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Abstract: In the context of climate warming, flash drought has become increasingly frequent, posing
significant threats to agriculture, ecosystems, and the environment. Xinjiang, located in an arid
and semi-arid region, necessitates a thorough investigation into the distinctions between flash
drought and traditional drought, as well as an exploration of the driving forces behind both types of
drought. In this study, soil moisture data from ERA5-Land were utilized to construct a framework
for the identification of flash drought and traditional drought based on historical events. The
Geodetector was employed to explore the factors that influence the spatial heterogeneity of these two
drought forms. The findings illuminate that (1) in terms of spatial distribution, traditional drought
predominated in southern Xinjiang, while flash drought exhibited greater prominence in northern
Xinjiang. (2) Regarding changes in trends, both flash drought and traditional drought exhibited an
increasing trend in frequency since the 1990s, with the frequency trend of flash drought passing the
significance test (α ≤ 0.05). Additionally, the severity of both flash drought and traditional drought
displayed a noteworthy and statistically significant increase within sliding windows ranging from 46
to 62 years. (3) Concerning the driving forces, precipitation emerged as the principal driving force
behind both flash drought and traditional drought. Furthermore, human activities exerted a more
substantial influence on traditional drought, and the interactions involving human activities had
the potential to significantly amplify the explanatory power of the spatial heterogeneity for both
drought types. (4) In terms of the drought risk, a notable variation in the risk of flash drought was
observed across various ecological zones, with the highest risk occurring in mildly fragile ecological
zones. Furthermore, when comparing the results from 1995 to 2019, the flash drought risk exhibited a
marked increase in severely fragile ecological zones. This study enriches the understanding of the
dynamics of flash drought and traditional drought in Xinjiang and carries important implications for
enhancing the precision of drought monitoring and early warning systems.

Keywords: flash drought; frequency; Geodetector; severity; traditional drought; Xinjiang

1. Introduction

The United Nations Intergovernmental Panel on Climate Change (IPCC) highlights
the ongoing warming of the Earth system in the Sixth Assessment Report on Climate
Change [1]. As global temperatures continue to rise, it is anticipated that various regions
will experience increasingly pronounced and frequent drought events, particularly in the
context of agricultural drought and ecological drought [2]. This underscores the urgency of
drought as a prominent concern in national climate change mitigation efforts and positions
it as a pivotal research area within the international community’s response to climate
change [3,4].

Traditional drought is typically characterized by slow onset and long duration, leading
to its colloquial name ‘creeping drought’ [5,6]. In the realm of drought characteristics, the
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run theory has emerged as a widely accepted and valuable tool for extracting crucial aspects
of drought events [7]. These aspects encompass various parameters, including frequency,
duration, severity, peak (representing the most severe drought), and intensity [8]. For
instance, Jamro et al. (2020) employed 3-month and 12-month timescales of the standardized
precipitation evapotranspiration index to examine the evolution of drought duration,
severity, peak, and intensity [9]. Additionally, Raposo et al. (2023) proposed two frequently
employed methods based on the run theory to characterize drought and investigate their
development and recovery stages [10]. In recent years, there has been a growing recognition
of the significance of probabilistic drought characterization, particularly in regions with
limited water resources [11–13]. Aksoy et al. (2021) introduced the concept of critical
drought intensity–duration–frequency curves, which define drought in terms of return
period, rather than relying solely on index-based intensity measures [11]. These approaches
have been instrumental in examining the complex interrelationships among the severity,
intensity, frequency, and duration of drought events.

In contrast with traditional drought, flash drought represents an extreme form of
drought event marked by rapid intensification, short duration, and high intensity. It
triggers a swift transition from a normal or partially saturated soil condition to severe
or even extreme drought within a short timeframe [14–17]. This sudden onset can have
adverse impacts on surface and groundwater resources, agroecosystems, and human
well-being [18–23]. Researchers worldwide have conducted a series of studies focusing
on the definition, monitoring, and underlying mechanisms of flash drought. Various
drought indices, such as soil moisture, evapotranspiration stress index, and standardized
evapotranspiration stress index, have been used to construct a framework for identifying
and characterizing flash drought [24–28]. Furthermore, the occurrence of flash drought is
closely tied to meteorological factors, including abnormally high temperatures, markedly
reduced precipitation, heightened atmospheric evaporation demand, and declining soil
moisture levels [29–33]. As these meteorological conditions deteriorate, flash drought
can evolve into more prolonged agricultural drought, endangering vegetation health and
depleting soil moisture. Consequently, this presents challenges for effective water resources
management [20,34]. Due to the sub-seasonal nature, understanding the driving factors
behind flash drought remains intricate and not yet fully understood [35].

