12%. Furthermore,
this result offers additional support for the outcomes reported by Marques et al. [47], where
a spectroradiometer was used to estimate the VIs, revealing that the RWC estimation
achieved the highest accuracy and performance. This higher accuracy might be attributed
to the responsiveness of the water indicator to external factors. Remarkably, the gs and
ΨMD measurements taken at solar noon emerged as highly sensitive indicators of various
factors, such as the wind patterns, solar radiation intensity and thermal fluctuations during
the measurement sessions. The positive results observed when predicting the ΨMD by
Caruso et al. [36], wherein measurements were taken after blocking the transpiration of
leaves located near the main scaffolds of the tree, suggest potential changes for future
investigations using this methodology. Additionally, it is important to acknowledge that
the load of the olive tree itself could be a contributing factor impacting the behaviour of
these two indicators.

4.4. Model Performance in Estimating the Pigment Content

The outcomes presented in this study confirm that while the optical VIs were more
effective in estimating the pigment content, the thermal VIs more accurately estimated
the water stress indicators (as illustrated in Figures 10 and 11). Prior investigations have
explored the potential of aerial imagery to estimate the pigment content of olive trees,
although using distinct platforms and sensors. In the study by Zarco-Tejada et al. [41],
the researchers used a manned aerial vehicle to capture hyperspectral imagery in an olive
orchard of Cv. Arbequina and correlated multiple indices only with the Chl ab. The authors
concluded that the most effective VIs for estimating the Chl ab were the TCARI (R2 = 0.6),
MCARI (R2 = 0.64), TCARI/OSAVI (R2 = 0.48) and MCARI/OSAVI (R2 = 0.69). The use
of hyperspectral sensors by the authors expanded the spectrum of available bands for
calculating VIs beyond the scope of our study. For instance, computing the TCARI was
not feasible within our research material. Nevertheless, despite this drawback, the use of
MSP sensors, as implemented in our study, presents a considerably more cost-effective
alternative when compared to hyperspectral sensors. For small-scale farmers considering
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the adoption of remote sensing techniques to enhance the management and monitoring of
their olive orchards, the use of hyperspectral sensors becomes impractical due to their high
cost. Consequently, in alignment with our findings, both thermal and multispectral sensors
yield satisfactory results in estimating the water stress indicators and pigment content.
This provides a more economically feasible solution for small-scale farmers. Conversely,
Berni et al. [67] used a modified UAV with a six-band MSP camera (MCA-6 Tetracam) and
determined the TCARI/OSAVI to be effective in predicting the Chl ab (R2 = 0.89 and RMSE
of 4.2 µg/cm2). However, the authors exclusively conducted correlation analyses between
the VIs and Chl ab, without directly measuring the content through biochemical analyses,
as was performed in the present study.

In this investigation, the correlations between several optical VIs and the pigment
content of olive trees were expansively explored, including the Chl ab, Chl a, Chl b and
carotenoids. Due to their low coefficients of determination (R2 < 0.3), as shown in Ap-
pendix B, the thermal VIs was not used to estimate the pigment content. In the model
creation phase, several VIs revealed higher performance in estimating the Chl ab compared
to the other pigments. Particularly, the ATSAVI, DVI, EVI2, MCARI, MCARI1, MCARI2,
MSAVI, MTVI1, SAVI and TVI emerged as promising indicators for estimating this pigment
content, with the MCARI and TVI demonstrating the highest correlations (R2 > 0.65), as il-
lustrated in Figure 9. Nevertheless, for estimating the Chl a and Chl b, only the MCARI and
TVI yielded promising results. In the model application phase, the TVI outperformed the
MCARI in estimating the pigment content, achieving R2 values > 0.6. Moreover, both the
MCARI and TVI displayed a tendency to overestimate the pigment content, particularly in
the FI treatments (Figure 11). None of the VIs demonstrated favourable performance in es-
timating the carotenoid content. This could be attributed to the fact that carotenoids reflect
more in the blue wavelength spectrum, which is not supported by the sensor used in this
study, whereas chlorophylls predominantly reflect in the green and red wavelengths [14].
Consistent findings reported by Marques et al. [18] support these results, although the
aforementioned authors explored a spectrometer, laboratory equipment, and singular leaf
samples to analyse the relationship between the pigments in olive leaves and VIs in the
same cultivar. Nevertheless, the performance of different VIs in estimating the pigment
content can be subject to variability based on diverse factors, including the cultivar, pheno-
logical stage, water stress, and fertilisation. These factors, as corroborated by our study and
supported by existing studies specific to olive trees [18,68–72], highlight the characteristic
variability in VIs’ performance in relation to such estimations.

