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Abstract: Remote-sensing images of high spatial resolution (HSR) are valuable sources of fine-grained
spatial information for various applications, such as urban surveys and governance. There is con-
tinuing research on positional errors in remote-sensing images and their impacts in geoprocessing
and applications. This paper explores the combined use of multi-point geostatistics (MPS), machine
learning—in particular, generalized additive modeling (GAM)—and computer-image correlation for
characterizing positional errors in images—in particular, HSR images. These methods are employed
because of the merits of MPS in being flexible for non-parametric and joint simulation of positional
errors in X and Y coordinates, the merits of GAM in being capable of handling non-stationarity
in-positional errors through error de-trending, and the merits of computer-image correlation in being
cost-effective in furnishing the training data (TD) required in MPS. Procedurally, image correlation
is applied to identify homologous image points in reference-test image pairs to extract image dis-
placements automatically in constructing TD. To cope with the complexity of urban scenes and the
unavailability of truly orthorectified images, visual screening is performed to clean the raw displace-
ment data to create quality-enhanced TD, while manual digitization is used to obtain reference sample
data, including conditioning data (CD), for MPS and test data for performance evaluation. GAM
is used to decompose CD and TD into trends and residuals. With CD and TD both de-trended, the
direct sampling (DS) algorithm for MPS is applied to simulate residuals over a simulation grid (SG)
at 80 m spatial resolution. With the realizations of residuals and, hence, positional errors generated
in this way, the means, standard deviation, and cross correlation in bivariate positional errors at SG
nodes are computed. The simulated error fields are also used to generate equal-probable realizations
of vertices that define some road centerlines (RCLs), selected for this research through interpolation
over the aforementioned simulated error fields, leading to error metrics for the RCLs and for the
lengths of some RCL segments. The enhanced georectification of the RCLs is facilitated through error
correction. A case study based in Shanghai municipality, China, was carried out, using HSR images
as part of generalized point clouds that were developed. The experiment results confirmed that by
using the proposed methods, spatially explicit positional-error metrics, including means, standard
deviation, and cross correlation, can be quantified flexibly, with those in the selected RCLs and the
lengths of some RCL segments derived easily through error propagation. The reference positions
of these RCLs were obtained through error correction. The positional accuracy gains achieved by
the proposed methods were found to be comparable with those achieved by conventional image
georectification, in which the CD were used as image-georectification control data. The proposed
methods are valuable not only for uncertainty-informed image geolocation and analysis, but also for
integrated geoinformation processing.
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1. Introduction

In remote sensing and GIScience, research on errors in geospatial information and
analyses aims to describe, model, propagate, visualize, and manage errors systematically
through suitable metrics and methods [1–10]. For positional errors, in particular, there has
been an impressive accumulation of work investigating the aforementioned topics [11–31].
With the advent of high spatial resolution (HSR) remote-sensing images, the emerging
technology of the generalized point cloud dataset [32], and growing demands for high-
accuracy geospatial information, research on positional errors in images and geospatial
data and their impacts upon image co-registration and other applications is becoming
increasingly important, as reflected in relevant literature [33–44].

This research focuses on modeling positional errors in remote-sensing images, espe-
cially those of HSR, to facilitate further studies on uncertainty in image-based information
extraction and applications. Positional errors refer to the differences between measured
and reference (assumed true) coordinates of the objects concerned (i.e., image pixels, in
the context of this research). They are bivariate in X and Y coordinates for horizontally
positioned points. A closer look into related issues is carried out.

Well-known positional-error descriptors include error ellipses for points and epsilon
error bands for lines [20,25,30]. There has also been work on local descriptors of positional
errors in 2D [45] and 3D [46]. However, such error descriptors do not lend themselves to
modeling spatial uncertainty in spatial queries and analyses involving two or more points.
This is due to the presence of spatial correlation in positional errors, which precludes the
simple extension of error ellipses to modeling errors in lines (e.g., road centerlines) and
areas (e.g., land parcels) by applying the law of variance and covariance propagation [10].
A more sensible method is stochastic simulation, whereby equal-probable realizations of
the underlying regionalized variables (a well-known geostatistical term) are generated
to facilitate error propagation in spatial analyses and applications [4,7,12]. This method
is, theoretically, more rigorous than methods that assume independent and identically
distributed positional errors [47–51].

