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Abstract: Various disturbances like extreme climate events, fires, and insect outbreak severely impact
forest ecosystems, and differences are expected between planted and natural forests. However, there
is little information on the spatio-temporal dynamics of the disturbances in terms of both forest types.
In this study, we used the LandTrendr algorithm to detect disturbances in planted and natural forests
in a temperate region of Northern China from 1985 to 2020 using Landsat and Sentinel 2 satellite data.
The planted and natural forests suffered severe disturbances in 1994 in the south (park establishment)
and in 2012 in the north (severe drought). More than one third of the area of planted (37.5%) or
natural (35.8%) forests was highly disturbed. The duration of forest disturbances was mostly 1 to
3 years in terms of planted or natural forests. The NDVI anomaly of the planted forests decreased
from 0.24 to −0.08 after drought events, while the reduction was from 0.22 to −0.06 for natural
forests. Afterwards, the NDVI anomaly of the planted forests showed a slow upward variation but
not for the natural forests. This study allows us to evaluate the response of various forest types to
disturbance regimes.

Keywords: classification; drought; NDVI; time series; temperate forest

1. Introduction

Forest ecosystems cover one third of the global terrestrial area [1], and contribute 50%
of the net primary production of terrestrial ecosystems [2]. Forest ecosystems suffer from
an increasing intensity or frequency of disturbances such as droughts, fires, and insect out-
breaks in many regions of the world [3]. Disturbances were classically defined as discrete
events that disrupt the community by changing the space, food resources and the physical
environment [4]. Forest disturbances severely impact the structure and functions of forest
ecosystems [3]. It is estimated that the disturbances led to a loss of 2.3 million km2 of natural
forest area during the period from 2000 to 2012 [5]. The changes in forest structure and
composition, in turn, feedback on the dynamics of forest disturbances [6]. Climate change
and forest management exacerbated forest disturbances [7,8]. The influencing degree and
underlying mechanisms vary greatly with disturbance types [9], e.g., forest composition
and age structure differ considerably between clearcutting-origin stands and fire-origin
stands [10]. In addition, the effects of forest disturbances on ecosystem functioning and
biodiversity differ considerably across various spatio-temporal scales [11]. Thus, mapping
the spatio-temporal patterns of forest disturbances is the first step in understanding the im-
pact of the disturbance. Recent studies have carried out a large amount of work concerning
this issue, with studies conducted in North America [12,13], Europe [14], and China [15].
In recent decades, the disturbance type present in Canada was characterized by insects,
while the United States of America and Mexico mostly suffered disturbances in terms of
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forest harvesting [13]. The frequency of forest disturbance increased while the disturbance
strength decreased in Europe [14]. Forest disturbances showed a decreasing trend in China
owing to forest protection policies [15]. However, large-scale disturbance dynamics usually
ignore the heterogeneity of background environmental conditions compared to that at a
small spatial scale, e.g., a specific forest region. More importantly, forest ecosystems are
composed of various types of forests, and the variety determines how the structure and
functioning of the forest ecosystems change with an increasing intensity and frequency
of disturbances [16,17]. However, a quantitative evaluation of disturbance dynamics was
scarce for different types of forests, e.g., natural forests and planted forests.

The area of planted forests has shown a rapidly increasing trend, but that of natural
forests has decreased globally since 1990 [1]. Planted forests account for 36% of the total
forested area in China [18]. However, the negative effects of planted forests on ecological
processes have received significant attention [19]. Land resources are rather limited in
China. Thus, evaluating the spatio-temporal dynamic of disturbances for both forest types
helps forest managers to optimize land use plans. The effects of disturbances on both forest
types should not be neglected. On the one hand, planted forests are mainly composed of
a relatively tree species. On the other hand, natural forests are characterized by diverse
tree species [20]. This leads to many differences in terms of response between both forest
types to disturbances., e.g., drought [21–23]. On the other hand, planted forests often have
high water demand and thus decrease the water available to natural forests [24]. Planted
forests are usually characterized by high planting density, and this exacerbates the effects of
drought and thus impacts the ecosystem functioning of forests, especially in water-limited
regions [25]. In addition, studies of disturbances on planted forests should be strengthened
in water-limited or cold areas as these areas are characterized by a relatively slow recovery
rate in terms of vegetation after disturbances. Further understanding the responses of both
forest types to drought is closely associated with mitigating the effects of climate change.

