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Abstract: Taking the Madoi MS 7.4 earthquake of 21 May 2021 as an example, this paper proposes
using time series prediction models to predict the outgoing long-wave radiation (OLR) anomalies and
study short-term pre-earthquake signals. Five time series prediction models, including autoregressive
integrated moving average (ARIMA) and long short-term memory (LSTM), were trained with the
OLR time series data of the aseismic moments in the 5◦ × 5◦ spatial range around the epicenter. The
model with the highest prediction accuracy was selected to retrospectively predict the OLR values
during the aseismic period and before the earthquake in the area. It was found, by comparing the
predicted time series values with the actual time series value, that the similarity indexes of the two
time series before the earthquake were lower than the index of the aseismic period, indicating that
the predicted time series before the earthquake significantly differed from the actual time series.
Meanwhile, the temporal and spatial distribution characteristics of the anomalies in the 90 days
before the earthquake were analyzed with a 95% confidence interval as the criterion of the anomalies,
and the following was found: out of 25 grids, 18 grids showed anomalies—the anomalies of the
different grids appeared on similar dates, and the anomalies of high values appeared centrally at the
time of the earthquake, which supports the hypothesis that pre-earthquake signals may be associated
with the earthquake.

Keywords: LSTM; OLR time series; Madoi earthquake; pre-earthquake signals

1. Introduction

An earthquake is a process of the rapid release of the accumulated Earth’s tectonic
stress, which breaks through the critical value of the elastic rupture of rocks. In the past few
decades, with the help of a large amount of pre-earthquake remote sensing data, researchers
have found that large earthquakes are often accompanied by various anomalies before they
occur, such as anomalies in the atmospheric temperature and humidity, the content of gases,
including CH4 and CO, at active ruptures, the surface latent heat flux (SLHF), total electron
content (TEC), outgoing long-wave radiation (OLR), etc., which change significantly before
an earthquake occurs [1–5]. Among them, the OLR data can characterize the radiative
changes in the whole geophysical system, which contains the radiative information of the
cloud top, the surface, and the atmosphere above it; this characterization helps to capture
the anomalous changes in the geopathic system in the pre-earthquake area, and it is an
essential parameter for the study of pre-earthquake signals [6,7].

The study of OLR anomalies linked to earthquakes first started in China: Sun et al. [8]
from the Qinghai Seismological Bureau explored the relationship between long-wave
radiation and earthquakes in 1990. Since then, researchers worldwide have begun to
conduct extensive pre-seismic anomaly studies using OLR data. They have summarized
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several methods for OLR seismic information extraction, such as the vorticity background
field method [9,10], the standard deviation thresholding method [11–13], and the method of
the relative variance rate of power spectrum estimation [14,15]. The study of these methods
proves that OLR has high potential for application in earthquake prediction.

The accumulation of OLR data over the years has significantly challenged tradi-
tional data processing algorithms. Rapid advancements in machine learning have shown
promising results across various industries in recent years. The field of seismology has
also benefited from the thriving development of machine learning. Experts and scholars
can more precisely explore the essential features and patterns hidden in seismic data via
intelligent data analysis and pattern recognition. Currently, machine learning applica-
tions in seismology focus mainly on two aspects. Firstly, they are used for preliminary
earthquake magnitude, timing, and location predictions. Wang et al. [16] constructed
a two-dimensional input long short-term memory (LSTM) network capable of learning
the correlations between earthquakes at different locations and times and used it for
predictions. Their results indicated that this system could make accurate predictions at
different temporal and spatial scales. Using multiple seismic activity parameters, Bikash
Sadhukhan et al. [17] utilized deep-learning techniques to establish a correlation model
between calculated seismic indicators and potential seismic events. This model may pre-
dict earthquake magnitudes at different locations and has shown significant and positive
results for earthquakes ranging from 3.5 to 6.0 magnitude. Secondly, machine learning can
be applied to address complex problems, such as analyzing and interpreting precursory
information related to earthquakes. Erman et al. [18] proposed a multi-network-based
hybrid long short-term memory (N-LSTM) for ionospheric anomaly detection. This model
had good prediction accuracy and stability and successfully detected two total electron
content (TEC) anomalies before the Nepal earthquake. Xiong et al. [19] utilized machine
learning to identify electromagnetic precursory disturbances in DEMETER data, comparing
machine learning algorithms and selecting LightGBM for optimal performance in identify-
ing electromagnetic precursory disturbances before earthquakes. The results indicated that
the electromagnetic precursory data within the seismogeneic zone, calculated using the
Dobrovolsky formula and a time window of approximately a few hours before the earth-
quake, provided an effective discrimination of electromagnetic precursory disturbances.
Draz et al. [20] investigated multi-parameter precursors with different physical properties,
including sea surface temperature (SST), air temperature (AT), relative humidity (RH),
outgoing long-wave radiation (OLR), and TEC using standard deviation (STDEV), wavelet
transformation, and LSTM networks to identify potential pre- and post-earthquake anoma-
lies. Each method identified noticeable abnormal changes in atmospheric and ionospheric
precursors before and after earthquakes. Their research demonstrates the significant rele-
vance of machine learning techniques in detecting seismic anomalies, supporting further
studies on the lithosphere–atmosphere–ionosphere coupling (LAIC) mechanism.