5. Conclusions

The aim of this work was to assess the applicability of thermal and optical VIs for
estimating the water stress indicators and pigment content of olive trees of the Cv. Cobrançosa
using UAV-based aerial imagery. The study included diverse irrigation treatments, involving
FI and DI strategies, aiming to investigate their influence on the water stress indicators,
pigment concentrations and spectral reflectance of olive tree leaves. The findings revealed that
DI imposed an adverse effect on the chlorophyll and carotenoid content, resulting in reduced
values. Additionally, DI induced variations in the leaf spectral reflectance, causing higher
reflectance across all the spectral wavelengths studied (green, red, red edge and NIR).

In general, the thermal VIs demonstrated greater efficacy in estimating the water stress
indicators, whereas the optical VIs showed superior performance in predicting the pigment
content. Specifically, the CWSI1 displayed greater accuracy in predicting the RWC, ΨMD
and gs. The MCARI showed superior performance in estimating the Chl b, while the TVI
outperformed it in terms of the Chl a and Chl ab estimation. The MCARI and eRE also
demonstrated promising outcomes in estimating the RWC and gs, respectively. However,
all the VIs revealed limited performance in estimating the carotenoids due to the absence
of the blue spectrum. Consequently, this study emphasises the potential and feasibility of
both vegetation-related and thermal VIs in estimating distinct parameters, thus proving to
be a valuable tool for irrigation management and crop monitoring in olive orchards.
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As future work, it is intended to integrate sensors capable of capturing the blue band,
thereby enhancing the carotenoid estimation and expanding the range of tested VIs. This
increase would allow exploration across a broader spectrum of wavelengths, thereby supple-
menting the study’s scope. Moreover, the use of UAVs equipped with hyperspectral sensors
would provide substantial advantages by enabling continuous wavelength capture, enabling
the calculation of more precise VIs for specific parameters. However, given the extensive
range of VIs involved, using techniques such as machine learning would be required to
discriminate the optimal combination of VIs for each estimation. As technology advances
further, the importance of these sensors and approaches in precision agriculture continues to
grow, highlighting their essential role in shaping the future of sustainable farming practices.
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Appendix A

Table A1. Spectral vegetation indices used in this study and their respective equations.

Acronym Name Sensitivity Equation Ref.

ACI Anthocyanin Content Index Carotenoid G
N [73]

ARI Anthocyanin Reflectance Index Carotenoid 1
G −

1
R [74]

ATSAVI Adjusted Transformed Soil-Adjusted
Vegetation Index Structure 1.22×

N−1.22×R−0.03
1.22×N+R−1.22×0.03+0.08×(1+1.222)

[75]

BRI Browning Reflectance Index Dry matter/pigment
1
G−

1
R

N
[76]

CCCI Canopy Chlorophyll Content Index Chlorophyll
N−RE
N+RE
N−R
N+R

[77]

CIG Chlorophyll Index Green Chlorophyll N
G − 1 [78]
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Table A1. Cont.

Acronym Name Sensitivity Equation Ref.