Variogram-based geostatistical simulation is conventionally used for the stochastic
simulation of regionalized variables, such as positional errors [52]. This is non-trivial if
co-simulation for bivariate positional errors (X and Y coordinates) is to be carried out, as
auto- and cross-covariance for errors in X and Y coordinates need to be modeled.

Multi-point geostatistics (MPS) is better suited for simulating regionalized variables
with complex patterns and for use in various applications [53–57]. Instead of variogram
models, MPS uses training images (TIs) as templates of spatial structures that are deemed
representative of the problem domains. MPS produces conditional realizations honoring
the high-order statistics, as opposed to traditional two-point statistics (e.g., variograms),
represented in univariate or multivariate TIs. As an important technique in MPS, the direct
sampling (DS) algorithm has advantages for modeling both categorical and continuous
variables and is able to handle multivariate co-simulation [58]. For DS, both regularly
spaced and completely informed TIs and irregularly sampled and incompletely informed
training data (TD) can be used for simulation [59]. As a refinement to the conventional DS
algorithm, QuickSampling (QS) [60] is advantageous in terms of the improved computa-
tional efficiency and flexibility of using TI or TD. To the best of our knowledge, MPS in
general and DS in particular have rarely been pursued for positional-error modeling. This
research seeks to fill this important niche.
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To proceed with MPS-based simulation, there are two hurdles to overcome. One
concerns the handling of non-stationarity in positional errors in images, and the other is
about a cost-effective strategy for constructing TIs or TD. These issues are discussed below.

A key feature for positional errors in images is their systematic components (i.e., trends
or local means). The trends are often major components, which result from image tilts or
satellite attitude oscillations [61,62], terrain relief [37,40,63], or surface undulation [46,64]
and are likely to be present even after initial image georectification, as discussed in [65],
where image vendor-supplied sensor models in the form of rational polynomial coefficients
(RPCs) were not sufficiently accurate. For images flown on different sensors and over
different areas, positional errors and their trends are bound to be different (i.e., non-
stationary), precluding the transferability of TD built on particular types of images over
specific training areas to different areas, even when the same types of sensors/images are
used. Thus, trends need to be accounted for in positional-error modeling so that de-trended
errors (i.e., residuals) may become stationary in terms of spatial statistics and, thus, can be
effectively used for MPS.

Trend-surface analysis may be performed using various methods, including polyno-
mials and thin-plate smoothing splines [66–68]. In the geolocation and co-registration of
satellite images [69], thin-plate splines, as special types of radial basis functions, are often
used [70,71]. In this research, thin-plate splines were employed to decompose positional-
error fields into trends and residuals. This points to the methodology of generalized
additive modeling (GAM) [72,73], which (being a machine learning method) is a general-
ized linear model with a linear predictor involving a sum of smooth functions, including
thin-plate smoothing splines. GAM was well-suited for this research, as it can be imple-
mented either via smoothing splines or partial splines incorporating extra explanatory
variables [67].

As mentioned above, the other issue concerns TD, which need to be furnished for MPS
simulation. Note that TD for residuals is required here, since de-trending of positional er-
rors is necessary, as discussed above. Manual image digitization for densely sampled TD is
time-consuming and may be feasible only for very small study sites. Relatively dense TD
may be cheaply obtained by using the technique of digital-image matching [74–80], given the
existence of reference images. However, this technique may not be easily used for HSR
images that feature complicated urban fabrics, even when they are initially georectified,
as was the case for this study. This is because the so-called orthoimages that are routinely
produced are often only georectified using digital elevation models (DEMs) rather than dig-
ital surface models (DSMs) and, thus, they are not truly orthorectified images—especially
those in the presence of non-terrain 3D spatial entities (e.g., buildings) [33,40,81,82]. Image
displacements due to surface undulation are often complicated by image occlusions. In
turn, these occlusions give rise to ambiguities and errors in the identification of homologous
image points through computer image matching and, hence, errors in the derivation of
accurate image displacements, not to mention other kinds of complexity, such as shadows
and unwanted objects in images and the effects of temporality between the reference images
and the test images.

Clearly, the combined use of automatic image correlation and visual screening (for
raw displacement data cleaning) provides a feasible solution in generating relatively dense
and quality-enhanced TD. Therefore, the strategy in this study was to furnish relatively
dense TD by using digital-image correlation to identify homologous image points and to
measure positional errors. This was followed by visually screening raw displacement data
to filter out gross errors that were due to the misidentification of homologous points and
the contamination of non-terrain image objects, which are common in HSR images.