Based on previous experience and existing foundations, we chose five commonly
used time series forecasting models in this study: one traditional parametric model, au-
toregressive integrated moving average; two machine learning models, support vector
machine (SVM) and extreme gradient-boosting (XGBoost); and two deep learning models,
the LSTM and the bi-directional long short-term memory (BILSTM) model. The prediction
performance of the models was evaluated with the help of the root mean square error
(RMSE) as a metric of accuracy. The results show that the LSTM model exhibited the best
performance. Therefore, in this paper, the LSTM model was chosen to predict and analyze
the OLR time series anomalies in the 90 days before the Madoi Ms 7.4 earthquake as an
example of studying the precursor information of an earthquake. The experimental results
were satisfactory, indicating that the pre-earthquake OLR time series analysis based on the
LSTM prediction model had good predictive capability and broad application prospects.

The rest of this paper is organized as follows: Section 2 outlines the tectonic context of
the seismogenic region and the HIRS/4 OLR-18 data product used in this paper. Section 3
describes the principles of the different time series prediction models and the anomaly
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discrimination and extraction methods. Section 4 tests the prediction performance of the
various models, based on which the anomaly discrimination and extraction results are
obtained. These results are discussed in Section 5, and Section 6 presents the conclusions
and outlook for future work in this area.

2. Data and Data Preprocessing
2.1. Study Earthquakes

The Madoi earthquake occurred in the Bayanhar block in the north-central part of
the Qinghai–Tibet Plateau, one of the most representative active blocks of lateral extru-
sion. The seismogenic fault is the NW-striking Jiangcuo fault, dominated by sinistral
strike–slip movement.

The “SERIES OF EARTHQUAKE CASES IN CHINA” is important scientific material
for studying Chinese earthquakes and exploring earthquake predictions [21–25]. In the
compilation of the series, the statistics of fixed-point anomaly data are distributed as
follows: MS ≥ 7.0 earthquake, within 500 km; 6 ≤MS < 7.0 earthquake, within 300 km; and
5.0 ≤MS < 6 earthquakes, within 200 km. Therefore, to fully consider the impact range of
the Madoi earthquake, 25 pixels centered on the epicenter at 5◦ × 5◦ (32◦–37◦N, 96◦–101◦E)
were selected as the focus area (Figure 1) to study the preseismic OLR anomalies of the
Madoi earthquake.
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Figure 1. Sketch map of geological structure in the study area. The study area consists of 25 grids,
denoted by the numbers 1 to 25.

2.2. Data

The OLR data were calculated by matching the infrared channel (10.5–12.5 µm) data
from NOAA satellites with the total measurements in the broadband (4–50 µm) acquired
via the Large Meteorological Experiment Satellite (NIMBUS). The OLR is closely related
to factors, such as the temperature and humidity in the atmosphere, and mainly reflects
radiation information from cloud tops. Since its launch in 1974, several decades of OLR
data have been accumulated, which are of high completeness and continuity and can be
downloaded free of charge via NCEP’s FTP server (ftp://ftp.cpc.ncep.noaa.gov/precip/
noaa18_1x1/) (accessed on 20 March 2023). In this paper, the night-time OLR data from

ftp://ftp.cpc.ncep.noaa.gov/precip/noaa18_1x1/
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the NOAA-18 satellite were selected to minimize the influence of solar radiation and
human activities on the experimental results, with a temporal resolution of 1 day, a spatial
resolution of 1◦ × 1◦, and a data unit of W/m2. Each data file comprises 360 × 180 global
grid points (Figure 2).
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Figure 2. (A) OLR values at the China scale 90 days before the Madoi earthquake (22 February
2021–22 May 2021). (B) OLR values within the 5◦ × 5◦ spatial extent of the epicenter of the Madoi
earthquake cropped out from A.

2.3. Data Preprocessing

Limited by the physical cycle of solar–terrestrial activity, the OLR emitted by the
Earth shows periodic changes, especially seasonal changes [26]. To thoroughly study these
characteristic variations and minimize the influence of factors such as climate variations,
weather patterns, human activities, and vegetation coverage, a five-year OLR time series
from 22 May 2016 to 22 May 2021 was selected. At the same time, we noticed these
conclusions: Lu et al. [27] studied the variation characteristics of the thermal infrared
anomalies of 20 moderately strong earthquakes in Tibet and found that the longest time of
long-wave radiation anomalies before the earthquake was 90 days, and the post-earthquake
anomalies corresponded well with earthquakes of magnitude five or above; Song et al. [28]
found that the thermal anomaly began to gather in space about three months before the
Wenchuan earthquake; and Eleftheriou et al. [29] studied dozens of earthquakes with
magnitudes ranging from 4.0 to 7.9, and they believed that earthquake anomalies could
only be considered to be related to earthquakes if they occurred within 30 days after the
earthquake. Therefore, to accurately train the time series prediction model when there is no
earthquake, the data of 90 days before and 30 days after the two earthquakes of magnitude
five or above that occurred during this period (the Ms 5.3 earthquake in Qinghai Province
on 6 May 2018, and the Ms 5.6 earthquake in Shiqu, Sichuan Province on 1 April 2020),
totaling 240 days, were deleted. The remaining data were divided into a training set and
a test set. The training set included the data from the start time to 90 days before the
earthquake, which was used to learn the OLR time series change law and verify the model’s
performance without an earthquake. The test set was the data obtained 90 days before
the earthquake. The singular values in the data were replaced by the average of the same
period over the years.
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3. Methods

Based on the OLR data, a time series prediction model was selected to predict the OLR
values in the pre-earthquake epicenter’s 5◦ × 5◦ spatial range. After preprocessing the
OLR data, the training and selection of the model was the key to obtaining the subsequent
analysis data, and it was also the core of the whole experiment. The trained model was
used to predict the OLR values for ninety days when there was no earthquake and ninety
days before the earthquake, respectively, and the similarity test was performed with the
actual values to detect whether there was any anomalous period before the earthquake.
Finally, 95% confidence intervals were set to extract and analyze the temporal and spatial
characteristics of the anomalies to detect the possible precursor information of earthquakes.
Figure 3 shows the whole process of the experiment.
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3.1. Time Series Forecasting Models
3.1.1. ARIMA

