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Abstract: In this paper, we investigate deep-learning-based image inpainting techniques for emer-
gency remote sensing mapping. Image inpainting can generate fabricated targets to conceal real-world
private structures and ensure informational privacy. However, casual inpainting outputs may seem
incongruous within original contexts. In addition, the residuals of original targets may persist in the
hiding results. A Residual Attention Target-Hiding (RATH) model has been proposed to address
these limitations for remote sensing target hiding. The RATH model introduces the residual attention
mechanism to replace gated convolutions, thereby reducing parameters, mitigating gradient issues,
and learning the distribution of targets present in the original images. Furthermore, this paper
modifies the fusion module in the contextual attention layer to enlarge the fusion patch size. We
extend the edge-guided function to preserve the original target information and confound view-
ers. Ablation studies on an open dataset proved the efficiency of RATH for image inpainting and
target hiding. RATH had the highest similarity, with a 90.44% structural similarity index metric
(SSIM), for edge-guided target hiding. The training parameters had 1M fewer values than gated
convolution (Gated Conv). Finally, we present two automated target-hiding techniques that inte-
grate semantic segmentation with direct target hiding or edge-guided synthesis for remote sensing
mapping applications.

Keywords: emergency remote sensing mapping; image inpainting; residual attention mechanism;
target hiding

1. Introduction

Remote sensing images contain abundant surface features that can support govern-
ments and rescue agencies in emergency decision making [1], disaster assessment, and
rescue deployment [2]. There are many research projects and application directions of
remote sensing mapping for urban development planning and emergency disaster re-
sponse. To protect privacy, especially that of personal buildings, sensitive targets must be
processed before public release and use. Current methods mainly rely on the manual or
semiautomatic labeling of sensitive targets and image editing tools to cover and fill target
areas. These methods cannot meet the timeliness requirements of mapping tasks. Moreover,
the results depend on the operators’ skills and thus lack control. Therefore, an automatic
method for sensitive target hiding is needed.

Artificial intelligence approaches have become indispensable for remote sensing data
analysis, thus catalyzing breakthroughs across the field [3–5]. A new multisensor dataset
of very-high-resolution satellite imagery from diverse landscapes was recently introduced
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for the super-resolution restoration of high-resolution (HR) remote sensing images from
low-resolution (LR) inputs [6]. In addition, to automatically capture the positions and
contours of sensitive targets, semantic segmentation was introduced [7]. Its process is the
same as that of remote sensing interpretation tasks [8]. After detecting sensitive targets,
Qiu et al. proposed an image inpainting model to remove and fill target areas [7]. This
method combines object detection with image inpainting to achieve the fast, automatic
hiding of sensitive targets. Image inpainting is closely related to hiding, but the latter aims
to completely hide targets.

The image inpainting model known as contextual attention (Cont Atten) [9], which
was used in the combined method, aims to hide sensitive targets. Cont Atten is a coarse-
to-refinement image inpainting network. Its efficiency is limited by using regular masks,
which are exactly the missing areas of the images, in the training step. For this reason, a new
model named Gated Convolution (Gated Conv) [10] that trains on free-form masks with
better inpainting performance was proposed. Yu et al. used masks combining irregular
and regular masks [10] to reduce the computation of hard-gating masks proposed by
Partial Conv [11]. Gated convolution is another innovation of their research. It provides a
learnable, dynamic feature selection mechanism at both the channel and spatial location
levels. Their work provided significant inspiration for our research. However, the extensive
use of elementwise products can cause unstable gradients. The method of generating
two branches with one convolution operation also has the problem of having too many
parameters. Furthermore, as the coarse-to-refinement network permits only two chances
of original image input, the inpainted objects can exhibit incongruence regarding the
surrounding contextual semantics. The techniques that simply replace original targets with
fabricated ones can still retain residual traces of the original information.

While residual connections can propagate original information more deeply, capturing
object distributions is critical when synthesizing fake targets for believable target hiding.
Thus, we introduce a Residual Attention Target-Hiding (RATH) model incorporating
residual attention. Our key contributions are the following:

• We proposed a residual attention module that bifurcates the gated convolution into
two branches utilizing concatenated convolutions. This extracts the features repre-
senting object distributions while enabling adjustable kernel sizes within the gated
convolutions, thereby conferring greater flexibility. Additionally, the residual attention
mechanism ameliorates gradient vanishing and explosion issues.