The main contribution of this research lies in the novel use of MPS (DS in particular),
GAM, and digital-image correlation to characterize positional errors in HSR images, where
DS functions as a non-parametric and multivariate simulator for positional errors, GAM
de-trends positional errors, and digital-image correction (followed by visual screening)
constructs relatively dense and quality-enhanced TD. Simulated positional errors will
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facilitate error propagation in applications, such as the extraction of road centerlines from
images. In addition, with mean errors in positions computed from error realizations,
reference positions for positions of interest can be estimated through error correction,
providing a method of enhanced georectification.

2. Materials and Methods

The flowchart for this research on positional-error characterization is shown in Figure 1,
in which a set of homologous image points are manually digitized, with errors in the X
and Y coordinates calculated, resulting in reference sample data, from which reference
values of positional errors were derived. The reference dataset consisted of a reference
sample of 581 points (for model training in GAM and as CD in MPS) and a test sample of
60 points. Image correlation was applied to generate relatively dense raw measurements of
positional errors (i.e., raw displacements), which were then screened to filter out erroneous
points, resulting in quality-enhanced displacement data, a subset of which were used as
TD in this research. GAM was used to extract trend surfaces and, thus, residuals for both
CD and TD. Using de-trended TD and CD, realizations of residuals and, hence, positional
errors were generated at a grid of 80 m resolution. The metrics of positional errors (i.e.,
means, standard deviation, and cross-correlation) were then generated by summarizing
these positional-error realizations. Realizations of errors along road centerlines (RCLs)
were obtained by interpolation over the aforementioned error surfaces that were simulated,
while the error metrics for RCLs could be computed and recorded as extra line attributes.
Mean reference positions for RCLs could also be estimated from their digitized versions
on the test image and from positional errors derived from DS simulation through error
correction. Using test sample data, the simulated reference RCLs could be assessed with
respect to their accuracy. A further description of these methods is provided below.

2.1. The Study Area and Datasets

This research was based in the Shanghai municipality, China. Shanghai is a ma-
jor coastal city, being China’s commercial, financial, industrial, and trading center. Its
terrain undulation is modest, suggesting little impact of terrain relief therein on image
displacements. A square area of 40 km by 40 km was chosen as the study site, as shown in
Figure 2.

A georectified image subset (panchromatic) of 0.5 m spatial resolution, flown during
the summer in 2020, was used as the reference image, as shown in Figure 2a. A ZY-3
satellite image subset (panchromatic band), acquired on 21 February 2020 and resampled to
2.0 m resolution, was used as the experiment test image (often known as the target image
or the sensed image in relevant literature), as shown in Figure 2b. The images were initially
georectified and radiometrically corrected, being part of the data sources for building up
the generalization point cloud dataset described in [32].
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Figure 1. The flowchart for characterizing positional errors, where OSM stands for OpenStreetMap,
SG represents simulation grid nodes, RCLV represents road centerline vertices, and RCLS represents
road centerline segments.
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A total of 641 homologous image points were visually located and digitized on the
reference-test image pair, 581 of which (shown as green dots in Figure 2a) were used as CD
in MPS and also for model training in GAM and variogram modeling, while 60 of which
(shown as red dots in Figure 2b) were used as test sample data. The model-training sample
pixels seemed to be regularly distributed, as shown in Figure 2a. In fact, they were only
approximately so. In principle, any well-defined image pixels can be candidates for training
pixels. However, our preliminary tests revealed that irregularly distributed training pixels
were advantageous for effectively de-trending positional errors to enhance stationarity in
resultant residuals, thereby facilitating effective DS-based simulation through constructing
TD from a sub-area rather than the whole study area. Major roads are also depicted in
Figure 2b; they are are used to illustrate error propagation and positional-error correction.
For ensuring accuracy in the reference sample data (of positional errors), centers of low
houses (mostly in the rural areas), centers of landmarks, and road intersections were
measured, by referring to the generalized point cloud dataset [32] and OSM road network
data. Note that the use of the generalized point cloud dataset was limited, in the sense that
only browsing was permitted, due to its being considered as classified data at this stage.

Figure 2. Cont.
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Figure 2. The reference-test image pair in this research: (a) the reference image with green dots
indicating model-training sample points and (b) the test image in which road centerlines are shown
as blue lines and test sample points are shown as red dots.