The ARIMA model is a famous time series forecasting method proposed by Box and
Jenkins in the early 1970s [30]. The model is relatively simple. It treats the data series of the
forecasting object over time as a random sequence, describes this sequence approximately
by fitting a mathematical model, and predicts the future values based on the time series of
past and present values. The ARIMA (p, d, q) model is described as follows:

yt = ϕ1yt−1 + · · ·+ ϕpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q (1)

where p is the order of the autoregressive model, d is the number of differences that make
the series smooth, q is the order of the sliding average model, yt is the value of the OLR
time series, ϕi is the autoregressive coefficient, θi is the moving average coefficient, and εt
is the white noise process.

3.1.2. SVM

SVM is a supervised learning method in machine learning that transforms multiple
features nonlinearly via the kernel function, aiming to extract more information from
multiple feature inputs and obtain more accurate prediction results [31]. The specific
mathematical description is as follows:

The hyperplane is y = ωTx + b, where ω and b represent the weight vector and bias,
and T denotes the matrix transposition operation. The sample distance of the hyperplane
to different classes was maximized according to the SVM principle, which is expressed as

arg max
{

1
‖ ω ‖ ·min[(ωTx + b) · yi]

}
(2)

where ‖ ω ‖ represents the L2 norm of the weight vector used to balance the model’s
complexity and classification accuracy.

According to the distance formula from the point in space to the plane, the distance d
from the sample point to the hyperplane can be obtained:

d = (ωTx + b) · 1
‖ ω ‖ (3)

At this point, the optimization objective of the SVM algorithm is obtained after the
introduction of the penalty factor C and the relaxation variable ξ:

min
ω, b

1
2
‖ ω ‖2 + {

l

∑
i=1

ξi (4)

s.t.yi

(
ωTx + b

)
� 1− ξi (5)

The traditional solution is to introduce Lagrange multipliers:

1
2

l

∑
i=1

l

∑
j=1

∝i ∝j yiyjk(xixj)−
l

∑
i=1

∝i (6)

s.t.
l

∑
i=1

∝iyi = 0, 0 ≤∝i≤ {, i = 1, 2, · · · , l (7)

where k () is the kernel function of the SVM algorithm.
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3.1.3. XGBoost

XGBoost is an optimized distributed gradient boost library that can train the model
quickly and more efficiently [32]. The objective function during training consists of two
parts: the first part is the gradient boost algorithm loss (Formula (8)), and the second part
is the regularization term (Formula (9)).

L(∅) =
n

∑
i=1

l
((

y′i, yi
)
+ fk(xi)

)
+ Ω( fk) (8)

where n is the number of training function samples, l is the loss for a single sample,
assuming it is a convex function, y′i is the model’s predicted value for the training sample,
yi is the true labeled value of the training sample, and fk(xi) represents the predicted value
of the decision tree k for sample i.

The regularization term defines the complexity of the model:

Ω( fk) = γT +
1
2

λ∑T
j=1 ω2

j (9)

where γ and λ are manually set parameters, ω is the vector formed by the values of all leaf
nodes of the decision tree, and T is the number of leaf nodes.

3.1.4. LSTM/BILSTM

LSTM is a popular RNN structure that can learn long-term dependent information [33].
The LSTM network generally consists of three gate units (forgotten gate ft, input gate it,
and output gate ot) and a memory cell (Figure 4). The forgetting gate is responsible
for receiving the ht−1 output from the hidden layer at the previous time, the xt newly
input, and determining the information to be forgotten, the input gate is responsible for
controlling the update and storage of the information, the output gate determines the
information to be output in the current state, and the memory cell controls the transmission
of the information.
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Based on LSTM, BILSTM combines the information of the input sequence in both
forward and backward directions. For the output at time t, the forward LSTM layer has
information for time t and before in the input sequence, and the backward LSTM layer has
information for time t and after in the input sequence (Figure 5) [34]. The vectors output by
the two LSTM layers can be added, averaged, or concatenated.
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3.2. Model Performance Comparison

This study evaluates the model’s predictive performance using the root mean square
error (RMSE), which measures the deviation between the observed and predicted val-
ues. RMSE, a commonly used error test, has been widely used in artificial intelligence
earthquake prediction research [18,35,36]. The formula for calculating RMSE is as follows:

RMSE =

√√√√ 1
N

N

∑
t=1

(OLRP −OLRA)
2 (10)

where N is the number of observations involved in evaluating the model, OLRP is predicted
OLR values, and OLRA is the actual OLR value.

3.3. Time Series Similarity Analysis

The historical data of 90 days without the earthquake (1 September 2020–29 November
2020) and 90 days before the earthquake (21 February 2021–22 May 2021) were selected to
predict the two OLR time series, respectively, using the model with the highest prediction
accuracy after comparison with Section 3.2. The similarity test index uses the Euclidean
distance (ED) and dynamic time warping (DTW). The ED and DTW between the predicted
and actual values in the two periods were calculated, respectively, to analyze whether there
was an abnormal period before the earthquake.