• To expand the fusion patch size, we substituted the complex operation with
two 3 × 3 convolutional layers utilizing an all-in-one kernel. This can elevate low
similarities based on neighboring element values, thus providing more global context.

• We extended the edge-guided approach [12] to synthesize fabricated targets with
higher realism, thereby utilizing edges derived from semantic segmentation. This
technique is better suited for hiding targets when provided with highly confounding
artificial edges that match the target spatial distribution.

• Finally, we performed ablation experiments on benchmark datasets to validate the
proposed RATH model, thus achieving a state-of-the-art structural similarity index
metric (SSIM) of 90.44% for edge-guided [13] target hiding using fewer parameters
than Gated Conv. Additionally, this paper presents two automated frameworks
integrating semantic segmentation with direct or edge-guided target hiding for remote
sensing mapping applications.

The remainder of this paper is organized as follows. Section 1 introduces the devel-
opment of target hiding in emergency remote sensing mapping and the contributions of
our research. Section 2 reviews the advancements in image inpainting using deep learning,
which the target hiding is based on. Section 3 elaborates on the principal framework and
methodology of the proposed approach. Section 4 presents extensive experiments on
diverse datasets to evaluate image inpainting, target hiding, and edge-guided inpainting
capabilities. Section 5 provides a discussion and introduces our automated application for
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target hiding utilizing the proposed techniques. Finally, Section 6 concludes the paper and
discusses directions for future work.

2. Relate Work
2.1. Target Hiding Based on Image Inpainting

To protect the privacy and the inviolability of personal buildings, information con-
taining these structures must be anonymized during remote sensing mapping. Traditional
approaches rely on manual identification and image editing, which prove to be inefficient.
Recently, deep learning has assumed an increasingly prominent role in remote sensing for
disaster management and mitigation. A new Conv-Trans Dual Network (CTDNet) based
on Swin-Unet was proposed for landslide detection, which was motivated by the powerful
global modeling capability of the Swin Transformer [14]. Additionally, a building target
detection model integrating convolutional block attention modules (CBAM) into YOLO
V5 [15] improved classification accuracy and detection speed. This CBAM-enhanced frame-
work enhances performance for time-critical building detection tasks. Ref. [16] introduced
a specially weighted crossentropy contour loss to constrain residual attention U-Nets for
optical remote sensing interpretation. A deeply supervised generative adversarial network
(D-sGAN) [17] was proposed to enable the semantic interpretation of remote sensing data.
Such deep learning approaches help overcome limitations such as low timeliness and the
inconsistent performance of conventional remote sensing image processing techniques.

The image inpainting network Cont Atten [9] calculates the contribution of external
features to each location in the missing region, and it was applied to the inpainting areas
after removing airplanes [7]. This pioneered an automated approach for target hiding.
Despite poor performance in hiding irregularly shaped targets such as airplanes when
trained on regular masks, their work provided key inspiration that image inpainting
networks could be adapted for target hiding applications.

2.2. Image Inpainting

Image inpainting involves reconstructing lost or corrupted regions in images and
videos, whereas target hiding entails removing and inpainting designated objects in images.
Early image inpainting methods are relatively simple. Nitzberg et al. proposed an algorithm
using image segmentation to remove the objects in front of the foreground [18]. Using
the combined frequency with location information, Hirani and Totsuka selected a similar
texture to fill the target areas [19]. This simple technology produced incredibly good results
at that time. However, this technology is only responsible for analyzing image texture.
Whether the texture is used or not depends on the users. The target area needs to be
segmented by users, which is complex and time-consuming. In 1998, an algorithm based
on Nitzberg’s was proposed by Masnou and Morel [20]. The main idea was to perform
the inpainting by connecting the points of equal rays (lines with equal gray values) that
reached the boundary of the area to be inpainted, while the area needed to have a simple
topology. Then, a new static image restoration algorithm was introduced by Colomba
Ballister and Marcelo Bertalmio [21]. After the user selected the areas to be restored, the
algorithm would automatically fill these areas with the information around them, which
achieved considerable success.