Flash drought has become increasingly prevalent across diverse geographical regions
worldwide, observed and identified not only in agricultural areas but also in arid regions,
high-altitude zones, and forested landscapes [20]. Xinjiang, a region characterized by arid
conditions, is geographically divided into northern and southern regions by the imposing
Tianshan Mountains. Southern Xinjiang is marked by arid and hot climatic conditions,
while northern Xinjiang exhibits comparatively higher humidity levels. Previous research
has indicated that flash drought is primarily observed in the mountainous regions of
both northern and southern Xinjiang [6,28]. However, comprehensive studies on flash
drought in Xinjiang, particularly its distinctions from traditional drought, remain limited.
Furthermore, while precipitation, temperature, evapotranspiration, and vapor pressure
deficit have been identified as principal driving forces behind flash drought [36], there is a
need for more exhaustive investigations into potential additional influencing factors and
their intricate interplay.

This paper is dedicated to conducting a comparative analysis of flash drought and
traditional drought in Xinjiang. Its objectives encompass the following aspects: (1) estab-
lishing a robust identification framework for both flash drought and traditional drought
based on ERA5-Land data; (2) conducting a comprehensive examination of the spatial
distribution and variation trends of flash drought and traditional drought in Xinjiang from
1960 to 2021, by utilizing the multi-window Mann–Kendall (MK) trend analysis method;
(3) quantifying the driving forces behind flash drought and traditional drought, as well as
exploring their interactions, by employing the Geodetector. This study aspires to provide a
deeper understanding of the distinctions between flash drought and traditional drought
within arid and semi-arid regions.
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2. Data and Methods
2.1. Study Area

Xinjiang, located in the northwest region of China, exhibits a temperate continental arid
climate, as illustrated in Figure 1. The region boasts a complex and diverse geomorphology,
featuring a sequence of distinct geographical formations from north to south, including
the Altai Mountains, the Junggar Basin, the Tianshan Mountains, the Tarim Basin, and
the Kunlun Mountains. This distinctive topographical arrangement, often referred to as
the ‘three mountains sandwiching two basins’, gives rise to a wide range of climates,
vegetation types, and other natural characteristics [37]. The predominant vegetation types
in Xinjiang consist of meadows and steppes. In the arid southern regions of Xinjiang, desert
landscapes are primarily covered by drought-resistant shrubs, while the northern Tianshan
Mountains region is characterized by forested and meadow areas, predominantly featuring
evergreen coniferous forests and alpine meadows [38]. The soil types in northern Xinjiang
are predominantly composed of Caliche soil and Aridisol. Saline soil is commonly found
along the margins of the Tarim Basin, while alpine soil prevails in the mountainous regions.
Areas with high Normalized Difference Vegetation Index values are notably located in the
Tianshan and Altay mountains of northern Xinjiang, as well as in the peripheral regions of
the Tarim Basin in southern Xinjiang. Furthermore, the geographical distance of Xinjiang
from the ocean results in limited moisture transport, due to the obstructing influences of the
Tibetan Plateau and the Tianshan Mountains, ultimately contributing to scarce precipitation
in the region [39]. Over the period from 1960 to 2021, the average annual temperature
in Xinjiang ranged from −20 ◦C to 17 ◦C, with an average annual precipitation level of
156 mm. Precipitation in northern Xinjiang generally surpasses that in the southern region,
and mountainous areas receive greater amounts of precipitation compared to the basin
areas [40–42].
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Figure 1. Overview of the study area.

2.2. Data

Daily meteorological data for Altay spanning the period from 1960 to 2014, encom-
passing variables such as average temperature (◦C), maximum temperature (◦C), minimum
temperature (◦C), precipitation, sunshine hours (h), relative humidity (%), and 2 m wind
speed (m/s), were obtained from the meteorological stations. These data sources are part
of the daily dataset (V3.0) of essential meteorological elements collected from national
ground-based meteorological stations in China, and they are accessible through the Na-
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tional Tibetan Plateau Data Center (NTPDC) (https://data.tpdc.ac.cn, accessed on 1 March
2023). Additionally, daily soil moisture for four different soil depths (0–7 mm, 7–28 mm,
28–100 mm, and 100–289 mm) was obtained from ERA5-Land, the fifth generation Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis data
of the global climate (https://cds.climate.copernicus.eu, accessed on 1 March 2023) [8,10].
For the purposes of drought identification in this study, a high spatial resolution of 0.1◦

and soil moisture data from 0 to 100 cm were utilized [9]. Furthermore, various other data
from ERA5-Land were employed for drought analysis in this research, covering the years
from 1960 to 2021. These datasets include temperature (TEM), total evapotranspiration
(ET), wind speed (WIN), precipitation (PRE), and snowmelt (SNM) data (Figure 2).
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Figure 2. The spatial distribution of (a) temperature (TEM), (b) total evapotranspiration (ET), (c) wind
speed (WIN), (d) precipitation (PRE), (e) soil moisture (SM), and (f) snowmelt (SNM).