3.3.1. ED

ED is the most common distance measure, measuring the absolute distance between
two points in a multi-dimensional space. When the ED is used to compare two time
series, a one-to-one correspondence is established between each point in the sequence, and
the distance between every two points is calculated and then summed. The smaller the
distance, the higher the similarity. The formula for calculating ED is as follows:

ED =

√
n

∑
i=1

(xi1 − xi2)
2 (11)

where xi1 represents the i-dimensional coordinate of the first point and xi2 represents the
i-dimensional coordinate of the second point.
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3.3.2. DTW

DTW is a new similarity measurement method that can find the best matching path
between data in two arbitrary long time series by adjusting the corresponding relationship
between time points. It is robust to noise and can effectively measure the similarity of time
series. Suppose first there are two time series, X and Y, of length m and n, respectively.
Define a distance matrix D of size m × n, where D(i, j) denotes the distance between the ith
element of X and the jth sum element of Y. Then, define a cumulative matrix C, also of size
m × n, where C(i, j) represents the minimum cumulative distances from the first element
of X to the ith element and from the first element of Y to the jth element. The formula for
DTW is derived as follows:

C(1, 1) = D(1, 1) (12)

C(i, 1) = D(i, 1) + C(i− 1, 1), 2 ≤ i ≤ m (13)

C(1, j) = D(1, j) + C(1, j− 1) , 2 ≤ j ≤ n (14)

C(i, j) = D(i, j) + min(C(i− 1, j), C(i, j− 1), C(i− 1, j− 1)), 2 ≤ i ≤ m, 2 ≤ j ≤ n (15)

Ultimately, the DTW distance or similarity can be derived from C(m, n). The smaller
values of C(m, n) indicate higher similarity between two time series, while larger values
indicate lower similarity.

3.4. Abnormal Identification and Extraction

A confidence interval refers to the estimated interval of the population parameter
constructed by the sample statistics, which shows the degree of confidence that the pa-
rameter’s actual value falls around the measured value. Besides being often used in
statistical research, it has also been effectively applied in discriminating pre-earthquake
anomalies [37–39]. Based on these results, we calculated residuals from the raw data and
obtained 95% confidence intervals for the predicted values. The difference between the
predicted value and the actual value of the time series prediction model is calculated, and
the difference between the predicted and actual values is counted as an anomaly when the
difference exceeds 95% of the confidence interval. When the difference is higher (or lower)
than the upper (or lower) limit of the confidence interval, the actual value is lower (or
higher) than the predicted value, and it is regarded as a cold anomaly (or a hot anomaly).
The temporal and spatial variation characteristics of the anomalies are then analyzed.

4. Results
4.1. Model Performance

After determining the optimal parameters for each method, we compared the perfor-
mance of the different methods. Table 1 presents the prediction performance of each model
for 25 grid OLR time series. As shown in Table 1, there were significant differences between
the different prediction models. The two deep-learning algorithms performed the best in
this experiment, where the LSTM algorithm had the smallest sum of RMSE and the best
prediction performance, and the BILSTM algorithm performed second only to the LSTM
algorithm. The two machine learning algorithms (SVM and XGBoost) performed equally
well next to the deep-learning algorithm, while the traditional parametric model ARIMA
had the worst prediction performance. In critical situations, such as detecting OLR data
anomalies, relying on models with high uncertainty and low stability does not make sense,
so LSTM was chosen as the research algorithm for this experiment.
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Table 1. Error results based on time series prediction model at different grid points.

Grid ARIMA SVM XGBoost LSTM BILSTM

1 34.2619 35.1532 30.8762 30.5294 33.6217
2 53.1949 36.1017 34.9021 30.7129 32.3657
3 58.2728 33.0449 31.8505 26.7471 27.9391
4 44.444 30.2318 28.8857 26.7325 27.6086
5 44.444 30.2318 28.8857 26.7325 27.6086
6 50.9688 40.6984 35.6925 33.1588 34.6644
7 53.0276 34.4316 36.2105 32.0643 33.0467
8 47.2451 34.6952 35.5667 30.8911 31.451
9 53.2237 32.278 33.349 30.1235 29.7703
10 54.5762 35.9806 38.6714 32.6847 32.0692
11 53.5756 40.6919 39.8142 36.5470 37.1474
12 53.5756 40.6919 39.8142 36.5470 37.1474
13 70.4604 38.8847 36.4824 33.1946 34.5191
14 41.412 40.2266 37.6286 36.5276 36.032
15 41.7221 41.2979 41.9942 36.7073 36.7855
16 44.5678 40.9163 37.4803 35.4564 34.5752
17 58.5795 42.6388 37.4096 35.6641 37.3662
18 52.4613 39.7556 37.5302 34.8795 37.4875
19 47.4852 37.6338 37.0222 36.4709 37.1824
20 39.4942 39.1195 40.4514 37.6639 36.3644
21 61.4502 41.8658 40.5014 38.3213 37.3602
22 61.4502 41.8658 40.5014 38.3213 37.3602
23 52.6675 35.1916 34.3085 31.4399 33.413
24 42.6541 32.3148 32.4968 31.4682 32.2569
25 38.0416 32.2304 34.0134 31.7403 31.5389

Total 1253.2563 928.1726 902.3391 831.3261 846.6816

4.2. Similarity Comparison
4.2.1. ED Comparison

The results of the ED values between the actual and predicted time series of OLR
for the 25 grids around the epicenter for the 90 days when there was no earthquake and
the 90 days before the earthquake are shown in Table 2. As shown in Table 2, the ED
values for the 25 grids when there was no earthquake were all lower than those of the
pre-earthquake ED values. The two sets of results were processed as differences to visualize
the similarity between the two sets of time series and explore the possible regional range
of anomalies. The results show that the difference in ED was more significant in the east
(grids 14 and 15) and south (grids 17–25) of the epicenter and smaller in the west (grids
11 and 12) and north (grids 1 and 3–12) of the epicenter. The results of the ED comparison
reflect abnormal changes in the actual time series before the earthquake. At the same time,
the more significant differences in the eastern and southern parts of the epicenter indicate
that anomalies were more likely to occur in this region.