The means and the standard deviation for positional errors in the X and Y coordinates
in the experiment reference-test image pairs are reported in Table 1; they were estimated
based on the model-training data (i.e., the CD) and the test sample data, respectively. As
indicated in Table 1, the metrics of positional errors were mostly similar between those of
the training sample data and the test sample data, except for the minimum error in X and
the standard deviation in Y

Table 1. Summary of positional errors evaluated by the reference sample data (m).

Min Max Mean Standard Deviation

Model-training data_X −3.43 2.33 −0.05 0.75
Model-training data_Y −5.40 5.59 −0.78 0.99

Test sample data_X −2.49 2.23 −0.10 0.86
Test sample data_Y −5.64 5.29 −1.08 1.48
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2.2. Semi-Automatic Construction of TD

As described in the Introduction, a combination of image correlation (for collecting
raw displacement data) and visual screening provided a feasible solution for obtaining
relatively dense and reliable TD for MPS.

By digital image correlation, homologous image points in a reference-test image pair
were identified using image-matching algorithms, for which a formula for matching cost is
provided in the Appendix A. This allowed for the differences between the reference image
and the test image (i.e., displacements or positional errors of points in the test image relative
to the assumed reference image) to be estimated automatically. The software package
MicMac (version 1.0. beta14) [78] was used for automatically measuring displacements of
features on the test image with respect to the reference image.

To filter out gross errors in the aforementioned raw displacement data, it was necessary
to select well-defined, easy-to-locate, visible (on both reference and test images), and
ground-level entities that were free of gross errors that were due to surface undulation
displacements, image point mismatches, and other artifacts. This implied that image
segments over water bodies, building sides, wooded land, shadows, and other areas of
uncertainty needed to be masked out. This process was assisted in this study by using the
generalized point cloud dataset [32] and OSM road network data with the understanding
that road surfaces visible on images were not subject to displacements due to terrain relief
when the experiment images were initially georectified.

2.3. GAM for De-Trending Positional Errors

As mentioned in the Introduction, systematic components are usually present and of-
ten of major proportion in positional errors, even if they are initially georectified. We
needed to de-trend positional errors (for both TD and CD) as a way to handle non-
stationarity [54,56] for geostatistical simulation-based error modeling.

For this research, the R-package Mixed GAM Computation Vehicle with Automatic
Smoothness Estimation (MGCV) [73] was used for GAM-based trend-surfacing in CD and
TD. In MGCV, GAMs (in particular, thin-plate splines) attempt to find the appropriate
smoothness for each applicable model term, using prediction-error criteria or likelihood-
based methods. The prediction-error criteria used are those of generalized cross validation
(GCV) when the scale parameter is unknown. Clearly, GAM estimates the degree of
smoothness as part of model fitting [72]. In the Appendix A, thin-plate splines are described.

With GAMs fitted to the data, trend surfaces were predicted over the study area and
over the extent of the TD, respectively. Then, residuals were computed at locations of CD
and TD, accordingly. De-trended CD and TD were used in DS, as discussed below.

2.4. DS for Simulating Positional Errors

DS was used to simulate a large number of equal-probable residual simulations (and
then positional errors). DS is a conceptually simple, yet functionally powerful, MPS
algorithm, as it directly samples the TD for a given data event instead of counting and
storing the configurations found in Tis, as in some other MPS algorithms [53].

DS proceeds as follows. Starting from an initial randomly located point along a
chosen random path, the TD are scanned. For each of the successive sampling window,
the mismatch metric (distance metric) between the data event informed in the SG and
the mismatch metric sampled from the TD are calculated. If the mismatch is lower than
a given threshold, the sampling process is stopped and the value at the central node of
the data event in the TD is directly taken as the simulated value at the SG node under
consideration [58,59]. The mismatch metrics used in DS are described in the Appendix A.

An MPS framework, G2S [60], was used in this research. We applied a resolution of
80 m for gridding TD and for specifying SG nodes. In this way, matching between data
events in TD and SG, with a geometric tolerance of 40 m, was implicitly enforced. DS
was run using the multivariate approach, as positional errors are bivariate (with X and Y
coordinates). Equal weighting was applied to the X and Y coordinates.
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The simulated error surfaces (100 surfaces) were summarized per individual SG nodes
as maps of means, standard deviation, and covariance (between X and Y) of residuals. The
estimated trend surface estimated was added to the mean residuals to obtain a surface
of mean positional errors, while the maps of standard deviation and X–Y covariance in
positional errors were equal to those of residuals.