This study examined the spatio-temporal dynamics of disturbances in natural and
planted forests in the Saihanba region of China. Moreover, we specified the response of
both forest types to drought disturbances.

2. Materials and Methods
2.1. Overview of the Methods

We collected multi-source satellite data and performed various pretreatments to control
the data quality. We then trained a random forest classifier to determine the distribution of
the planted and natural forests in the study area. After that, we detected forest disturbances
through the use of the LandTrendr algorithm based on the index Normalized Burn ratio
(NBR) and examined the spatio-temporal dynamic of the disturbances for both forest types.
We specifically quantified drought disturbances through the standardized precipitation
evapotranspiration index (SPEI); further, we analyzed their impact on the growth of both
forest types using the index NDVI anomaly. An overview of the method is given in Figure 1.

2.2. Study Area

This study selected natural and planted forests located in Saihanba National Forest
Park (116◦32′~118◦14′E, 41◦35′~42◦40′N) in the Hebei Province of China (Figure 2). The
park is located in the temperate continental monsoon climate zone. The area of study site
is 933.33 km2. The duration of winter is long, up to 230–240 days per year. The frost-free
period is short. The temperature difference between day and night is large. The potential
evapotranspiration is usually more than the annual precipitation. There are many types
of climate hazards such as strong winds, sandstorms, droughts and frost. Based on the
weather record from 1960 to 2015, the mean annual temperature is−1.5 ◦C, and the extreme
daily low temperature is−43.3 ◦C. The mean annual precipitation is 452.6 mm. The altitude
of the study area ranges from 1100 m to 1950 m. The average value is 1500 m. The altitude
distribution of planted forests is higher than that of the natural forests. The dominant tree
species in natural forests are Larix principis-rupprechtii, Picea asperata Mast and Betula
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platyphylla Suk. The planted forests are characterized by Pinus sylvestris var. mongolica
and Larix principis-rupprechtii. The Saihanba region is a very important part of the Three-
North Forest Shelterbelt Project in China. As of 2020, the forest area is 767.4 km2 and the
forest coverage is 82%.Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 19 

 

 

 
Figure 1. The conceptual scheme of this study. Each black dashed box corresponds to Sections 2.3–
2.6, as follows. 
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Figure 2. The location and Sentinel-2 remote sensing image of Saihanba Region in China.

2.3. Datasets

The satellite datasets included the land surface reflectance products from Landsat 5,
Landsat 7 [26], Landsat 8 [27] and Sentinel-2 [28] (Tables 1 and 2). The reflectance data at
Blue, Green, Red, NIR, SWIR 1, SWIR 2 and Cirrus bands used in this study have a spatial
resolution of 30 m and a temporal resolution of 16 days, covering the period from 1985
to 2020 (Table 3). The spatial and temporal resolutions of the Sentinel-2 reflectance at the
same bands with Landsat 8 in 2020 are generated to 30 m and 5 days, respectively. The
Landsat 8 and the Sentinel-2 were used to conduct land use type classification in 2020.
Simultaneously, we carried out field surveys in the research area in August 2020 and in July
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2021. We selected several representative sites and identified the planted and natural forests
of these sites. Landsat 5, Landsat 7 and Landsat 8 were used to analyze the long-term
dynamics of the forest disturbances. Data collection and pretreatment were conducted on
the cloud platform of the Google Earth Engine (GEE) [29,30]. We classified land use types
and evaluated the disturbance dynamic for planted and natural forests on GEE. For the
classification, we collected image data from Sentinel-2 and Landsat 8 in the year 2020. For
the evaluation, we obtained data for different time periods from Landsat 5, Landsat 7 and
Landsat 8 from GEE. The pretreatment aimed to remove clouds and enable image synthesis.
These treatments were also conducted on GEE. The cloud was filtered by its percentage in
a pixel grid of the Sentinel-2 image. The Landsat image applied the CFMask algorithm for
cloud removal.