In 2016, the first image inpainting model known as Context Encoder (CE) [22] and
based on generative adversarial networks (GANs) [23] was proposed. The core idea is
the channelwise fully connected layer, which is similar to the standard fully connected
layer, but each channel handles its characteristics separately. Next, multiscale neural patch
synthesis (MSNPS) [24] was regarded as the enhanced CE. The researchers introduced local
texture loss to ensure that the fine details of the missing area were similar to other parts.
Then, another classical model of image inpainting was Globally and Locally Consistent
Image Completion (GLCIC) [25]. It used dilated convolution instead of the fully connected
layer for a larger receptive field, and then the global discriminator and local discriminator
were introduced in the training process. PGGAN [26] embedded residual mechanisms and
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PatchGAN [27] in the GLCIC to enhance the performance. In contrast to the discriminator
of GAN, the output of the PatchGAN discriminator was the matrix of the prediction labels.
Shift-Net [28] introduced the shift–connection layer to U-Net for filling in missing regions
of any shape with sharp structures and fine-detailed textures. In the same year, Partial
Convolutions (Partial Conv) [11] used partial convolution to predict the area, and the
prediction did not depend on the initial value of the hole. It was the first model to train in
irregular masks. The results proved the effectiveness of the irregular mask training strategy.

Recently, an image inpainting model with adversarial edge learning known as Edge-
Connect [29] was proposed. It divided the image inpainting task into two steps: edge
prediction and image inpainting based on the edge. The second step is similar to the CGAN.
Then, Gated Conv [10] followed the idea of EdgeConnect. The authors of Gated Conv
extended the image inpainting to user-guided inpainting. By providing a sketch, the model
would generate an image that had the same edge as the sketch. They also proposed a gated
convolution to replace the convolution operation to learn the effectiveness of each feature
in each location. The primary distribution of the recent methods is summarized in Table 1.

Table 1. Comparison of different approaches, including Cont Atten [9], Partial Conv [11], Gated
Conv [10], and our approach.

Methods Cont Atten Partial Conv Gated Conv RATH (Ours)

Nonlocal X X X
Free-Form X X X

Edge-Guided X X
Residual Attention X

3. Method and Materials
3.1. Coarse-to-Refinement Network

While target hiding and image inpainting are similar, they produce distinct outputs.
Image inpainting imposes no constraints on the modality of the generated image except
for textural consistency. In contrast, target hiding treats the object as the foreground and
the rest as the background. Its objective is to synthesize new images containing only the
background. Therefore, training a target-hiding model primarily involves learning the
textural characteristics of the background. In practice, however, the core capability of target
hiding is filling missing regions with surrounding pixels. As such, when the missing area in
the image inpainting corresponds to the target region in the target hiding, the two methods
share the same goal.

The architecture of the proposed Residual Attention Target-Hiding (RATH) model
is summarized in Figure 1. To obtain optimal hiding results, this paper removed targets
before inputting images into the network such that the excised regions were excluded from
midnetwork processing. This compelled the network to infer the missing sections based on
the remaining pixels. This paper implemented a coarse-to-refinement network architecture
akin to Gated Conv [10], which proved that the encoder–decoder architecture is better
suited for image inpainting compared to the U-Net [30] employed in Partial Conv [11],
especially when masks are centrally located. We replaced the gated convolution with
residual attention modules, which are depicted in the red rectangle in the dashed box in
Figure 1 to reduce calculations and parameters. The engineered module can also furnish
original features postconvolution. Consequently, the inpainting outcomes more closely
resemble the original images. In the bottom module of the coarse encoder–decoder, this
paper opted for dilated networks to extract deeper features to inpaint the missing segments.

After the coarse network, a skip connection layer is implemented to furnish the input
mask and the incomplete original images. The mask region in the coarse network output is
retained, while the remaining region is replaced with the original image. Subsequently, the
refinement network persists in honing the inpainted pixels, which contain two branches:
one is the same as the coarse network, and the other uses contextual attention layers to
fuse both the inpainting and original features. Furthermore, this paper expanded the
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fusion patch to provide a more global context. The outcomes from the two branches
undergo channelwise concatenation before connection with the identical decoder present
in the coarse network. The discriminator employed in the RATH model adopts a patch-
based architecture. The outputs are prediction matrices, where each element indicates the
probability of the patch being “real” or “fake”.