It is useful to view these surfaces of positional-error metrics as imaginary fields of
corresponding quantities over the image domains—even over image segments in which
the objects of interest are not visible, as is often the case with HSR images of urban scenes.
This is because images are often not truly orthorectified, as explained in Section 1.

2.5. Positional-Error Propagation in Road Centerlines

In this research, error propagation aimed to simulate errors at vertices defining a set
of RCLs that was chosen for experiments. With a number of equal-probable realizations
of residuals simulated, as described in Section 2.4, it was possible to obtain realizations of
positional-error residuals at RCL vertices (RCLVs, as shown in Figure 1) by interpolation,
as an approximate approach (a theoretically rigorous way would be simulation at RCLVs
directly). The simulations at RCLVs could then be summarized to obtain the metrics of the
residuals of the positional errors therein.

For simulating positional errors at RCLVs, we estimated trend values of positional
errors at the vertices by interpolating on the trend surfaces estimated separately (see
Section 2.3). Positional-error realizations at the vertices were obtained by adding the
estimated trend-surface values to residual realizations. The mean positional errors were
the sum of mean residuals and trend-surface values, while the standard deviation and the
X-Y covariance at individual vertices remained the same as those in the residuals.

RCLs were then simulated. In addition, the lengths of some of the RCL segments were
summarized in terms of means and standard deviation.

2.6. Realizations of References Positions for Road Centerlines

As described in Section 2.5, positional errors at SG nodes and RCLVs can be simulated
in a large number of equal-probable realizations. Simulated positional errors can also be
used to simulate reference positions of points of interest. This amounts, effectively, to
enhanced georectification.

For this purpose, we performed georectification to some of the selected RCL segments,
where reference data were available (so that accuracy gains could be evaluated) over the test
image, through error correction. Alternatively, using CD as control data, we also performed
image rectification to the test image, based on the triangulated irregular network (TIN).

3. Results
3.1. Constructing TD

MicMac (through its interface MM2DPosSism) was used to identify homologous image
points and to generate full-coverage raw displacement data for constructing TD. To ensure
accuracy in image-correlation-derived displacement data, they were visually filtered, with
the generalized point cloud dataset [32] and the OSM road data layer used as a guide, as
described in Section 2.2. A subset image of raw displacements of 10 km by 10 km in the
center of the study area was selected for constructing TD at 80 m resolution. Well-defined
image points were kept, while image segments over water bodies, building sides, wooded
land, shadows, and other areas of uncertainty were removed.

The image-correlation-derived displacement data before and after filtering were as-
sessed, as shown in Table 2, in which the means and the standard deviation of displacement
data are very close before and after filtering, with outstanding differences in minimum and
maximum values. This was unsurprising, given the fact that filtering was only applied to
apparently mis-matched image points.
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Table 2. Summary statistics of displacement data before and after filtering (m).

Min Max Mean Standard Deviation

displacement_X −4.63 2.62 −1.04 0.46
displacement_Y −7.01 3.15 −1.92 0.86

filtered displacement_X −4.0 1.54 −1.05 0.43
filtered displacement_Y −4.0 1.40 −1.92 0.73

3.2. Trend-Surfacing CD and TD

For trend-surfacing the CD and the TD, GAM in the R-package MGCV was applied,
using splines as smoothers. Smooth functions of image points’ positions were used, with
displacements being incorporated as covariates in the case of TD. Smoothness was deter-
mined, along with model parameters, based on the criterion of GCV. The results are shown
in Table 3, indicating that GCV scores were similar for modeling fitting over the domains
of CD and TD.

Table 3. GCV results for GAM-based trend-surface analysis of CD and TD (m).

GCV_X GCV_Y

CD (smoothing splines) 0.52 0.92
TD (smoothing splines + displacements) 0.49 0.81

The residuals after GAM-based trend surfacing were also used to calculate experimen-
tal auto- and cross-variograms. Then, they were fitted with theoretical variogram models,
as shown in Table 4.

Table 4. Auto- and cross-variogram models for de-trended positional errors in X and Y coordinates.