Table 1. Products of Landsat satellite and used bands.

Satellite Landsat 5 Landsat 7 Landsat 8

Sensor TM ETM+ OLI

Parameters
of bands

Band Wavelength
(µm) Band Wavelength

(µm) Band Wavelength
(µm)

Blue 0.40–0.52 Blue 0.45–0.52 Coastal 0.43–0.45
Green 0.52–0.60 Green 0.52–0.60 Blue 0.45–0.51
Red 0.63–0.69 Red 0.63–0.69 Green 0.53–0.59
NIR 0.76–0.90 NIR 0.76–0.90 Red 0.64–0.67
MIR 1.55–1.75 MIR 1.55–1.75 NIR 0.85–0.88
MIR 2.08–2.35 MIR 2.08–2.35 MIR 1.57–1.65
TIR 10.40–12.50 TIR 10.40–12.50 MIR 2.11–2.29

PAN 0.52–0.90 PAN 0.50–0.68
IRC 1.36–1.38
TIR 10.60–11.19
TIR 11.50–12.51

Note: NIR denotes near-infrared; MIR denotes mid-infrared; TIR denotes thermal infrared; PAN denotes panchro-
matic; IRC denotes infrared cirrus.

Table 2. Products of Sentinel-2 satellite and used bands.

Satellite Sentinel-2A Sentinel-2B

Sensor MSI

Parameters of
bands

Band Center
Wavelength (µm) Band Center

Wavelength (µm)

Coastal 0.44 Coastal 0.44
Blue 0.50 Blue 0.49

Green 0.56 Green 0.56
Red 0.66 Red 0.67
RE 0.70 RE 0.70
RE 0.74 RE 0.74
RE 0.78 RE 0.78
RE 0.86 RE 0.86

NIR 0.84 NIR 0.83
WV 0.95 WV 0.94

SWIR 1.37 SWIR 1.38
SWIR 1.61 SWIR 1.61
SWIR 2.20 SWIR 2.19

Note: RE denotes red edge; NIR denotes near-infrared; WV denotes water vapor; SWIR denotes short-
wave infrared.
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Table 3. Information concerning datasets.

Data
Satellite Weather

Landsat 5 Landsat 7 Landsat 8 Sentinel-2A Sentinel-2B CHIRPS ERA5-Land

Spatial
resolution

(m)
30 30 30 30 * 30 * 5566 27,830

Source of
acquisition GEE GEE GEE GEE GEE GEE GEE

Time period 1 January 1985–
31 December 2011

1 January 1999–
31 December 2018

1 January 2013–
31 December 2020

1 May 2020–
30 September 2020

1 January 1985–
31 December 2020

Note: “*” means that the spatial resolution is 10 m for original Sentinel-2 collection. To match Landsat collection
data, we regenerated Sentinel-2 data to a 30 m spatial resolution.

We used the standardized precipitation evapotranspiration index (SPEI) to quanti-
tatively mirror drought disturbances [31]. The index can determine the onset, duration,
and strength of drought events. The index is based on a three-month moving average
and was calculated using precipitation and temperature data. The precipitation data are
taken from the dataset of Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) with a spatial resolution of 0.5◦ and a temporal resolution of one day. The dataset
is often used to detect precipitation extremes and long-term precipitation changes [32]. The
temperature data are taken from the dataset of ERA5-Land with a spatial resolution of
0.1◦ and a temporal resolution of one hour [33]. We used the air temperature of 2 m above
the ground surface. Precipitation and temperature data were obtained from GEE. There
are 83 pixels from the CHIRPS dataset falling into the study area. There are 5 points from
the ERA5-Land dataset located in the study site. The temperature data were input into
the Thornthwaite function to calculate potential evapotranspiration. The SPEI index was
obtained through the logistic fitting of the probability density function constrained by the
time series data of the difference between precipitation and potential evapotranspiration.
We used average values to integrate data of different spatio-temporal resolutions.