Table 2. ED between actual and predicted time series.

Gird ED in the Aseismic
Period

ED in the Seismic
Period Difference Value

1 186.8928 215.2030 28.3102
2 182.2871 243.9496 61.6625
3 198.2106 222.8911 24.6805
4 193.0780 222.0978 29.0198
5 193.0780 222.0978 29.0198
6 200.2466 218.4609 18.2143
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Table 2. Cont.

Gird ED in the Aseismic
Period

ED in the Seismic
Period Difference Value

7 193.9372 231.1959 37.2587
8 200.1804 239.3742 39.1938
9 200.1804 239.3742 39.1938
10 210.2695 231.7173 21.4478
11 205.3519 218.5727 13.2208
12 216.1626 243.7730 27.6104
13 210.8625 254.2664 43.4039
14 193.5884 244.6240 51.0356
15 193.5884 244.6240 51.0356
16 193.7733 216.9230 23.1497
17 199.9631 259.6670 59.7039
18 188.1746 253.0382 64.8636
19 188.1746 253.0382 64.8636
20 214.1401 287.3047 73.1646
21 222.7757 282.6755 59.8998
22 217.8504 294.7557 76.9053
23 180.2219 262.8554 82.6335
24 180.2219 262.8554 82.6335
25 210.8567 296.3231 85.4664

4.2.2. DTW Comparison

Table 3 shows the DTW values of the actual and predicted time series of the OLR for
the 25 grids around the epicenter for 90 days with no earthquake and 90 days before an
earthquake. Table 3 shows that the DTW values in the 90 days at the time of no earthquake
were all smaller than the DTW of 90 days before the earthquake. Again, the difference
between the two was processed, and the results showed that the difference results were
more prominent for the grids south of the epicenter. The DTW comparison results show
that the similarity between the actual time sequence and the predicted time sequence of
the aseismic period was better than that before the earthquake. This further indicates that
pre-earthquake signals may occur within the 90 days before an earthquake.

Table 3. DTW between actual and predicted time series.

Gird DTW in the
Aseismic Period

DTW in the Seismic
Period Difference Value

1 1048.3101 1122.6331 74.323
2 1192.8760 1458.1691 265.2931
3 1233.5800 1460.4359 226.8559
4 1201.0691 1287.7728 86.7037
5 1201.0691 1287.7728 86.7037
6 1252.1896 1292.0052 39.8156
7 1218.4646 1584.6326 366.168
8 1159.1498 1524.3408 365.191
9 1159.1498 1524.3408 365.191
10 1328.1454 1423.4520 95.3066
11 1306.5641 1342.0472 35.4831
12 1258.7495 1451.5585 192.809
13 1262.1207 1613.9854 351.8647
14 1150.4503 1752.4018 601.9515
15 1150.4503 1752.4018 601.9515
16 1213.2118 1244.7485 31.5367
17 1120.0947 1756.5435 636.4488
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Table 3. Cont.

Gird DTW in the
Aseismic Period

DTW in the Seismic
Period Difference Value

18 983.54445 1500.6782 517.13375
19 983.54445 1500.6782 517.13375
20 1331.7225 1870.4373 538.7148
21 1252.8426 2052.9131 800.0705
22 1285.1753 2056.8329 771.6576
23 990.76198 1797.7720 807.01002
24 990.76198 1797.7720 807.01002
25 1326.1863 1954.9361 628.7498

4.3. Abnormal Temporal and Spatial Characteristics
4.3.1. Temporal Scale Characteristics

Figure 6 shows the anomalies in the temporal dimension. According to our definition
of hot and cold anomalies in Section 3.4, it is clear that all the pre-seismic anomalies of this
predicted Madoi earthquake were “hot” anomalies. The anomalies appeared in 13 periods
during the 90 days before the earthquake. The earliest anomaly appeared on 13 March, with
a small amplitude. The first concentration of anomalies occurred on 18 March, covering
six grids, and another anomaly of smaller magnitude occurred on 31 March. There were
three anomalies on 14 April, 18 April, and 24 April, with three grids simultaneously having
anomalies on 18 April. After entering May, the frequency of anomalies increased, and the
anomaly amplitude increased. On May 6, three grids were abnormal, and the maximum
radiation energy exceeded the lower limit of 17.05. On 9 May, the anomaly range was
the largest, 14 grids were abnormal at the same time, and the maximum radiation energy
exceeded the lower limit of 24.17. Four days later, the concentrated anomaly occurred
again, 11 grids were abnormal, the intensity of the anomaly increased further, and the
maximum radiation energy of six grids exceeded the lower limit of 30. On the next day, the
concentrated anomaly still existed, but the scope and intensity decreased; seven grids were
abnormal, and the maximum radiation energy was 21.62. There were three more minor
anomalies on 16 May, 17 May, and 20 May, respectively. In general, the closer to the time of
earthquake occurrence, the greater the anomaly intensity, the wider the coverage area, and
the anomaly development trend is appearing–strengthening–weakening–disappearing.
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4.3.2. Spatial Scale Characteristics