Variogram Model

Auto-variogram in X 0.3148 × Nugget + 0.17428 × Stable (1911.2,2)
Auto-variogram in Y 0.4671 × Nugget + 0.48685 × Stable (5248.5,0.63418)

Cross-variogram between X and Y 0.33837*Nugget + 0.14993*Stable (2019.5,2)

3.3. Simulating Positional Errors

With de-trended CD and TD, DS-based MPS was carried out. A resolution of 80 m
was chosen, since the objective of this research was to characterize positional errors in
selected roads rather than individual pixels of the images involved. Another reason was
that geostatistical simulation over a large municipality at a fine resolution, such as that of
the original image resolution, would have been prohibitively expensive, computationally.
The simulated positional-error surfaces, which represented the sums of residual realizations
(100 in total) and trend-surface values at SG nodes, were summarized to derive means,
standard deviation, and covariance between errors in the X and Y coordinates at the SG
nodes (80 m resolution). They are shown in Figure 3, where Figure 3a,b show the means of
positional errors in X and Y, respectively, Figure 3c,d depict the standard deviation in X
and Y, respectively, while Figure 3e shows the covariance of errors in X and Y.

For comparison, sequential Gaussian simulation (SGSIM) was also used to simulate
positional errors, based on the variogram models in Table 4. To simplify the matter and,
given that the focus of this research was on the combined use of MPS, GAM, and image
correlation for error modeling, the positional errors in X and Y were simulated separately
by SGSIM, meaning that no attempts were made at joint simulation of errors in X and Y
using a linear model of co-regionalization.
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Figure 3. Positional errors characterized through MPS: (a,b) show means in X and Y, respectively, and
(c,d) show standard deviation in X and Y, respectively, and (e) shows covariance of errors in X and Y.

3.4. Characterizing Errors in Road Centerlines and Predicting Their Reference Positions

Equal-probable realizations of positional errors in selected RCLVs were approximated
by interpolation of both DS-simulated residuals and trend-surface values at the RCLVs
and totaling them, as illustrated in Figure 1 and described in Section 2.5. The error metrics
estimated via simulation were recorded as extra attributes to the selected RCLs. The
means and standard deviation in the lengths of the seven selected RCL segments were
summarized, based on 100 realized RCLs. The results are shown in Table 5, in which
reference values of the lengths of the seven RCL segments (which were calculated based on
the test sample data consisting of reference positions of RCLVs related to the seven RCL
segments) are also shown, along with the means and standard deviation obtained from
DS-simulated RCL segments. As indicated in Table 5, the differences between the mean
lengths of all seven RCL segments and their reference values were within tiny fractions of
their standard deviation, suggesting small errors in the lengths, due to spatial correlation
in positional errors, as expected.

Table 5. Means and standard deviation in length of some of RCL segments, derived from DS
simulation (m).

Selected RCL Segments Reference Values Means Standard Deviation

1 1605.15 1605.07 1.08
2 729.47 729.45 0.51
3 3092.66 3092.57 1.23
4 5839.37 5839.49 0.50
5 3597.71 3597.57 0.69
6 3450.23 3450.49 1.02
7 2878.63 2878.85 1.06
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Reference positions of the selected RCLs were estimated through error correction,
based on location-specific mean positional errors derived from simulation. Alternatively,
the georectification of RCLs was also carried out, using a TIN-based correction method,
with the same reference sample of 581 points used as control data. The estimated reference
positions for the selected RCLs, through error corrections using location-specific positional
errors estimated by TIN, SGSIM simulations, and DS simulations, were assessed with
respect to accuracy against the test sample of 60 points. The results are shown in Table 6.
As indicated in Table 6, TIN’s performance was only slightly inferior to those of SGSIM
and DS, except by the criterion of maximum absolute error (MAE), while the performances
of DS and SGSIM in terms of mean error (ME), MAE, and root mean squared error (RMSE)
were very comparable.

Table 6. Comparisons of georectification by positional-error corrections based on TIN, SGSIM, and
DS (m).