Figure 1. The two-stage generator. Refinement Network refines the preliminary inpainting results of
the Coarse Network.

3.2. Methodology
3.2.1. The Proposed Residual Attention Module

Convolutional modules are critical to the overall performance of the model. Com-
pared to Partial Conv [11] and Gated Conv [10], gated convolution offers the following
advantages: (1) The parameters in gated convolution are meaningful and trainable. Partial
Conv heuristically classifies all spatial locations as either valid or invalid. This means
that all spatial locations within the mask region are assigned weights according to the
partial mechanism, and these weights cannot be trained. (2) Gated convolution is more
flexible, since the effectiveness of the pixels can be learned during training without being
limited to the weight set, which is specifically designed for image restoration. However,
we observed a substantially prolonged training time and significant instability in the loss
function during our experiments when applying Gated Conv for image inpainting. Gated
convolution achieves two branches with the same channel number through a single convo-
lution operation. One branch acts as a control gate for the other branch. The parameters
in both the “gate” and those it controls are fully trainable, since they are updated during
training. Let I denote the input to the module. This operation can be formulated as

HG = σ(Gating(I))� φ(Feature(I))

= σ(∑ ∑ Wg · I)� φ(∑ ∑ W f · I)
, (1)

where HG represents the output of the gated convolution, Gating(I) represents the “gate”,
and Feature(I) represents the features waiting to be selected by Gating(I). The parameters
Wg and W f have the same value and denote the kernels in the gated convolution. The
function φ can be any activation function, while σ is confined to the sigmoid function
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to limit the output within (0, 1). The core of gated convolution lies in the elementwise
product operation, which consumes substantial computational resources. At the same time,
the complexity of the model increases with its depth, thereby leading to overfitting when
trained for an extended period. Therefore, we proposed a residual attention module for the
image inpainting network. An illustration of our module and other alternatives is provided
in Figure 2.

(a) (b)

(c) (d)

Figure 2. Illustration of four modules. The gated convolution could be regarded as a special attention
mechanism. (a) Gated convolution. (b) Attention. (c) Self-Attention. (d) Residual attention.

The “gate” mechanism is proposed early in the attention mechanism [31]. The output
of the attention module HA can be formulated as

HA = σ(Mask(I))� φ(Trunk(I)), (2)

where Mask(I) represents the gate controlling the output of Trunk(I). In the application of
attention modules, the Mask(I) and Trunk(I) have various structures. Although gated con-
volution and attention modules have the same expression, their implementation methods
are different. The Mask(I) and Trunk(I) could be obtained with the same convolutional
kernels as in gated convolution. Inspired by this process, this paper replaced the Trunk(I)
in the attention mechanism, or Feature(I) in gated convolution, with the input, which is
called the self-attention mechanism. It was formulated as follows:

HSA = σ(Mask(I))� I (3)

As shown in Figure 2, the inputs are connected directly to the elementwise product. In
this paper, one convolutional layer is inserted before the attention modules to extract input
features during the forward pass of the training. The kernel size of each of the self-attention
modules is 1 to obtain channelwise features. This significantly decreases the overall number
of model parameters and accelerates training.

However, the gradient transfer problem still exists. Let θ denote the parameters of the
mask branch and φ denote the parameters used in the previous layer to extract information
I. The gradient of the self-attention module can be computed as follows:

∂HSA(I, θ, φ)

∂φ
= σ(Mask(I, θ))

∂I(φ)
∂φ

(4)

Due to the sigmoid function, the values in σ(Mask(I, θ)) always stay within (0, 1).
Then, the gradient value has the risk of developing toward near zero, which is also called
the gradient disappearance. Therefore, this paper introduced a residual mechanism to
mitigate the problem of gradient disappearance. The output of the residual attention
mechanism HRA can be calculated by Formula (5). In addition, the calculation of the
gradient of HRA follows the Formula (6).
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HRA = σ(Mask(I))� I + I = (1 + σ(Mask(I)))� I (5)

∂HRA(I, θ, φ)

∂φ
= (1 + σ(Mask(I, θ)))

∂I(φ)
∂φ

(6)