Figure 7 shows the anomalies of 25 grids in the spatial dimension, 7 of which did not
exceed the confidence interval, and these grids were mainly distributed in the northern
and northeastern regions of the epicenter. Before the earthquake, some slight anomalies
occurred northwest of the epicenter. Anomalies with strong intensity and large areas were
mainly concentrated in the south and southeast of the epicenter. Combined with Figure 1,
we found more fault zones in the south of the epicenter, while fewer fault zones were in
the north. Therefore, within one month before the Madoi earthquake, the anomalies were
mainly distributed in the south and southeast of the epicenter with more fault zones, and
we speculate that the location of frequent anomalies may have had a particular relationship
with the activity of the fault zone.
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5. Discussion
5.1. Consistency of LSTM Results with Traditional Methods

Tramutoli introduced the Absolutely Local Index of Change of the Environment
(ALICE) method [40], which relies on the robust satellite technology (RST) approach for de-
tecting pre-seismic thermal infrared anomalies. This method constructs a background field
based on multi-year observational data to depict the state of thermal infrared anomalies
during periods of seismic quiescence. It has demonstrated valuable applications in several
earthquake events [41,42]. To validate the effectiveness of the LSTM model in detecting
preseismic OLR anomalies, we conducted a comparative analysis between the predicted
anomalies and those extracted using the conventional ALICE method. The ALICE formula
is defined as

ALICE(x, y, t) =
V(x, y, t)− µ(x, y)

σ(x, y)
(16)

In the equation, ALICE(x, y, t) represents the anomaly value at time t for the coordi-
nate position (x, y) of a pixel; V(x, y, t) represents the pixel value at time t for the coordinate
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position (x, y); µ(x, y) represents the multi-year average at the same location and time; and
σ(x, y) represents the corresponding standard deviation.

The ALICE method was employed to select a research area encompassing a 10◦ × 10◦

region with the epicenter of the Madoi earthquake at its center. The chosen time frame
spanned the 90 days preceding the earthquake, aligning with the time window used in
the LSTM method for predicting preseismic anomalies. This approach was adopted to
acquire insights into the evolution of OLR anomalies leading up to the Madoi earthquake,
subsequently generating spatial distribution maps of OLR anomalies (Figure 8). According
to a previous study, an ALICE value greater than 2 was considered to fall within the
category of anomalies [43].
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From Figure 8, it is evident that the ALICE method successfully detected significant
preseismic OLR anomalies. In total, there were 12 instances of anomalies observed. The
first anomaly occurred on 12 March near the epicenter. The anomaly reappeared on March
14th in the form of strips covering the seismic fault zone. Starting from 21 March, the
anomaly shifted eastward, expanding its coverage during this process and lasting for
three days. Subsequently, a period of calm persisted for a month. Within the last 30 days
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preceding the earthquake, the anomalies’ frequency, extent, and intensity increased. Seven
anomalies occurred within this time frame. On 23 April, an anomaly moved from the
southeast to the south of the epicenter and lasted for two days. On 6 May, an anomaly
appeared northwest of the epicenter and then moved eastward along the seismogenic fault
zone, approaching the epicenter. On 8 May, the anomaly peaked, covering the epicenter
with an ALICE value of 3 before disappearing. On 12 May, an anomaly emerged in the
northwest of the epicenter, lasting for two days, and disappeared from the eastern part
of the epicenter. Comparing the temporal characteristics of anomalies extracted using
the ALICE method with the predictions from the LSTM method shown in Figure 6, we
observe a strong correspondence regarding the occurrence time, frequency, and anomaly
intensity. This suggests that utilizing the LSTM method to detect preseismic OLR anomalies
is trustworthy to a certain extent and holds research value for practical applications.

5.2. Robustness of the LSTM Model

To verify whether the model still maintains good prediction performance for earth-
quake precursor signals under different spatial and temporal conditions, we tested the
model using information from six earthquakes and two hypothetical random earthquakes
(A and B) that occurred in mainland China in recent years. Table 4 summarizes and orga-
nizes this information. Figure 9 illustrates the preseismic OLR anomaly extraction results
for these earthquake examples.

Table 4. Earthquake information used in our study.

Date (y-m-d) Longitude (◦E) Latitude (◦N) Depth (km) Magnitude (MS) Location

2022-01-08 101.26 37.77 10 6.9 Menyuan, Qinghai
2021-05-21 99.87 25.67 8 6.4 Yangbi, Yunnan
2021-03-19 92.74 31.94 10 6.1 Biru, Tibet
2020-06-26 82.33 35.73 10 6.4 Yutian, Xinjiang
2019-04-24 94.61 28.40 10 6.3 Medog, Tibet
2017-08-09 82.89 44.27 11 6.6 Jinghe, Xinjiang
2019-02-28 112 44 — — A
2019-01-31 83 40 — — B