ME MAE RMSE

TIN_X 0.10 0.38 0.96
TIN_Y −0.81 0.91 1.61

SGSIM_X 0.02 0.66 0.89
SGSIM_Y −0.74 0.96 1.57

DS_X 0.10 0.69 0.91
DS_Y −0.72 0.91 1.48

Further explanations of the largely similar performances of TIN, SGSIM, and DS
were based on the interpretation of variogram models shown in Table 4. Based on the
definitions of the stable model of variograms, the effective ranges of spatial correlation
were calculated as 3310.3 m and 3498.0 m in X and Y, respectively. This indicated that
the sampling interval should have been at an average of about 1655.1 m and 1749.0 m
in X and Y, respectively, according to the sampling theorem versed in terms of the range
parameter in variogram models [83]. The average sampling intervals in X and Y were about
1333.3 m and 2000.0 m in X and Y, respectively, suggesting sufficiency in sampling for X
and slight undersampling in Y. Thus, theoretically, it is not surprising that the accuracy
of enhanced georectification of the test image by different methods was very comparable,
given a largely adequate sampling density of reference sample data over the study area.
However, the advantages of DS over SGSIM and TIN were likely more manifested in the
case of small-sized reference sample data, whereas DS capitalized on using TD that were
cheaply generated from computer-image correlation, as demonstrated in this research.

4. Discussion
4.1. Summary of the Work

The methods proposed in this study address some of the challenging issues pertaining
to positional-error modeling in remote-sensing images of HSR: non-parametric and joint
simulation of positional errors in X and Y coordinates, non-stationarity in-positional errors,
and construction of TD for geostatistical simulation. The contribution of the proposed
method lies in the following factors: multivariate MPS for non-parametric and joint simu-
lation of bivariate X–Y positional errors (as opposed to a conventional variogram based
two-point geostatistical simulation [52]), GAM to de-trend positional errors to handle
non-stationarity in-positional errors, and digital-image correlation to furnish TD efficiently.

These approaches have potential for various applications. For instance, they are
valuable for the analysis of the effects of positional errors (e.g., misregistration) upon
image classification, change detection, creation of DEMs, species-distribution modeling,
and spatial ecology, wherein positional errors should be properly accounted for [84–89].
The proposed methods will also be beneficial for the fusion of multi-source data, wherein
differences in bias and variance of positional errors in the datasets that are being fused
need to be properly accounted for.
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4.2. Further Research

In the future, while it is important to improve computing efficiency of the DS algo-
rithm [60], especially when simulations at finer resolution and/or over larger areas are
required, there is a pressing need to advance methods for TD construction [56], especially
for simulations at fine resolution and over heterogeneous areas. It is worth exploring how
we may benefit from the complementary use of DS and SGSIM (and other variogram-based
geostatistical simulators). For instance, they may be used co-operatively in a multigrid
framework [55]—using DS to generate simulations at a coarser resolution while using
SGSIM for fine-resolution simulations.

Trend surfacing may also be addressed by random forest (RF), another machine
learning approach. In a separate experiment, not reported here, RF was applied over
smaller subset images, with image points’ positions and image textures used as explanatory
variables. The results were found to contain artifacts of image textures, although GCV
scores were found to be comparable to those of GAM.

Note that reference images may themselves be subject to errors, especially when
they are not truly orthorectified, due to the existence of non-terrain height objects, while
image occlusions will further complicate image correlation (and, hence, TD construction)
and error modeling. This was exactly the case with the experiment images used in this
study, in which visual screening was necessarily undertaken to remove gross errors in
raw displacement data that were generated automatically through MicMac-based image
correlation. This points to the relevance of true digital orthoimage maps (TDOMs) for
further research.

For the production of TDOMs, in which image displacements are corrected not only
for image tilts and terrain relief, but also for surface undulation, we need to have DSMs,
in addition to image orientation and DEMs, to correct image displacements pertaining
to non-terrain entities (e.g., buildings and trees). DSM creation remains an issue, despite
developments in photogrammetric processing and LiDAR for generating DSMs. We also
need to improve methods for handling occlusions that are common in urban scenes. The
creation of TDOMs will certainly benefit from the establishment of the generalized point
cloud dataset mentioned previously [32], and vice versa.

TDOMs and the fully functioning of the generalized point clouds [32] would allow us
to pursue integrated error modeling and geographic-information processing. We would
be able to describe and model horizontal and vertical dimensions of errors in DEMs.
More importantly, in an integrated framework, TDOMs, DSMs, DEMs, digital line graphs
(DLGs), and other data layers (e.g., [90]) can be jointly analyzed with respect to errors. This
would allow for the rigorous georectification of objects and for the proper geocoding of
images and geo-fields, and in turn provide for the unifying framework of all information
layers concerned.