A range of multi-source datasets, as detailed in Table 1, were incorporated into this
study. These datasets encompass vegetation type (VEG), soil type (SOIL), topography type
(GEO), population density (POP), economic density (GDP) data, and land use (LUCC), all
of which were made available by the Resource and Environment Science and Data Center
(RESDC) of the Chinese Academy of Sciences (https://www.resdc.cn, accessed on 1 March
2023). Furthermore, normalized difference vegetation index (NDVI) data were sourced
from the NTPDC. The spatial distribution of above variables is shown in Figures 3 and 4.

Table 1. Data sources and information.

Data Date Data Source Data Format

VEG — RESDC shp
SOIL — RESDC shp
GEO — RESDC shp

POP (Person/km2) 1995, 2019 RESDC 1 km × 1 km Raster
GDP (104/km2) 1995, 2019 RESDC 1 km × 1 km Raster

LUCC 1995, 2020 RESDC shp
NDVI 1982–2015 NTPDC 1/12 × 1/12 Raster

https://data.tpdc.ac.cn
https://cds.climate.copernicus.eu
https://www.resdc.cn
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To account for the spatial variability associated with human activities and environ-
mental factors in relation to drought distribution, this study has integrated the ecological
zoning (ECZ) scheme as an influential factor. This zoning scheme plays a crucial role in
assessing the risk of flash drought and traditional drought across distinct ecological zones,
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thereby enhancing the robustness of the analysis [43]. Further details of the ecological
zoning scheme can be found in Table 2.

Table 2. Ecological zoning scheme.

Zoning Type Prefecture-Level City and
Prefecture ED EE

Stable Urumqi, Karamay extremely high medium
Mildly fragile lli medium extremely high

Moderately fragile Changji, Bayingol, Tacheng,
Hami, Bole, Altay, Turpan relatively high low

Severely fragile Aksu, Kizilsu Kirgiz, Kashi relatively low relatively low
Extremely fragile Hotan extremely low extremely low

ED: the level of economic development; EE: the level of ecological environment.

2.3. Methods
2.3.1. Calculation of Hydro-Meteorological Indicators

Flash drought is often triggered by short-term climatic anomalies, leading to the
rapid onset [18,36,44–46]. To investigate this phenomenon, anomaly calculations for each
hydro-meteorological parameter were conducted using an 8-day time step, where 1 TS
represents an 8-day interval. These anomalies were computed using the Z-score method.
The calculation of potential evapotranspiration (PET) was executed utilizing the Penman–
Monteith formula [47], as described in Equation (1). Furthermore, the vapor pressure deficit
(VPD), a critical indicator of air drying [48], was calculated meticulously following the
procedures outlined in Equations (2)–(6).

PET =
0.408∆(Rn − G) + γ 900

T+273 U2(ea − ed)

∆ + γ(1 + 0.34U2)
(1)

where PET represents the potential evapotranspiration (mm); ∆ represents the slope of
temperature with saturated water vapor pressure (kPa·◦C−1); U2 represents the wind
speed at 2 m above ground (m·s−1); ea is saturated vapor pressure (kPa); ed is actual vapor
pressure (kPa); T is mean air temperature (◦C); γ is the moisture table constant (kPa·◦C−1);
and G represents soil heat flux density (MJ·m−2·d−1).

VPD = SVP − AVP (2)

AVP = 6.112 × fw × e
17.67TW

TW+243.5 (3)

SVP = 6.112 × fw × e
17.67Ta

Ta+243.5 (4)

fw = 1 + 7 × 10−4 + 3.46 × 10−6Pnst (5)

Pnst = Pnsl

(
(Ta + 273.16)

(Ta + 273.16) + 0.0065 × Z

)5.625
(6)

where SVP and AVP are saturated vapor pressure and actual vapor pressure (kPa), respec-
tively. Ta is the land air temperature (◦C). TW is the dew point temperature (◦C). Pnst is the air
pressure (hPa). Pnsl is the air pressure at mean sea level (1013.25 hPa). Z is the altitude (m).

Soil moisture exhibits notable regional variations and seasonal fluctuations, which
poses challenges when utilizing it directly for extensive, long-term drought analyses [14].
To address this challenge, this paper chose to divide each year into 46 distinct time intervals,
using an 8-day time scale after excluding 29th February during leap years. The last time
interval, denoted as 46TS, represented the mean of the last 5 days of each year. The
calculation of soil moisture percentiles was executed by fitting an optimal probability
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distribution function, as illustrated in Figure 5. Subsequently, these derived probabilities
were applied to the original time series and then aggregated to create annual datasets. This
consolidated dataset was then employed to identify instances of both flash drought and
traditional drought.
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2.3.2. Identification of Flash Drought and Traditional Drought

The duration of the intensification period served as a criterion to distinguish between
flash drought and traditional drought. Specifically, when the intensification period lasted
less than 8 TS, it was categorized as a flash drought event; when it exceeded 8 TS, it was
classified as a traditional drought event. These distinctions are visually depicted in Figure 6,
where Event 1 represents a flash drought event, reducing the soil moisture percentile from
67% to 20% over a span of 40 days (equivalent to 5 TS), while Event 2 portrays a traditional
drought event, which took 88 days (equivalent to 10 TS) to transition from normal to dry
conditions.