Given that 1 exists in the gradient, the weights of ∂I remain confined between (1, 2).
To mitigate the risk of gradient explosion, rectified linear unit (ReLU) activation functions
are applied after each convolution operation. Additionally, we insert one convolutional
layer before the residual attention module to preclude the retention of the original veridical
information in the inpainting outcomes. The kernel size of the residual attention module is
set to 1 to extract channelwise features. As depicted in Figure 2, if n denotes the number
of channels of Trunk(I), then Gating(I), Feature(I), and Mask(I) share the same value.
However, by factorizing the convolution operation in the gated convolution into two
successive steps, the residual attention module affords greater flexibility. The total number
of parameters can be modulated contingent upon available computational resources. The
elementwise product enables the learning of a dynamic feature selection mechanism for
each channel and spatial location, thereby conferring the same benefits as gated convolution.
For a substantial quantity of convolution kernels, the self-attention mechanism and gated
convolution yield nearly equivalent outcomes.

In this work, we substituted the intermediate layers with residual attention modules.
Due to having more parameters, gated convolution exhibits superior performance in extract-
ing global and local information. The gated mechanism can support a soft mask training
strategy in the initial stage of the network. Consequently, we retained gated convolution
in the upsampling layer, downsampling layer, and the initial and final convolution layers
of the coarse and refinement networks. This strategy aims to balance the computational
cost across layers, thereby reducing the number of weight parameters and simplifying the
model. Relative to Gated Conv, our model contains 1 MB fewer parameters and achieved
improved performance.

3.2.2. The Larger Fusion Patch Size of the Contextual Attention Layer

The primary innovation of Cont Atten [9] resides in the contextual attention layer. To
synthesize more photorealistic images, contextual attention extracts image patches from
the foreground and background to serve as convolution kernels. This process is illustrated
in Figure 3.

Figure 3. The structure of the contextual attention layer. To mitigate the substantial computational
burden, this layer resizes the input dimensionality by half while maintaining the original input shape
for the output.



Remote Sens. 2023, 15, 4731 8 of 23

The contextual attention layer departs from the conventional approach of employing
direct convolution and elementwise multiplication in the attention module. To mitigate the
substantial computational burden, this work resizes the input dimensionality by half while
maintaining the original input shape for the output. Two image extraction operations are
performed on the input: the first is to obtain the original information and the second is
to acquire information after downsampling. The extraction mechanism can preserve the
native input values. With these primordial input values serving as kernels, the convolution
operation can be regarded as a self-attention mechanism. The model furnishes similarity
scores between each patch. Subsequently, convolution operations integrate these scores
within the fusion module. The mask branch is intended to suppress probabilities outside
the same mask area. Upon completion of the result, the extracted features are utilized as
transformation convolution kernels to realign the input matrix to its original shape. The
resulting output is then merged with the other branch in a channelwise fashion.

The prior fusion module conducts two transform operations and two convolutions
with a unit matrix of size 3. By letting Meye represent the identity matrix, the fusion module
can be formulated as follows:

Fuse(HSC) = (Conv((Conv(HSC, Meye))
T , Meye))

T (7)

This paper replaced the formula with the following:

Fuse(HSC) = Conv(Conv(HSC, Meye), Meye) (8)

As shown in Figure 4, to facilely contrast the convolution transformations, the original
image undergoes division by 8; absent this preprocessing, the ensuing pixel values would
exceed 255. “Conv with Trans” represents the outcomes obtained via Equation (7), whereas
“Only Conv” denotes the results yielded by Equation (8). Our experiment validated the
equivalency of both formulations under simplified conditions. In addition, the identity
matrix only fuses the two neighborhoods. Therefore, for simplifying the calculation and
enlarging the patch size, this paper replaces the fusion module with two convolutional
operations that employ unit matrices consisting entirely of 1 s. Then, the fusion module
can cover eight neighborhoods, whose formula is as follows:

Fuse(HSC) = Conv(Conv(HSC, Mone), Mone) (9)

Figure 4. Comparison of the two fusion modules.