The following information can be obtained from Figure 9: Before the Menyuan earth-
quake, six anomalies were observed. The first anomaly occurred on the 79th day before the
earthquake; then, there were two centralized anomalies occurring on the 80th day and the
54th day before the earthquake, and the last anomaly centrally appeared on the 32nd day
before the earthquake and then tended to be calm until the earthquake occurred. There
were eight days of anomalies before the Yangbi earthquake, with the earliest anomaly
occurring on the 60th day before the earthquake and the last anomaly occurring on the
9th day before the earthquake, and almost every anomaly appeared on multiple grids at
the same time. There were also eight days of anomalies before the Biru earthquake, with
the earliest anomaly occurring on the 85th day before the earthquake, the last anomaly
occurring on the 5th day before the earthquake, and anomalies occurring on 13 grids at
the same time. For the Yutian earthquake, anomalies first appeared 87 days before and
continued until the 2nd day before, totaling 22 days with anomalies. On the 50th day
before, 18 grid cells exhibited anomalies simultaneously; at other times, anomalies were
mostly concentrated in multiple grid cells. There were 14 days of anomalies before the
Medog earthquake, with the first anomaly occurring on the 84th day before the earthquake
and the last anomaly occurring on the 2nd day before the earthquake. The fluctuation in
anomalies before the earthquake was obvious, with concentrated anomalies occurring for
many days. The earliest anomaly of the Jinghe earthquake occurred on the 82nd day before
the earthquake, and several strong and concentrated anomalies appeared from the 80th to
the 70th day before the earthquake, with the earthquake occurring on the 4th day after the
last concentrated anomaly ended.
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Overall, the model successfully detected significant OLR anomaly changes within
90 days before all six actual earthquakes. The anomalies exhibited several distinctive
features: firstly, the anomalies had a widespread impact, often simultaneously affecting
multiple grid cells. Secondly, the anomalies displayed substantial intensity, frequently
exceeding the confidence interval by more than 30. Thirdly, the anomalies were recurrent,
with multiple anomalies observed within the 90 days before the earthquakes. On the
other hand, the anomalies extracted for hypothetical earthquakes A and B were very
quiet, with occasional minor anomalies, but these fluctuations did not correspond to the
three characteristic phenomena mentioned above. Therefore, we believe that this model
demonstrates robustness in exploring seismic precursors. It performed well in extracting
and tracking pre-earthquake abnormal signals.
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5.3. Advantages of the LSTM Model

Finding anomalies in any time series data is a very critical task. Based on statistical the-
ory, some anomaly discrimination methods have proven the existence of infrared long-wave
anomalies before earthquakes: Kang et al. [44] analyzed the thermal and infrared change
characteristics before and after 14 November 2001, west of the Kunlun Mountain Pass
magnitude 8.1 earthquake, based on the OLR data of NOAA satellites and the brightness
temperature data of the Japanese geostationary meteorological satellite GMS-5. The results
showed that the warming anomaly in OLR occurred one month before the earthquake,
the brightness temperature anomaly occurred one week before the earthquake, and the
anomaly characteristics were consistent with the tectonic distribution of the earthquake re-
gion in the spatial pattern. Zhang and Meng [43] conducted long-term statistical studies on
the relationship between thermal infrared anomalies and earthquakes in different regions
using multi-year nightly OLR data from NOAA satellites and Molchan plots. The results
show that TIR anomalies were highly correlated with magnitude 4.0 normal fault or reverse
fault earthquakes and that TIR anomalies induced by earthquakes should be spatially and
temporally persistent. Although these methods have achieved good results in earthquake
monitoring and forecasting, the results may be potentially different due to the setting of
anomaly discrimination rules affected by a variety of factors [45,46], and it is difficult to
summarize a universal method for studying different seismic cases. The LSTM algorithm
belongs to the data-driven method, which fully considers the time correlation of the time-
series data itself and utilizes historical data for training and prediction based on the data of
the current time step so that LSTM can achieve end-to-end training and prediction on time
series data without manually extracting features or performing other preprocessing steps,
which can reduce the error caused by human or environmental factors’ interference, and the
applicability is high. In addition, the traditional OLR anomaly extraction algorithm mainly
focuses on hot anomalies [14,47]. Still, this experiment subdivides the types of anomalies by
setting confidence intervals, which can capture cold and hot anomalies simultaneously, to
facilitate the study of the generation mechanism of anomalies. For example, Han et al. [48]
studied the strain evolution characteristics around the epicenter for many years before the
Madoi earthquake, and the results showed that, in the early stages of the earthquake, the
block where the epicenter was located was in the deformation gradient zone of tension and
pressure conversion, which made it easy to cause energy accumulation, and was a seismic
risk area. At the same time, considering that, according to rock stress experiment results, a
rock is heated via extrusion and cooled via tension [49], we speculate that the anomaly type
may be able to predict the regulation of active faults on rock stress, which provides a new
method for exploring the relationship between anomaly generation and tectonic activity.

5.4. Multi-Parameter Coupling Relationship and Anomaly Generation Mechanism Analysis
before Earthquake

According to the LAIC model, complex variations occur before an earthquake. A
review of the research literature related to the Madoi earthquake reveals several signifi-
cant findings: Du and Zhang [50] analyzed ionospheric disturbances in the seismogenic
area before and after the Madoi earthquake. They noticed that anomalous ionospheric
disturbances began to appear about 40 days before the earthquake. About 20 days before
the earthquake, the electron density of Ne changed dramatically, and these anomalies
disappeared after the earthquake. Zhang et al. [51] discovered multiple occurrences of elec-
tromagnetic anomalies within the last two weeks before the earthquake. These anomalies
had short intervals between adjacent events and a wide-ranging impact. They suggested a
potential connection between these anomalies and the occurrence of the Madoi earthquake.
Wang et al. [52], using the Benioff strain as a response parameter, studied the evolution
of load–unload response ratio (LURR) anomalies within 400 km of the Madoi earthquake
epicenter. They observed that the LURR values gradually increased during the two months
leading up to the earthquake, reaching their highest point approximately one month before
the event. Afterward, they gradually decreased, indicating that the rock medium in the
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seismogenic area had reached the end of its yielding stage. Su et al. [53] observed that the
water level near the epicenter’s observation station dropped significantly on February 25
and the HCO−3 concentration in the observation well water had continued to rise since
March. Considering that it was caused by increased carbon dioxide dissolution in the water,
they thought that it might indicate an increase in fault activity in this area. Jing et al. [54] an-
alyzed the spatial and temporal evolution of the preseismic thermal variations in the Madoi
earthquake using the Index of Microwave Radiation Anomaly (IMRA) based on eight
years of microwave brightness temperature (MWBT) data. Changes in MWBT are directly
dependent on the surface and subsurface temperature and emissivity. Their results showed
that enhanced IMRA had been distributed along the seismogenic fault since mid-February,
with longer-lasting and stronger anomalies reoccurring in March and April 2021. They also
analyzed near-surface CO variations detected via AIRS sensors, noting two significant CO
anomalies on 23 February and 23 March. They suggested that these might be indicative of
accelerated gas release due to changes in tectonic stress. Luo et al. [55] studied the water
radon values observed at the Huangyuan station near the Madoi earthquake epicenter.
Their findings revealed a distinctive pattern of the water radon values from April to June,
characterized by a “decline (during the seismic event)–sustained low values–rebound–
recovery” anomaly. This pattern was similar to the short-term anomalies observed in water
radon values before and after several recent earthquakes. They also noted a sharp drop in
water radon measurements three days before the earthquake, suggesting that water radon
value changes could serve as short-term precursory anomalies for the Madoi earthquake.