Identifying a drought event involved considering the rapid intensification, the suste-
nance phase, and the subsequent recovery period [28,35]. The drought identification part of
Figure 7 outlines the process for both flash drought and traditional drought, encompassing
three criteria for delineating the intensification, sustenance, and recovery phases: (1) The
onset of the drought was marked by the moment before the soil moisture percentile de-
scended below 40%. This ensures that the soil moisture transitions from a normal or wet
state to a dry state. Likewise, the termination of the intensification period was denoted
when the soil moisture percentile fell below 20%, indicating the onset of an actual drought
condition. The phase lasting less than 8 TS was deemed the onset of a flash drought event,
and conversely, it marked the commencement of a traditional drought; (2) The sustenance
phase was characterized by a soil moisture percentile below 20%, remaining relatively low
without a discernible upward trend; (3) The recovery or end of the drought was signaled
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by the soil moisture percentile once again surpassing 20% and exhibiting a clear upward
trend. When it exceeded 40%, it indicated the end of the drought.
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The run theory was employed to identify both flash drought and traditional drought
within the time series for each grid, adhering to the criteria outlined previously [36].
The characterization of these drought events encompassed four key metrics: frequency,
duration, intensity, and severity. Frequency denoted the count of all drought events
identified within the time series for each grid. Duration quantified the number of time
steps between the commencement and the end of a drought event [10]. Mean duration
was calculated as the average duration across all identified drought events within the grid.
Severity measured the cumulative soil moisture anomaly during the duration of a drought
event [9]. In addition to the above, two additional metrics related to drought intensity
were computed. Intensity was defined as the severity of a drought event divided by its
duration [10], and average intensity represented the mean intensity across all identified
drought events within the grid.
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2.3.3. The Geodetector

The Geodetector as a statistical methodology was used to detect spatial variations
and unveil the factors influencing flash drought and traditional drought [49,50]. The Q
value served as a metric to gauge the extent of influence exerted by hydro-meteorological
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variables, environmental factors, and human activities on both flash drought and traditional
drought. It was expressed as follows:

Q = 1 − ∑n
i=1 Niα

2
i

Nα2 , (7)

where i = 1, . . ., n is the stratification of impact factors, Ni and N are the number of cells in
stratum i and the whole area, and α2

i and α2 are the variance of stratum i and the whole area.
The range of Q values is [0, 1], where Q = 0 means that the drought event is independent of
the variables. Larger Q values indicate that the variables possess a more pronounced and
significant explanatory influence on the drought occurrence. Conversely, smaller Q values
suggest a relatively weaker explanatory power for the variables.

The remaining modules include interaction detection, ecological detection, and risk
zone detection. In this study, the interaction detection module calculated the interaction
between pairs of factors to ascertain whether the combined influence of these factors
enhances or diminishes their explanatory capacity concerning flash drought and traditional
drought. Meanwhile, the risk zone detection module computed risk values associated
with flash drought and traditional drought within distinct ecological zones. The selected
variables for analysis encompass hydro-meteorological factors such as TEM, PRE, ET, WIN,
VPD, and SNM, human activity factors including POP, GDP, and LUCC, and environmental
factors represented by VEG, SOIL, GEO, and NDVI. Additionally, the abovementioned
factors together with ECZ served as independent variables, while the frequency of flash
drought and traditional drought served as the two dependent variables for exploring
spatial variations, as illustrated in Figure 7.

3. Results
3.1. Analysis of Flash Drought and Traditional Drought in Altay

As illustrated in Figure 6, Altay experienced a flash drought event from March to May
in 1961 and a traditional drought event from 1962 to 1965. This subsection is devoted to
a comparative analysis of these two events by examining the variations in temperature,
potential evapotranspiration, precipitation, and soil moisture in Altay during the period
from 1961 to 1962 (refer to Figure 8).