3.2.3. Free-Form Mask

Before Partial Conv [11], the conventional method for image inpainting involved
the use of a rectangular mask at the center. However, this approach lacked flexibility
and controllability, as the masks were not considered a pivotal component of the overall
model. Despite attempts at introducing random rotations, dilations, and cropping, the
resulting irregular masks ended up being mere transformations of the original mask, with
limited effectiveness in image inpainting. Furthermore, when applied to target hiding,
the unpredictability and uncontrollable nature of the target shapes posed a significant
challenge. Therefore, it became necessary to devise a more sophisticated algorithm that
could effectively address these limitations.

To address the limitations of the previous approaches, this paper proposes a novel
algorithm that generates randomized masks with irregular shapes during training. The
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shape of the mask can cover various forms such as lines, circles, and rectangles, and, by
limiting the available range, the algorithm randomly applies these graphics onto a zero
board of the same size as the original images. The shape of the resulting mask is illustrated
in Figure 5. The input comprised images with masked regions. Figure 6 delineates the
distinctions between regular and irregular masks. By introducing unique masks for each
training instance, overfitting is avoided, and the random irregular masks significantly
improve the model’s ability to handle target shapes with nonconventional geometries.
Experimental results demonstrated the efficacy of the proposed free-form mask training
strategy for image inpainting.

Figure 5. The examples in the training process. The inputs are images with masks covered, and the
outputs are results inpainted by models.

Figure 6. Comparison of the two mask generation strategies.

3.2.4. Edge Extracted by Semantic Segmentation

The proposed model also includes edge-guided target hiding as one of its functions.
In previous research, Yu et al. [10] introduced sketches or edges into the image inpainting
model using gated convolutions, which guide the model in inpainting the image based on
the edges. In this paper, the sketch mainly represents the edge of the target, thus serving
as the conditional label in the CGAN. However, traditional edge extraction algorithms
often perform poorly on remote sensing images. These images contain more refined details
compared to ordinary images [32], thereby making it difficult for traditional methods that
rely on contour continuity and gradient changes. Targets within remote sensing images
often have various colors with large gradients in both value and channel differences, thus
causing edge extraction algorithms based on these factors to lose their effectiveness. To
address this issue, Figure 7 demonstrates a comparison between the edges extracted from
the Canny operator and the proposed method.

Therefore, this paper leverages image dilation and erosion techniques to accurately
extract building edges from the results of semantic segmentation. This methodology is
notably more straightforward and precise compared to using either the holistically nested
edge detection(HED) [33] or the Canny operator. Despite the exemplary edge extraction
performance of HED, antecedent training on pertinent imagery remains imperative before
utilization. Moreover, for edge-guided [34] target hiding, the network needs only acquire
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representations of the target boundaries rather than comprehensive edges. As illustrated in
Figure 7, the edges produced by the Canny operator suffer from many noise points that
cannot be utilized for training an image inpainting network. Moreover, by contouring
these edges with a semantic segmentation network, we enrich the adaptability of our image
inpainting approach towards automatic target hiding. Thus, this paper replaced the HED
with semantic segmentation in Gated Conv [10].

Figure 7. Comparison of edge extraction methods. The Canny operator results exhibit many noise
points, while ours are significantly clearer and more accurate.

For training the edge-guided target-hiding function, the edge channel is incorporated
into the discriminator’s loss calculation. Ultimately, the edge-guided image inpainting
model requires three inputs of equal shape (image, mask, and edge channel).

3.3. Materials

All ablation experiments were performed on a 64-bit Linux system that was equipped
with a single NVIDIA GeForce RTX 2080 Ti graphics card and 12 GB of memory. All models
were trained using Tensorflow v1.14. This paper utilized the Adam optimizer in both
the generator and discriminator, with a learning rate of 1 × 10−4. The batch size for all
experiments was set to 16, and the iterations were limited to 108. The experiments saved
the model at every 2000 iterations. The loss function used for our experiments remained
unchanged and was the same as for Gated Conv.

The Mnih Massachusetts Building dataset [35],consisting of 151 aerial images with
a size of 1500 × 1500, was chosen for evaluation in this paper. The main foreground in
the dataset is buildings, and the images were cut into 256 × 256 for analysis purposes.
Two different input types were utilized for the image inpainting and target-hiding experi-
ments in this paper. In the case of image inpainting, the focus was on inpainting random
missing regions across the input image. Alternatively, for target hiding, inpainting was
made specifically to regions in the input images where the targets were located. Addition-
ally, the paper sought to extend its work to include edge-guided target-hiding tasks, which
required a different training process than that used for image inpainting and traditional
target-hiding tasks. The datasets used in the following experiments contain 4464 pictures,
with 3960 pictures used for the training set, 144 pictures used for the validation set, and
360 pictures used for the test set.