2.4. Classification of Natural and Planted Forests

Evaluating the spatio-temporal variations of the disturbances in natural and planted
forests first needs a precise classification of forest types. Satellite data are very effective
in terms of examine forest ecosystems [34] and have been successfully applied to the
classification of natural or planted forests [35–37]. We trained a random forest classifier to
determine the spatial distribution of planted and natural forests in the Saihanba region.
The labels of planted and natural forests for training the random forest classifier were
selected via field survey, and information taken from the topographic map were selected
through a visual interpretation of the high-resolution image slices from GEE. We used
spectral features, texture, and terrain factors to obtain the characteristics of different ground
objects and then train the classifier (Table 4). Vegetation has specific spectral features.
Green plants can absorb visible light via their chlorophyll and reflect near-infrared light.
In addition, the composition of planted forests is relatively singular compared to natural
forests. That is, the spectrum of planted forests tends to have a more regular distribution.
The texture features were achieved using the Gray-level Co-occurrence Matrix [38]. The
terrain factors, like slope, elevation, and hill shade, were accounted for using the Shuttle
Radar Topography Mission (SRTM) database [39]. We also calculated different indices
to accurately differentiate ground objects. The indices include NDVI [40] (Equation (1)),
normalized difference water index (NDWI) [41] (Equation (2)) and normalized difference
built-up (NDBI) [42] (Equation (3)). The number of training points for different ground
objects is given in Table 4. Kappa coefficient in the confusion matrix was used to assess the
accuracy of the classification. Specifically, the coefficient compares the consistency between
reference samples and classification samples [43]. The time period of the classification was
determined from 1 May to 30 September 2020 to minimize the noise of ice and snow. We
used the same classification mask across the study time period (1985–2020). To accurately
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distinguish planted and natural forests, we also conducted field investigations in August
2020 and July 2021. It should be noted that we did not classify specific tree species in
natural or planted forests. The samples of the classification were randomly divided into
two groups (70% and 30%) using a bootstrap approach. In this study, 70% of the samples
were used to train the classifier and 30% were used for validation.

NDVI =
NIR− R
NIR + R

(1)

NDWI =
NIR−MIR
NIR + MIR

(2)

NDBI =
SWIR−NIR
SWIR + NIR

(3)

where NIR denotes the reflectance of the near-infrared band; R denotes the reflectance of
the red band; MIR denotes the reflectance of the mid-infrared band; and SWIR denotes the
reflectance of the short-wave infrared band.

Table 4. The number of training points for different ground objects.

Ground Objects The Number of Training Points

Natural forests 480
Planted forests 652

Building 175
Water 102

Grassland 184
Agriculture Land 236

Bare Land 134

2.5. Spatio-Temporal Pattern of Disturbance

We evaluated the spatio-temporal patterns of natural and planted forest disturbances
based on the surface reflectance products of Landsat 5, Landsat 7, and Landsat 8 during the
period from 1985 to 2020. We performed multi-band matching between Landsat5, Landsat 7
and Landsat 8 on GEE. We selected three months (1 June to 31 August) of the growing season
to extract the satellite images, and then defined, matched, and transformed the spectral
reflectance of various sensors from three Landsat satellites. We used the median of three
months and LandTrendr (Landsat-based Detection of Trends in Disturbance and Recovery)
algorithm to detect long-term forest disturbances [44]. The algorithm is dependent on high-
quality image synthesis and it is insensitive to interannual signal noise. The core idea of the
algorithm is time series segmentation and is used to detect whether forest disturbances have
occurred by evaluating the pixel’s spectral time series. Specifically, the segmentation based
on the LandTrendr algorithm is conducted with an annual time step [45]. The maximum
number of segments in this study was set to 6; segment number was then detected using
the algorithm for the time series data. The algorithm takes a single point of view from a
pixel´s Normalized Burn ratio (NBR), identifies breakpoints, separating time periods of
durable change, and eventually records the year that the disturbances occurred. Specifically,
the year of disturbance was determined based on the varying magnitude of the transition
between segments. The variation corresponds to the largest decrease for the time series
data of NBR. To increase the reliability of disturbance detection, the minimum observation
was set to 11 pixels. A single disturbance area is assumed to be greater than this value
(approximately 1 km2 in reality). We used the index of NBR to evaluate the strength of
forest disturbances. The index was calculated based on Equation (4). The index has been
proven to be very sensitive to disturbances [46,47]. Moreover, the accuracy of the index
was found to be higher than other indices like NDVI and normalized difference moisture
index (NDMI) regarding disturbance detection [48]. Thus, the index is deemed as a proxy
for forest disturbances. We divided the forest disturbances into various levels based on
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changes in the NBR index. Values less than 0.2 are defined as being not or slightly disturbed.
Values between 0.2 and 0.5 are defined as moderately disturbed. Values between 0.5 and
0.8 are defined as highly disturbed; that is, the study area suffers a total loss of forests.