Figure 8 reveals that in March and April of 1961, temperature exceeded the 1960–2014
average by 2.88 ◦C and 3.56 ◦C, respectively. This abnormal temperature increase resulted
in significantly elevated potential evapotranspiration values compared to the historical
average. The conjunction of these factors, combined with the scarcity of precipitation
during the winter and spring, triggered a rapid decline in soil moisture starting from
early March and persisting until May. This decline indicates that the unusual reduction in
precipitation, along with the abnormal increase in temperature and potential evapotranspi-
ration, constituted the primary factors contributing to the flash drought event. In addition,
the abnormal increase in precipitation interrupted flash drought development, which is
consistent with the finding of Otkin et al. (2019) [51]. However, soil moisture deficits
escalated significantly due to the exceptionally warm temperatures observed in the winter
of 1961 and the spring of 1962. Despite the recovery of precipitation levels in November,
the increased precipitation could not effectively compensate for the soil moisture deficit
caused by the severe drought conditions. Consequently, this led to the onset of a traditional
drought event that persisted until the end of the year.

The Hovmoller diagram, illustrating climate element anomalies in Altay (45–49◦N,
80–90◦E), is presented in Figure 9. In this diagram, the vertical axis corresponds to the
months, while the horizontal axis represents the longitude. Notably, both events were
associated not only with air temperature, precipitation, and potential evapotranspiration,
but also with snowmelt. At the onset of the flash drought event in 1961, there was an
abnormal increase of 2.5 mm in snowmelt, leading to a recharge of soil moisture, as
depicted in Figure 5. Simultaneously, an abnormal rise in air temperature (temperature
anomaly >1 ◦C) resulted in arid atmospheric conditions (vapor pressure deficit anomaly
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>1.5 kPa). Additionally, wind speed also exhibited an abnormal increase. The combined
impact of these factors prompted a relatively rapid transition of soil moisture from a wet
state to a deficit state. However, during the spring of 1962, the absence of precipitation
and the limited recharge from snowmelt caused soil moisture to hover slightly below
the multi-year average. The transition of soil moisture into a deficit state occurred more
gradually, driven by warming temperatures and elevated potential evapotranspiration
during the spring. Subsequently, the severe soil moisture deficit during the summer
and autumn (soil moisture anomaly <−1 m3m−3) was exacerbated by high-temperature
anomalies, increased potential evapotranspiration anomalies, and reduced precipitation
levels during the summer.
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Figure 8. Temporal series of 1-TS in air temperature, potential evapotranspiration, precipitation, and
soil moisture in Altay (47.73◦N, 88.08◦E). The black line with markers represents 1961–1962, and the
red line denotes the 1960–2014 average. The gray vertical bars indicate mean ± standard deviation.
The blue shading signifies values exceeding the mean, while the yellow shading indicates values
below the mean.
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Figure 9. Hovmoller diagram of abnormal climatic elements (total evaporation, wind speed, soil mois-
ture, snowmelt, air temperature, vapor pressure deficit, precipitation) in Altay (45–49◦N, 80–90◦E)
from 1961 to 1962.

3.2. Spatial Characterization

The spatial distribution of frequency, duration, intensity, and the proportion of flash
drought and traditional drought in Xinjiang for the period of 1960–2021 is depicted in
Figure 10, revealing a distinct pattern within the region. In northern Xinjiang, flash drought
predominated, accounting for over 80% of drought events, with a frequency ranging from
five to ten occurrences. Conversely, in southern Xinjiang, particularly in the periphery
of the Tarim Basin, traditional drought held a higher proportion, exceeding 80%, and
occurred at a frequency of one to five times. In addition, traditional drought tended to
be more prolonged, often persisting for over 30 TS and sometimes extending up to 40 TS.
In southern Xinjiang, drought events exceeding 40 TS were more common, whereas in
northern Xinjiang, droughts usually lasted for less than 20 TS.

Figure 11 shows the disparities in the seasonal distribution of frequency and intensity
of flash drought and traditional drought across four distinct seasons: spring (March–May),
summer (June–August), autumn (September–November), and winter (December–February).
At the seasonal scale, differences in intensity between the two types of drought were not
notably significant. However, marked disparities in their frequency across different seasons
were observed. Flash drought events were predominantly noted in the spring and summer.
In northern Xinjiang, the occurrence of flash drought was more frequent, ranging from
five to ten instances during the spring and summer but dropping to relatively lower levels
(0–5 times) during the autumn and winter. In contrast, during the summer, traditional
drought exhibited a higher frequency in southern Xinjiang compared to northern Xinjiang,
with the situation reversing in the autumn.
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Figure 11. Seasonal distribution for the frequency and intensity of flash drought (a–h) and traditional
drought (i–p) in Xinjiang from 1960 to 2021. White areas indicate unidentified drought events.