4. Experiment and Result
4.1. Experimental Comparison for the Image Inpainting Task

The main objective of this experiment was to evaluate the performance of various
models in inpainting images. The focus of image inpainting is on repairing or reconstruct-
ing the overall appearance of the image, thus ensuring that it appears visually consistent.
Thus, the masks used in this experiment were irregular and randomly generated. This
section compares the computational cost of the models, along with their respective results,
evaluation indices, and loss curves. Specifically, the free-form mask strategy was only ap-
plied to the Gated Conv with an attention mechanism and a residual attention mechanism,
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while the other models employed their respective training strategies. In both the training
and testing phases, each sample consisted of a single image and an irregular mask. During
testing, researchers drew random masks to assess the proposed strategy’s ability to inpaint
irregular regions.

4.1.1. Computational Cost

The training speed and weight parameters for each model are presented in Table 2.
Notably, the self-attention (Self-Atten) network and residual attention network had re-
duced parameters by 1 MB and exhibited faster training speeds compared to other models.
The Self-Atten network represents our model with gated convolutions substituted by
self-attention modules, though it achieved inferior performance compared to RATH and
suffered from unstable training dynamics. Consequently, the experiments focused our
analyses on the proposed RATH architecture.

Table 2. Comparison of three image inpainting methods for calculation cost. The minimal values
within each indicator are denoted by boldface font.

Methods Gated Conv Self-Atten Res Atten (Ours)

Parameters 9M548K958B 8M400K414B 8M400K414B
Training Speed (sec/batch) 0.705 0.66 0.66

4.1.2. Image Inpainting Results

The foremost objective comprises demonstrating the efficacy of the proposed method-
ology for image inpainting. The results of the various inpainting models are presented in
Figure 8. All models demonstrated the ability to inpaint missing image regions, but their
performance outcomes varied. Notably, the distribution of pixels around the boundary of
the missing region remained inconsistent, particularly in the case of Partial Conv. Addition-
ally, while the objects in the generated images appeared valid, their contours were imperfect.
Small objects such as houses were adequately reconstructed by all models, but larger objects
suffered from varying levels of distortion. In particular, the buildings inpainted by Partial
Convo and Cont Atten exhibited suboptimal performance. Another significant difference
among the various models was in their ability to learn object relationships, most notably
the correlation between buildings and roads. Typically, there exists a well-established
relationship between these two objects, whereby buildings are situated along the edges
of roads on either the left or right side. Our proposed models exhibited consistent and
remarkable performance in generating accurately positioned roads flanked by buildings
that conformed to this known relationship. In terms of the overall performance, our models
demonstrated superiority compared to the other approaches evaluated in this study.

This paper also assessed the performance of image inpainting using similarity indica-
tors, which are presented in Table 3. Ablation studies were conducted with the novel fusion
module (termed new fusion) and the residual attention module (Res Atten). Empirical eval-
uation revealed that the former yielded only marginal performance improvements, whereas
inclusion of the latter engendered substantial gains. Our proposed method exhibited the
highest values regarding the peak signal-to-noise ratio (PSNR), `2 Sim indices, thereby
indicating that images generated by the residual attention mechanism had the highest
similarity in pixel distribution with the original images. Furthermore, our method achieved
higher values on both a `1 similarity (Sim) and universal quality image index (UQI), thereby
verifying its efficacy for image restoration tasks.
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Table 3. Evaluation index of models on image inpainting. The maximal values within each indicator
are denoted by boldface font.