NBR =
NIR− SWIR
NIR + SWIR

(4)

where NIR denotes the reflectance of the near-infrared band, and SWIR denotes the re-
flectance of the short-wave infrared band.

2.6. The Response of Natural and Planted Forest to Drought

The SPEI index usually indicates the meteorological degree of drought degree in a
region [49]. The index has been widely used in research focusing on assessing meteoro-
logical drought conditions [50,51]. We classified the drought degree into different levels
based on the value of the index: SPEI ≥ −0.5: no drought; −1.0 < SPEI ≤ −0.5: slight
drought; −1.5 < SPEI ≤ −1.0: moderate drought; and SPEI ≤ −1.5: heavy drought. We
thereafter calculated the three-month moving average value of SPEI, which was widely
used to monitor vegetation response to drought [52]. The calculation of the index was
performed using the ‘SPEI’ package in R software [53].

We extracted monthly NDVI time series data based on the mask of the spatial dis-
tribution of planted and natural forests. The NDVI data were then filtered using the
Savitzky–Golay method [54]. This method can weaken the negative effects of weather
conditions and data quality on the time series data, keeping the time series data relatively
stationary. We executed the method using the package ‘spatialEco’ in R software. To better
evaluate the response of vegetation to drought, we calculated the index of NDVI anomaly
(Equation (5)). The value of the index being more than 0 indicates no disturbance, while
less than zero indicates various degrees of disturbance. Specifically, the value of mean
NDVI corresponds to a normal level of vegetation growth. Less than zero implies poor
vegetation growth conditions; that is, the vegetation is at risk of disturbances.

NDVIanomaly = (NDVIi − NDVImean)/NDVIσ (5)

where NDVIanomaly denotes the value of NDVI in month i of the target year; NDVImean
denotes the mean of NDVI in month i from the years 1985 to 2020; and NDVIσ denotes the
standard deviation of NDVI in month i from the years 1985 to 2020.

We used Spearman’s correlation analysis to examine the relationship between SPEI
and NDVI anomaly of planted and natural forests. In addition, we applied generalized
additive models to fit the temporal dynamics of NDVI anomaly of planted and natural
forests within three years after drought events to better understand the ecological effects
of drought. It should be noted that we did not consider the interactive effects of different
drought disturbances on the growth of both forest types. That is, individual drought
disturbances were deemed independent events. We assume that decreased changes in both
forest types after drought events correspond to forest resistance to drought disturbances,
while increased changes correspond to recovery processes after drought disturbances. All
statistical analyses were performed using R software.

3. Results
3.1. Distribution of Natural and Planted Forests

The spatio resolution of land use type classification was 30 m (Figure 3a). The overall
accuracy of the classification was 93.9% (Table 5). The value of the Kappa coefficient was
0.92 in terms of identifying planted and natural forests. The planted forests were mainly
distributed in the northwest of the Saihanba region, while natural forests grew in the
southeastern part (Figure 3b). The area of natural and planted forests was 58,509 km2 and
48,594 km2, respectively.
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Table 5. The classification accuracy of land use types in the study area.