To further analyse the variation trends associated with flash drought and traditional
drought, a multi-window sliding method was adopted to examine frequency and severity
trends spanning from 1960 to 2021, as illustrated in Figure 12. Within the context of sliding
windows ranging from six to 16 years, the frequency of flash drought demonstrated a
pattern of alternating decreases and increases during the periods 1960–1970, 1970–1980,
1980–1990, and 2000–2021. Conversely, the frequency of traditional drought exhibited



Remote Sens. 2023, 15, 4758 14 of 21

an increasing-decreasing-increasing trend during the periods 1960–1980, 1980–2000, and
2000–2021. As the window size expanded, both flash drought and traditional drought
frequencies shifted from a decreasing trend to an increasing trend beginning around
the year 2000. Moreover, the increasing trend in the frequency of flash drought passed
the significance test (α ≤ 0.05). Simultaneously, when the window size ranged from
46 to 62 years, the severity of both flash drought and traditional drought displayed a
noteworthy and statistically significant increasing trend, also passing the significance test
(α ≤ 0.05). This trend aligned with the historical records of severe drought events [52]. It
is important to note that from the 1990s onwards, the frequency of both flash drought
and traditional drought exhibited a rising trend, while severity trended downward.
This divergence may be associated with recent short-term climate variations marked by
warming and increased humidity.
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Figure 12. Multi-window sliding trend for the frequency and severity of flash drought (a,c) and
traditional drought (b,d) in Xinjiang from 1960 to 2021. When Z is less than 0, it indicates a downward
trend, whereas Z greater than 0 signifies an upward trend. Contours indicate passing the 95%
confidence interval (α = 0.05).

3.3. Analysis of the Driving Forces
3.3.1. Single-Factor Detection and Two-Factor Interaction Detection

The single-factor detection module employed Q values to assess the degree to which
individual drivers account for the spatial distribution of flash drought and traditional
drought, as depicted in Figure 13. Our analysis focused on anthropogenic data for the
years 1995 and 2019 to investigate their respective influences. Notably, the results showed
no significant variations between these two years. Therefore, the detection results were
present solely for the year 1995, with specific comparative findings between 1995 and 2019
detailed in the subsequent subsection.

The findings reveal that precipitation exerted the most pronounced influence on the
spatial variation of both flash drought (Q value: 0.343) and traditional drought (Q value:
0.15). Importantly, all factors exhibited a greater explanatory power for flash drought
compared to traditional drought. Further analysis involved calculating the contribution
values of the three variable types, revealing that meteorological variables had the highest
contribution to both flash drought and traditional drought, accounting for 69.3% and 72.4%
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of the respective variations. Environmental variables exhibited a more substantial impact on
flash drought (environmental variables: 21.9% > human activities: 8.8%), whereas human
activities exerted a more significant influence on traditional drought (human activities:
16.4% > environmental variables: 11.2%). It is worth noting that although the contribution
of human activities to flash drought may be relatively modest, its contribution to traditional
drought should not be underestimated.
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Figure 13. Single-factor detection of flash drought and traditional drought.

Tables 3 and 4 quantify the interactions between pairs of the driving factors. The
results notably demonstrate that the explanatory power of these interactions exhibited a
pattern of two-factor enhancement. This finding signifies that interactions between pairs
of factors exerted a more substantial influence on spatial heterogeneity compared to the
individual contributions of each factor. Remarkably, the interactions involving human ac-
tivity variables tended to display predominantly nonlinear enhancement relationships with
other factors. Conversely, interactions among meteorological variables tended to exhibit
more pronounced two-factor enhancement relationships. This suggests that interactions
involving human activities had the potential to significantly amplify the explanatory power
of spatial heterogeneity in both flash drought and traditional drought. The influence of
human activities on surface environments played a pivotal role in altering and regulating
environmental vectors and microclimates [53].
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Table 3. Two-factor interaction detection of flash drought.

ECZ ET PRE SNM TEM VPD WIN NDVI GEO LUCC SOIL VEG POP

ET 0.3221
PRE 0.3718 0.3621
SNM 0.3299 0.3697 0.4091
TEM 0.211 * 0.3221 0.3814 0.2815
VPD 0.2881 0.3317 0.3838 0.2973 0.2706
WIN 0.2129 * 0.3373 0.3901 0.3135 0.2242 * 0.2630
NDVI 0.1579 0.3739 0.4187 0.3877 * 0.2618 * 0.3492 * 0.2589 *
GEO 0.1298 0.3064 0.3657 0.2424 0.1112 0.2302 0.1645 * 0.1365 *

LUCC 0.1031 0.3161 * 0.3710 * 0.2714 * 0.1522 * 0.2576 * 0.1640 * 0.1198 * 0.0599 *
SOIL 0.1912 * 0.3583 0.4118 0.2687 0.1706 * 0.2582 0.2494 * 0.2240 * 0.1174 0.1331 *
VEG 0.1852 * 0.3644 0.4071 * 0.2948 0.1963 * 0.2846 * 0.2100 * 0.1972 * 0.1269 * 0.1015 * 0.1715
POP 0.1683 * 0.3756 * 0.4261 * 0.4407 * 0.3621 * 0.3943 * 0.2122 * 0.2082 * 0.1779 * 0.1221 * 0.3088 * 0.2404 *
GDP 0.1596 * 0.3746 * 0.4271 * 0.4448 * 0.3614 * 0.4017 * 0.2050 * 0.2032 * 0.1735 * 0.1188 * 0.3093 * 0.2355 * 0.0816

* The bolded part of the table indicates the two-factor nonlinear enhancement relationship and the rest is the
two-factor enhancement relationship.