CIRE Chlorophyll Index RedEdge Chlorophyll N
RE − 1 [79]

CVI Chlorophyll Vegetation Index Chlorophyll N × R
G2 [80]

DVI Difference Vegetation Index Structure N − R [81]
EVI2 Enhanced Vegetation Index 2 Structure 2.4× N−R

N+R+1 [82]
eNIR Excess NIR Structure 2×Nn −Gn − Rn − REn [83]
eRE Excess RedEdge Structure 2× REn −Gn − Rn −Nn [83]

GDVI Green Difference Vegetation Index Structure N − G [84]
GM1 Gitelson and Merzlyak Index Chlorophyll RE

G [85]

GNDVI Green Normalised Difference
Vegetation Index Chlorophyll N−G

N+G [86]

GRNDVI Green–Red NDVI Structure N−(G+R)
N+(G+R)

[87]

GRVI Green–Red Vegetation Index Structure G−R
G+R [81]

GSAVI Green Soil-Adjusted Vegetation
Index Structure N−G

N+G+0.5 × 1.5 [84]

IPVI Infrared Percentage Vegetation
Index Structure

N
N+R

2 × (NDVI + 1) [88]

mACI Modified Anthocyanin Content
Index Carotenoid N

G [89]

MCARI Modified Chlorophyll Absorption in
Reflectance Index Chlorophyll [(RE− R)− 0.2× (RE− G)]× RE

R [42]

MCARI1 Modified Chlorophyll Absorption in
Reflectance Index 1 Structure 1.2× (2.5× (N − R)− 1.3(N − G)) [90]

MCARI2 Modified Chlorophyll Absorption in
Reflectance Index 2 Structure 1.5×[2.5×(N−G)−2.5×(R−G)]√

(2×N+1)2−(6×N−5×
√

R)−0.5
[90]

mGRVI Modified Green Red Vegetation
Index Structure G2−R2

G2+R2 [26]

MSAVI Modified Soil-Adjusted Vegetation
Index Structure 2×N+1−

√
(2×N+1)2−8×(N−R)

2
[91]

MSR N/R Modified Simple Ratio NIR/RED Structure ( N
R )−1√
( N

R )+1
[92]

MTVI1 Modified Triangular Vegetation
Index 1 Structure 1.2× (1.2× (N − G)− 2.5× (R− G)) [90]

NDExNIR Normalised Difference Excess NIR Structure 2×Nn−Gn−Rn−REn
2×Nn+Gn+Rn+REn

[83]

NDExRE Normalised Difference Excess Red
Edge Structure 2×REn−Gn−Rn−Nn

2×REn+Gn+Rn+Nn
[83]

NDRE Normalised Difference
NIR/RedEdge Structure N−RE

N+RE [77]

NDVI Normalised Difference Vegetation
Index Structure N−R

N+R [40]

OSAVI Optimised Soil-Adjusted Vegetation
Index Structure 1.16×(N−R)

N+R+0.16
[43]

RGI Red Green Index Dry matter/pigment R
G [93]

SAVI Soil-Adjusted Vegetation Index Structure N−R
N+R+0.5 × 1.5 [94]

TNDVI Transformed NDVI Structure
√

N−R
N+R + 0.5 [81]

TVI Triangular Vegetation Index Chlorophyll 0.5×
(120× (RE− G)− 200× (R− G))

[95]

WDRVI Wide Dynamic Range Vegetation
Index Structure 0.1×N−R

0.1×N+R [96]

Note: G: green; R: red; N: NIR; RE: red edge; L = 0.5; Gn: G
(N+G+R) ; Rn: R

(N+G+R) ; Nn: N
(N+G+R) ; REn: RE

(N+G+R) .
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Appendix B

Table A2. Coefficients of determination (R2) of the linear relationships between the water status
indicators (n = 132), leaf pigments (n = 66) and spectral vegetation indices (VIs) at DOY 199 and
261 (2019), DOY 145 (2020) and DOY 207 (2021). The highest significant index for each variable is
highlighted in bold.