The chronological sequence of these anomalies is illustrated in Figure 10. Building
upon the findings from these multi-parameter studies and following the LAIC concept [56],
an attempt was made to construct a coupled parameter model for the Madoi earthquake,
as depicted in Figure 11. The accumulation of stresses in the crustal medium of the seismo-
genic zone before the earthquake could have some effects: (1) Some of the rocks composing
the crust carry electrical charges. These charges exist as electron vacancies in the valence
band and typically remain stable. Under the influence of stress, positive holes (p-holes)
in the valence band are activated, impacting the rock’s conductivity and altering its geo-
physical and chemical properties, generating electromagnetic radiation, thermal infrared
radiation, and more. (2) Stress accumulation induces thermoelastic effects in rocks, causing
them to heat up due to friction. (3) Stress accumulation leads to the fracturing of crustal
rocks, creating a connected network for subsurface gases’ (such as radon) transportation,
resulting in a continuous seepage of gases from the rocks. (4) Stress accumulation also
induces changes in the preseismic geophysical environment. These alterations significantly
impact the atmospheric electric field, ultimately leading to abnormal variations in electron
density (e.g., Ne) within the ionosphere. Furthermore, both positive charge vacancies and
escaping radon can trigger air ionization, which has an important effect on long-wave radi-
ation. Therefore, our interpretation of the preseismic OLR anomalies related to the Madoi
earthquake suggests that they may result from multiple mechanisms acting in concert,
including processes like greenhouse gas degassing and electromagnetic field anomalies.
Moreover, because changes in long-wave radiation anomalies represent the integral of
all thermal effects related to the earthquake, from the Earth’s surface to the top of the
troposphere, encompassing variations in surface temperature, air temperature, and latent
heat flux, OLR exhibits more extensive anomaly changes compared with other parameters.
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6. Conclusions

Based on the OLR data, the precursory anomalies of the Madoi earthquake are prelim-
inarily explored in this paper. The LSTM model with the best performance is selected to
learn the variation law of the OLR time series without an earthquake, and the OLR values
in two periods (90 days in the aseismic period and 90 days before the earthquake) before
the Madoi earthquake are predicted, respectively. Based on the evaluation of ED and DTW
time series similarity methods, the similarity degree between the predicted value and the
actual value in the two periods is quantified, which is used to determine whether there is
an abnormal period within the 90 days before the earthquake. Finally, the 95% confidence
interval is used to extract and track the spatiotemporal features of the anomalies. The
following conclusions are drawn:

(1) The two time series similarity analysis methods proved that the similarity between
the time series of the actual values at the time of the aseismic and the predicted values
were better than those before the earthquake, indicating an anomalous period.

(2) The results of the RMSE-based accuracy evaluation show that, among the five selected
time series prediction models, the prediction performance of the LSTM model is better
than several other time series models, which is attributed to the strong learning ability
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of the deep-learning model on data features. After accepting the input time series
data, the LSTM layer, utilizing its ability to process the contextual information and
the memory capability, has the potential to dig in and capture the potential nonlinear
features in the time-series data.

(3) The anomalies are extracted, and the temporal and spatial change characteristics of
the anomalies are analyzed using 95% confidence intervals. On the time scale, the
earliest anomalies appeared seventy days before the earthquake. The closer to the
moment of the earthquake, the higher the frequency of anomalies, the wider the
coverage area, and the higher the intensity; the anomalies exceeded the lower limit of
the confidence interval of 40 W/m2 on the ninth day before the earthquake. On the
spatial scale, the anomalies are concentrated in the southern and southeastern parts
of the epicenter, where the distribution of fault zones is denser, and are less frequent
in the northern part of the epicenter, where the fault zones are sparse, which suggests
that tectonic activity is potentially related to the occurrence of earthquakes and the
emergence of radiation anomalies. In addition, it is worth noting that the selection
of the confidence interval affects the extraction of anomalies, and as the threshold
setting of the confidence interval increases, some small amplitude chance anomalies
unrelated to earthquakes will be filtered out, and the results will be more reliable.

(4) The method of exploring the pre-earthquake signals of the Madoi earthquake with
deep-learning prediction OLR time series is feasible. The application of the method
achieved the expected purpose. After the occurrence of anomalies, we should focus on
the rupture zones and faults in a locking state around the relevant geological bodies,
which may be advantageous locations for the origin of future strong earthquakes. At
present, only a complete experiment has been carried out for the Madoi earthquake,
and this method will be applied to the processing and analysis of other moderate
and strong earthquakes in the future to further verify the feasibility of the method of
exploring pre-earthquake signals by predicting OLR time series with deep learning.
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