Table 4. Two-factor interaction detection of traditional drought.

ECZ ET PRE SNM TEM VPD WIN NDVI GEO LUCC SOIL VEG POP

ET 0.1532
PRE 0.1773 * 0.1681
SNM 0.1595 * 0.189 0.1881
TEM 0.0906 * 0.1821 * 0.1847 * 0.1375
VPD 0.1393 * 0.1816 * 0.1803 0.142 0.1194
WIN 0.148 * 0.205 0.2176 0.1908 0.1509 * 0.1575
NDVI 0.0406 * 0.1748 * 0.1937 * 0.1596 * 0.0893 * 0.1362 * 0.130 *
GEO 0.0373 * 0.1602 * 0.1639 * 0.1232 * 0.0425 0.0984 0.118 * 0.0346 *

LUCC 0.0271 * 0.1565 * 0.1679 * 0.1286 * 0.0595 * 0.1105 * 0.1178 * 0.0278 * 0.022 *
SOIL 0.0827 * 0.187 * 0.196 * 0.1581 * 0.0772 * 0.1249 * 0.1399 * 0.0642 * 0.0485 * 0.0451 *
VEG 0.0657 * 0.177 * 0.1851 * 0.1385 0.0702 * 0.1185 0.131 * 0.0581 * 0.0379 0.0363 0.0516
POP 0.0899 * 0.2085 * 0.2233 * 0.2430 * 0.2097 * 0.2193 * 0.1758 * 0.1053 * 0.1025 * 0.0793 * 0.1355 0.1475 *
GDP 0.0794 * 0.2039 0.2201 * 0.2358 * 0.1929 * 0.2052 * 0.1585 0.0988 * 0.0965 * 0.0751 * 0.1234 * 0.1322 * 0.0731

* The bolded part of the table indicates the two-factor nonlinear enhancement relationship and the rest is the
two-factor enhancement relationship.

3.3.2. Comparison of the Results of 1995 and 2019

The results for the years 1995 and 2019 are illustrated in Figures 14 and 15, respectively.
In 2019, there was a slight increase in the contribution of meteorological variables to both
flash drought and traditional drought when compared to the year 1995. In contrast, the
contribution of human activities exhibited a slight decrease in 2019 compared with 1995.
This shift may reflect changing patterns of human influence on drought occurrences over
recent years. Furthermore, it is noteworthy that the contribution of human activities to
traditional drought was higher than that for flash drought, possibly indicative of the
intensified human impact on traditional drought events, particularly in more recent times.
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Additionally, the risk values associated with flash drought and traditional drought
were assessed. The analysis uncovered that there was considerable variation in the risk
of flash drought occurrence across various ecological zones. The risk of flash drought
was highest in the mildly fragile ecological zones (Ili region). In contrast, the risk of
traditional drought demonstrated less variability across ecological regions. Furthermore,
when comparing the results from 1995 to 2019, the risk of flash drought decreased in stable
ecological zones but increased notably in severely fragile ecological zones. These findings
underscore the need for heightened attention to flash drought events in Xinjiang in recent
years, particularly within the mildly fragile ecological zones.

4. Discussion

Over the past six decades, northern Xinjiang has experienced a growing prevalence
of flash drought, while southern Xinjiang has witnessed a higher incidence of traditional
drought. These trends are consistent with prior research findings [6,28]. The principal
factor influencing the spatial distribution of flash drought is precipitation. As depicted in
Figure 10d, regions such as the northern Altai Mountains, the central Tianshan Mountains,
and the southern Kunlun Mountains exhibit flash drought rates as high as 80%. This
can be attributed to significant precipitation gradients and rapid snowmelt in these areas.
Under abnormal meteorological conditions, such as sharp declines in precipitation, soil
moisture can rapidly decrease, triggering the onset of flash drought. In the context of
global warming, the increased frequency of flash drought has raised growing concerns [54].
Given the rapid onset of flash drought, the absence of effective early warning systems
can lead to substantial losses in various sectors, including agricultural production, water
resources management, regional water security, and the national economy in Xinjiang.
This concern is especially pronounced during critical crop growth stages, such as seed
germination, pollination, and irrigation. Flash drought has the potential to significantly
impact crop growth and development, ultimately affecting crop yields and agricultural
productivity [55].