Ultimately, it would be possible to address the issue of geospatial-information fusion
with uncertainty accounted for, as hinted at in Section 4.1. For example, object detection
would be enhanced, with consideration for positional and thematic uncertainty. Temporal
inconsistency would be analyzed in relation to change detection in land use and land cover,
elevation, and other types of information layers. Information about 3D structures would be
analyzed, such as that related to buildings and trees.

5. Conclusions

This research contributes to positional-error characterization in remote-sensing images
of high spatial resolution (HSR) using a combination of multi-point geostatistics (MPS),
machine learning, and digital-image correlation methods. Specifically, direct sampling (DS)
was used to facilitate non-parametric and joint simulation-based modeling of bivariate
positional errors in X and Y coordinates; generalized additive models (GAMs) using spline
smoothers were employed to decompose positional errors into systematic and random but
spatially correlated components to handle non-stationarity errors; and image correlation
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based on MicMac, followed by visual screening, was used as a cost-effective means for the
extraction and construction of training data (TD) for MPS.

Experiments based on the Shanghai municipality in China confirmed the effectiveness
of the proposed methods for modeling positional errors in HSR images. The proposed
methods were developed in the context of initially orthorectified images, with the image
of finer resolution used as reference. However, the proposed methods are applicable for
use in the context of reference-test image pairs of coarser resolutions, images with or
without initial orthorectification, and reference maps (instead of reference images). More
importantly, the proposed methods will be valuable not only for positional-error modeling
and geometric aspects in images, such as image rectification and co-registration, but also
for integrated information processing, where positional errors need to be factored in.
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Appendix A

Appendix A.1. Multi-View Stereo Image Matching in MicMac

In MicMac, the matching cost function can be expressed as [78]

ε
(

Fpx
)
=

x

T

A
(
x, y, Fpx(x, y)

)
+

∥∥∇Fpx
∥∥reg (A1)

where
∥∥∇Fpx

∥∥reg
= α1 ∗

∣∣∣∇F1
px

∣∣∣ + α2 ∗
∣∣∣∇F2

px

∣∣∣, A
(

x, y, Fpx(x, y)
)

is the measure of simi-

larity between pixels (A
(
x, y, Fpx(x, y)

)
= 0 when identical),

∥∥∇Fpx
∥∥reg is a norm of the

gradient and used for regularization, and α1, α2 are regularizations on the first and second
component. The measurement of similarity can be computed from the normalization
cross-correlation coefficient (corr) via 1− corr.

Appendix A.2. Thin-Plate Spline Smooth in GAMs

The generalized additive models extend standard linear models by replacing variables
with smooth functions. The model can be written as

yi = β0 +
p

∑
j=1

f j
(
xij

)
+ εi (A2)

where f j is the smooth function of the jth predictor. In this study, thin-plate spline was
chosen as the smooth function and can be expressed as

f̂ (x) = β0 +βTx +
N

∑
j=1

αjhj(x) (A3)
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where x = (x, y)T is the positional coordinates, α represents the coefficients of warping
subject to N control points, and hj(x) =

∥∥x− xj
∥∥2log

∥∥x− xj
∥∥ is the radial basis function

for thin-plate splines.

Appendix A.3. Mismatch Metrics of DS/QS

In MPS algorithms, a data event is defined as a data point at and around a target
location x and is expressed as

dev(x) ≡ {(h, Z(x + h)), h ∈ N(x)} (A4)

where h is the lag vector, N(x) is the defined neighbor, and Z(x + h) is the multivariable
vector at location x + h. The simplest distance between univariate data event dev(x1) and
dev(x2) is

d(dev(x1), dev(x2)) =
1
n

n

∑
i=1
|Z(x1 + hi)− Z(x2 + hi)|p (A5)

where p is an exponent. The distance corresponds to the Euclidean distance when p = 2
and corresponds to the Manhattan distance when p = 1. For multivariate simulation, the
mismatch metric—the distance between data events in TD/TI and SG—can be decomposed
and expressed as [60]

d(a, b) ∝ ∑
i∈I

∑
j∈Ji

f j(ai)gj(bi) (A6)

where a = (a1, a2, . . . , aI)
T and b= (b1, b2, . . . , bI)

T are the data event vectors, f j and gj are
metric-depended functions, and Ji is the metric of ith variable.
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