Land Use Types Producer’s Accuracy (%) User’s Accuracy(%)

Planted forest 91.0 93.8
Natural forest 92.3 93.5

Building 97.9 97.9
Water 100 100

Grassland 95.4 87.3
Agriculture land 98.5 94.1

Bare land 97.2 100

Overall accuracy (%) 93.9

Kappa coefficient 0.92

3.2. Spatio-Temporal Patterns of Forest Disturbances

Forest disturbances mostly occurred in two time periods, namely, from 1991 to 1998
and from 2007 to 2014 (Figure 4a,b). In addition, the number of forest disturbances had
great inter-annual variations. Specifically, the area of forest disturbances occurring in 1994
and 2012 was far greater than that of other years. In 1994, disturbances occurred in south
Saihanba (Figure 4b). The disturbance area proportion (4%) of natural forests was larger
than that (0.5%) of planted forests (Figure 5). In contrast, forest disturbances were mostly
distributed in north Saihanba in 2012 (Figure 4a). The disturbance area proportion of
planted (2.5%) and natural (2%) forests was approximately the same.

More than one-third of the area of planted (37.5%) or natural (35.8%) forests was highly
disturbed. About 60% of forest disturbances were of lower intensity regardless of planted
or natural forests (Figure 6a,b). High-intensity disturbances in natural forests occurred in
the south of Saihanba, with a denser spatial distribution than that for planted forests in the
north. The duration of forest disturbances was mostly 1 to 3 years in terms of planted or
natural forests (Figure 6c,d).
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3.3. The Response of Planted and Natural Forests to Drought

The time period from 1985 to 2020 witnessed 50 moderate drought events and 23 heavy
drought events (Figure 7). Specifically, two heavy drought events occurred in December
1998 and April 1994, respectively, before 2000. In contrast, there were 21 heavy drought
events after 2000. The index of NDVI anomaly of both planted and natural forests had a
significantly negative correlation with the index of SPEI. However, the correlation was not
strong for either planted forests (R = −0.31) or natural forests (R = −0.34).

The NDVI anomaly of planted forests showed a faster decreasing rate than that
of natural forests in the previous year and was half of that after drought disturbances
(Figure 8a). Specifically, the NDVI anomaly of the planted forests changed from 0.24 to
−0.08, while the variation changed from 0.22 to −0.06 for natural forests. After that period,
the NDVI anomaly of planted forests presented a slow upward variation, while the NDVI
anomaly of natural forests kept a relatively consistent level. In terms of heavy drought
events, neither planted forests nor natural forests experienced recovery within three years
after the disturbance of heavy drought (Figure 8b). Moreover, the decreasing rate of NDVI
anomaly for planted forests was slightly higher than that of natural forests.
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4. Discussion
4.1. Classification of Planted and Natural Forests

Separating planted forests from other vegetation types is rather challenging [37]. We
only considered adult planted forests for the forest type classification since young planted
forests present very similar values in terms of NDVI compared with grass. The main
species of planted forests include Larix and Pinus sylvestris. The age of these adult planted
forests ranges from 40 to 60. Natural forests have a similar age range compared with
planted forests. Additionally, the times series data obtained are very short for young
planted forests. According to local plantation records, it is supposed that the adult forests
identified in 2020 were already matured trees in 1985. The matured trees are dependent
on age. In addition, in light of local climatic and vegetation characteristics, the possibility
of natural forests converting to other land use types was very small during the period
from 1985 to 2020. However, it is possible that natural forests or grasslands have been
converted to planted forests owing to human activities. To improve the accuracy of forest
type classification, we accounted for various geographical factors, as the plantation of
planted forests is largely constrained by elevation and slope. The elevation of the Saihanba
region gradually decreases from north to south. Regional afforestation was first performed
in the north and west. We handled the satellite data of growing seasons since phenological
differences between both forest types in the growing seasons are more sensitive to capture
than in the other seasons [35]. Natural forests are more diversely structured than planted
forests [55]. This will lead to more mixed pixels in natural forests. Differences in environ-
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mental conditions like soil nutrients and soil moisture may also impact the accuracy of
forest type classification.