The role of human activities in influencing traditional drought must not be underesti-
mated. For instance, the cultivation of cotton crops, which are highly water-intensive and
require substantial irrigation during the summer, is prevalent in the marginal regions sur-
rounding the Tarim Basin in southern Xinjiang, where traditional drought predominantly
occurs (Figure 10h). The expansion of cotton cultivation has led to increased groundwa-
ter usage for irrigation in the oasis [56]. Consequently, ecological water resources have
diminished, inhibiting plant growth within the desert ecosystem. This, in turn, has led
to the emergence of extensive barren land, intensifying soil moisture evaporation and
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plant transpiration during the summer [57]. The limited capacity to replenish soil moisture
renders the region more susceptible to traditional drought.

Furthermore, it is imperative to address the risk of both flash drought and traditional
drought in fragile ecological regions. When comparing 1995 to 2019, there has been an
increase in population density, an expansion of human activities, and a significant rise
in arable land and urban development (Figure 3). These anthropogenic activities have
exacerbated the urban heat island effect and contributed to warming trends [58]. This
nonlinear intensification of the relationship between human activities and climate further
amplifies the risk of both flash drought and traditional drought.

The study reveals a significant climate shift in Xinjiang during the mid to late 1980s,
transitioning from dry to wet climate [59]. However, a recent investigation by Yao et al.
(2021a, 2021b) has raised a concerning trend. Despite fluctuations in temperature and
precipitation at elevated levels since the early 21st century, the rate of increase has decel-
erated, suggesting that Xinjiang’s climate is displaying indications of transitioning from
a warm and wet pattern to a warm and dry one [60,61]. This short-term warming and
humidification issue may be closely linked to a marked decrease in the severity of flash
drought and a simultaneous increase in their frequency observed from 1990 to 2021. Ex-
treme or anomalous increases in precipitation can alleviate the severity of drought and halt
the development of prolonged, severe drought events, potentially transforming them into
shorter-term drought events. It is essential to recognize that while the trend of traditional
drought in recent years, as shown in Figure 12, may not be statistically significant, there
remains an overall upward trend in drought occurrences. Due to the low precipitation base
in the northwest arid region, primarily in Xinjiang, the absolute increase in precipitation
is not significant compared with the increase in single precipitation intensity or strong
precipitation. This change cannot fundamentally change the desert landscape pattern and
the state of aridity and water scarcity in the northwest [62].

It is important to address that this study has certain limitations. The use of ERA5-Land
may not fully capture soil moisture conditions, and the inclusion of desert areas may
contribute to unexplained drought occurrences in these regions. In the future research, it is
advisable to consider the integration of in situ soil moisture data to analyze the differential
impacts of flash drought and traditional drought on vegetation.

5. Conclusions

This study utilized soil moisture data from ERA5-Land to establish a robust frame-
work for differentiating flash drought from traditional drought based on historical events.
The Geodetector was employed to investigate the driving factors influencing the spatial
heterogeneity of these two drought types. The key findings of this study are summarized
as follows:

• Distinct Drought Patterns: The research underscores distinctive drought patterns in
Xinjiang. Southern Xinjiang exhibited a propensity for traditional drought, driven
by its exceedingly hot and dry climate. Conversely, northern Xinjiang was more
susceptible to flash drought with its relatively wetter conditions.

• Increasing Frequency and Severity: The trend of frequency and severity varies with
changes in the sliding window. The frequency of both flash drought and traditional
drought exhibited an upward trend since the 1990s. However, this trend is statistically
significant only in the case of flash drought. Additionally, the severity of both flash
drought and traditional drought displayed a noteworthy and substantial increase
within sliding windows ranging from 46 to 62 years, passing the significance test
(α ≤ 0.05).

• Precipitation as a Primary Driver: Precipitation emerges as the primary driver influenc-
ing the spatial distribution of both flash drought and traditional drought. All factors
exerted a more potent explanatory force for flash drought compared to traditional
drought. Moreover, environmental variables (vegetation type, soil type, normalized
difference vegetation index, and topography type) exhibited a more substantial impact
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on flash drought, while human activities exerted a more significant influence on tradi-
tional drought. Furthermore, interactions involving human activities had the potential
to significantly amplify the explanatory power of the spatial heterogeneity for both
flash drought and traditional drought.

• Elevated Risk in Vulnerable Regions: Significant variations in risk of flash drought
unfolded across various ecological regions, with the highest risk occurring in mildly
fragile ecological zones. Conversely, the risk of traditional drought displayed less
variability across ecological regions. Moreover, a discernible uptick in flash drought
risk in severely fragile zones emerged when comparing the results from 1995 to 2019.

These findings contribute to a deeper comprehension of flash drought and tradi-
tional drought dynamics within arid and semi-arid regions, ultimately underpinning the
enhancement of drought monitoring and early warning systems.
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