VIs RWC gs ΨMD Chl a Chl b Chl ab Carotenoids

ACI 0.15 0.36 0.38 0.09 0.04 0.08 0.02
ARI 0.14 0.01 0.08 0.09 0.09 0.11 0.07

ATSAVI 0.17 0.66 0.30 0.40 0.44 0.48 0.32
BRI 0.07 0.30 0.14 0.08 0.08 0.10 0.07

CCCI 0.02 0.64 0.07 0.30 0.18 0.28 0.06
CIG 0.14 0.44 0.40 0.05 0.03 0.05 0.08

CIRE 0.02 0.57 0.04 0.13 0.05 0.10 0.01
CVI 0.23 0.27 0.36 0.14 0.09 0.14 0.04
DVI 0.21 0.63 0.35 0.38 0.41 0.46 0.33
EVI2 0.20 0.65 0.33 0.41 0.43 0.49 0.34
eNIR 0.12 0.21 0.37 0.09 0.11 0.11 0.10
eRE 0.03 0.71 0.30 0.13 0.17 0.15 0.05

GDVI 0.18 0.66 0.33 0.32 0.36 0.39 0.31
GM1 0.08 0.68 0.34 0.09 0.09 0.09 0.05

GNDVI 0.15 0.38 0.39 0.14 0.04 0.11 0.05
GRNDVI 0.08 0.47 0.37 0.12 0.15 0.14 0.10

GRVI 0.30 0.02 0.10 0.01 0.11 0.03 0.02
GSAVI 0.14 0.69 0.29 0.31 0.34 0.37 0.29

IPVI 0.01 0.48 0.26 0.33 0.24 0.33 0.19
mACI 0.14 0.43 0.40 0.09 0.03 0.07 0.02

MCARI 0.58 0.18 0.29 0.58 0.59 0.66 0.31
MCARI1 0.25 0.60 0.36 0.41 0.43 0.49 0.32
MCARI2 0.21 0.62 0.32 0.40 0.44 0.48 0.33
mGRVI 0.30 0.02 0.10 0.12 0.17 0.16 0.07
MSAVI 0.20 0.64 0.33 0.40 0.44 0.49 0.33

MSR N/R 0.01 0.49 0.26 0.33 0.32 0.36 0.21
MTVI1 0.25 0.60 0.36 0.41 0.43 0.49 0.32

NDExNIR 0.13 0.08 0.33 0.09 0.10 0.10 0.10
NDExRE 0.02 0.70 0.29 0.13 0.17 0.15 0.06

NDRE 0.03 0.59 0.04 0.16 0.06 0.13 0.02
NDVI 0.03 0.47 0.26 0.33 0.27 0.35 0.21
OSAVI 0.18 0.68 0.29 0.43 0.42 0.49 0.32

RGI 0.29 0.04 0.10 0.30 0.18 0.29 0.14
SAVI 0.19 0.66 0.32 0.42 0.44 0.50 0.34

TNDVI 0.02 0.47 0.26 0.27 0.16 0.26 0.15
TVI 0.42 0.46 0.43 0.68 0.55 0.73 0.37

WDRVI 0.03 0.49 0.26 0.32 0.32 0.36 0.19

Table A3. Coefficients of determination (R2) for the linear relationships between the water status
indicators (n = 66), leaf pigments (n = 66) and thermal vegetation indices (VIs) at DOY 199 (2019) and
DOY 207 (2021). The highest significant index for each variable is highlighted in bold.

VIs RWC gs ΨMD Chl a Chl b Chl ab Carotenoids

CWSI1 0.85 0.80 0.66 0.28 0.27 0.24 0.06
CWSI2 0.74 0.76 0.58 0.29 0.25 0.26 0.05
CWSI3 0.70 0.75 0.58 0.27 0.25 0.24 0.04
CWSI4 0.66 0.75 0.50 0.23 0.21 0.21 0.03
CWSI5 0.68 0.77 0.51 0.20 0.19 0.17 0.02

Ig1 0.38 0.57 0.34 0.08 0.06 0.13 0.01
Ig2 0.43 0.63 0.46 0.07 0.06 0.09 0.01
Ig3 0.42 0.67 0.45 0.07 0.06 0.08 0.01
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