4.2. Spatio-Temporal Dynamic of Disturbances in Planted and Natural Forests

The high-intensity disturbance in the year 1994 may be related to the establishment of
the Saihanba National Forest Park. The park was established in 1993 [56]. Especially in the
early stage of its establishment, forests were severely destroyed due to the construction of
infrastructure, roads, parking lots and service facilities. Moreover, the planted forests in the
Saihanba region are mostly located in the north, while the natural forests are in the south.
The forest park is also located in the south of the Saihanba region. This leads to highly
intensive disturbance signal in the south of the year 1994. The severe drought possibly
explained the high-intensity disturbance of the year 2012. Since the density of trees was
found to be closely related to drought intensity and frequency in the Saihanba region [57],
we examined precipitation records during the period from 1985 to 2020 in the Saihanba
region and found that the annual precipitation was very sparse in 2011. In detail, ten
months of this year were meteorologically defined as drought months. Further, the result
showed no distinct long-term trend in the disturbance area proportion of both forest types.
At national or regional scales, the rate of forest disturbances markedly decreased owing
to protection policies between 1986 and 2020 in China. The magnitude and frequency of
the disturbances have weakened in Northeast China [15]. In Europe, a proportion of 17%
of forests suffered disturbances, with an increasing frequency and a decreasing strength
during the time period from 1986 to 2016 [14]. On the global scale, forest disturbances are
likely to increase with elevations in temperature [3]. We found that the natural forests were
disturbed in a spatially dense way while sparsely for the planted forests. This suggests that
the natural forests are susceptible to disturbances. Planted forests with greater management
probably avoid some disturbances because human activities (e.g., irrigation and tree species
selection) can reduce negative effects in terms of disturbances [58]. Parts of the planted
forests suffered short-duration and highly intensive disturbances. On the one hand, this
could be attributed to large-scale reforestation. On the other hand, planted forests may
suffer multiple disturbance events like high-frequency wood collection from forest farms.
For highly disturbed areas, forests may have been converted to other land use types like
grassland, bare land, and agricultural or construction land. For moderately disturbed
areas, forests may suffer disturbances like intermediate cutting, droughts, insect outbreaks,
fires, etc. The aggregation of various disturbance types can exacerbate ecological effects in
terms of vegetation dynamics. Moreover, vegetation loss induced by these disturbances
conversely feedbacks to the spatio-temporal dynamics of forest disturbances [3]. Elevation
may also impact the dynamics of the disturbances for both forest types. At lower elevations,
the disturbance area of natural forests was larger than that of planted forests. While the
opposite trend was true at higher elevations (Figure A3). This is mostly dependent on the
distribution of both forest types along the gradient of elevation.

4.3. Response of Planted and Natural Forests Vary with the Intensity of Drought Disturbance

The index of NDVI anomaly has been proven to be a sensitive probe to detect the
effects of drought on vegetation changes [59]. We found that drought disturbances were
characterized by a large inter-annual variation and a very low spatial heterogeneity in
the Saihanba region. In addition, the area of natural forests was a little larger than that of
planted forests. This means that natural forests have a higher probability of suffering from
drought than planted forests. Vegetation is assumed to not rapidly respond to drought
disturbances; that is, drought disturbances have legacy effects on the vegetation dynamics
of forest ecosystems [60]. Thus, we set a monitoring period of three years. We found
that planted forests experienced a faster decreasing rate but a stronger recovery than the
natural forests when we examined the ecological effects of all drought events. This finding
is consistent with a study conducted on the national scale [55]. The natural forests are
assumed to have higher species richness, diverse age stages and more complex community
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structures than the planted forests [61]. In addition, natural forests are less water-consuming
than planted forests in China [62]. However, Luo et al. [23] found that natural forests are
more vulnerable to drought than planted forests. We further found that the shape of the
response curve for both forest types was much similar with the results taken for summer
(see Figure 3a). This suggests that the growth state in growing seasons played a key role in
modulating forest response to drought. In addition, the resistance and recovery processes
of both forest types were rather different across the four seasons. Different tree species
are diversely sensitive to drought events of each season [63]. Our results indicated that
damaged forests could not recover after heavy drought events regardless of planted or
natural forests. The biomass of tropical forests in Africa and America showed a rapidly
decreasing trend but no recovery after extreme drought [64]. This finding also hints at a
hydraulic threshold for the response of tree growth to drought disturbances [65,66]. In
cases where the disturbance intensity exceeds the recovery edge of trees, this may lead to
the collapse of the forest ecosystem. Thus, we should be aware of different types of extreme
climate events in the process of forest management.

4.4. Limitations and Perspectives

The data quality of the Landsat remote sensing images was poor in the early stages.
This may reduce the detection accuracy of disturbances in planted and natural forests
owing to the loss of data in some regions. MODIS-Landsat multi-source data can be used
to establish relatively complete and less polluted times series data. This will minimize the
influence of image data itself on the evaluation of forest dynamics. The image data samples
used to classify planted and natural forests were partly constrained by the validation owing
to the lack of detailed local forest inventory data. The classification mask of the year 2020
was used across the study time period since the resolution of earlier images was not as
satisfactory as those taken in 2020. Even though we referred to graphs of local forest
planning, spatio-temporal errors were not avoidable. We used the LandTrendr algorithm to
capture spatio-temporal variations in forest disturbances. The advantage of the algorithm is
the fact that it is less computationally intensive. However, there are few recorded materials
to verify the results of forest disturbances obtained using the algorithm. The algorithm is
based on pixel-by-pixel calculation and does not involve the spatial relationships between
pixels. It only provides years of disturbance and cannot indicate the seasonal dynamics of
the disturbancse, like the continuous change detection and classification (CCDC) algorithm.
The number of segments in the LandTrendr algorithm should be increased to capture
multiple disturbances over a long time period [45]. Spatial distribution was graphed for
the number of segments detected in every pixel of planted and natural forests (Figure A5).
The value of segments is 1 for undisturbed pixels and 2 to 6 for disturbed pixels. Larger
values of segments indicate more frequent disturbances in terms of pixels. The number of
segments can partly mirror multiple disturbances in terms of pixels in the study area. The
problem of overfitting may exist during the process of algorithm execution. These partly
impact the evaluation of the long-term dynamics of forest disturbances. In addition, the
algorithm can not separate individual disturbance types like drought, fire, insect outbreak,
deforestation, etc., for characterizing the spatio-temporal dynamics of forest disturbances. It
is very important to identify which disturbance type dominantly drives the forest dynamics
for local forest management. The reliability of NDVI anomaly is largely constrained by the
quantity and quality of images. The index SPEI usually indicates meteorological drought
conditions at a large spatial scale. Although we compared pixels falling into the study area
in terms of meteorological data and found that differences between pixels were not obvious,
there may also exist heterogeneity in terms of micro-climate conditions at smaller spatial
scales. During the study period, vegetation constantly exists after drought disturbances,
even heavy drought events, for both forest types. However, we should be aware that the
index NDVI anomaly is not sensitive to disturbances for totally destroyed forests where
disturbances still occurred. The mechanisms underlying the response of planted and
natural forests to drought need to be further studied. Since trees are vulnerable to scarce
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precipitation in arid and semi-arid ecosystems [67], these ecosystems need a long time
for the restoration of damaged forests. We did not explicitly consider the independent
and compounding effects of individual drought events. Subsequent or multiple droughts
have been found to increase the vulnerability of forests, especially for gymnosperms and
conifer-dominated ecosystems [68]. In addition, forest age, density and specific species also
determine drought sensitivity and recovery of planted and natural forests [22,69]. Forest
growth is jointly determined by these factors, which need to be further studied.

5. Conclusions

Afforestation and reforestation efforts are still ongoing, and the area of planted forests
is increasing in China. Climate extremes and interference of human activities are expected
to increase under the background of global warming. These partly exacerbate forest distur-
bances. The basic assumption is that there exist differences in the disturbance dynamics
between planted and natural forests. On the one hand, the intensity and frequency of
forest disturbances varied with time and space. On the other hand, the planted forests
experienced a faster decreasing rate but a stronger recovery than that of natural forests after
drought events. These results are highly beneficial for local forest management and are
very helpful to answer fundamental questions concerning afforestation and reforestation
like “Which area is more suitable for plantation of trees” and “Which forest type suits better
with local environmental conditions”.
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