Methods Cont Atten Partial Conv Gated Conv Gated Conv (New Fusion) Gated Conv (Res Atten) RATH (Ours)
`1 Sim (%) 98.47 98.54 98.59 98.56 98.67 98.61
`2 Sim (%) 87.98 88.30 88.50 88.54 88.59 88.62

PSNR 18.81 19.10 19.29 19.36 19.42 19.43
SSIM (%) 91.86 92.04 81.49 90.21 91.94 91.72
UQI (%) 90.98 91.38 91.62 91.45 91.69 91.70

Figure 8. Example cases of qualitative comparison on image inpainting. The images from left to
right represent the inputs, original images, and the results of Cont Atten, Partial Conv, Gated
Conv, and ours. The orange boxes illustrate the variances in inpainting outcomes among the
respective models.

4.1.3. Loss Curves

In Figures 9 and 10, we compare the loss curves of the generator and discriminator
with those of the Gated Conv. The x axis represents the number of epochs, measured
in units of 104, and the y axis corresponds to the loss value. A smoothing technique
was applied to the loss curve to present a more consistent representation of the training
trend. The initial loss curve exhibited significant divergence, which may have obscured the
underlying pattern. By employing this approach, we aimed to enhance the clarity of the
displayed training trend. The Gloss values of both models showed a decrease over time. In
contrast, our Dloss curve demonstrated an initial increase followed by a subsequent decline.
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Figure 9. The loss curves of generators. Our method demonstrated narrower ranges of change on
Gloss. (a) Gated Conv. (b) Ours.
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Figure 10. The loss curves of discriminators. Our Dloss curve exhibited a trend of initial growth
followed by decline and demonstrated narrower ranges of change in the Dloss. (a) Gated Conv.
(b) Ours.

To further demonstrate the convergence properties of our model, Figure 11 depicts the
discriminator loss curve over an extended training period. As can be observed, the loss
consistently decreased and eventually plateaued, thereby indicating that the model reached
a stable equilibrium. Our proposed methodology exhibited smaller generator and discrim-
inator loss fluctuations compared to the Gated Conv, as is evidenced by the loss curves.
This demonstrates a more stable and effective training process. The superior convergence
properties of our framework, with narrower loss ranges, indicate that it is better optimized
and outperforms Gated Conv for image inpainting. Our loss trajectory analysis provides
quantitative verification that the training stability afforded by our approach translates to
improved model performance.
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Figure 11. The training loss curve of our discriminator over an extended training period. It exhibited
a trend of initial growth followed by a decline.

4.2. Experimental Comparison for the Target-Hiding Task

The emphasis in target hiding is on selectively suppressing or obscuring specific
content within the image while maintaining overall image quality and coherence. Therefore,
the masks in this experiment covered the targets completely. The results and evaluation
indexes are displayed in this section.

In comparison with the method presented in [7] for the autodetection and hiding of
targets, we further enhanced the effectiveness of the results obtained through semantic
segmentation. Predictions made by a semantic segmentation network yield more accurate
contours, but they may not cover objects entirely, thereby leading to exposed regions that
reveal information about hidden objects. In light of this drawback, we dilated the labels
of our datasets, thereby utilizing the resulting masks as missing portions. The input of
the network consisted of images containing four channels (R, G, B, and mask) with hiding
applied to the outputs. Figure 12 displays the results of our hiding models.

In this task, we considered several crucial aspects that influenced the effectiveness
of our approach. The first point was similar to image inpainting, where the focus was
on maintaining continuity between the inpainted and original regions. Inconsistency
in pixel distribution can cause discontinuities, thereby making it difficult to distinguish
differences in pixel values visually, especially for high-density target areas. However,
evaluating the mean image pixel values can help address these challenges. The second
aspect concerned whether objects were entirely hidden, and although Gated Conv and our
model demonstrated good hiding performance overall, large-object hiding remained an
issue. Lastly, attention must be paid to the characteristics of the generated objects, such
as inpainting a region covering part of a road, which must be restored while preserving
continuity with the original road. As depicted in Figure 12, the original characteristics of the
roads remained intact when there were only a few missing parts. Our model successfully
maintained the width and high-continuity of the original roads, thus highlighting its
effectiveness in this regard.
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Figure 12. Target-hiding case study with comparison. The orange boxes illustrate the variances in
hiding outcomes among the respective models.

Table 4 shows the evaluation indexes of these models. Due to the lack of accepted
evaluation methods for target hiding, similarities were selected as evaluation indices to
ascertain the extent to which the generated results adhered to the underlying features of the
original images, including the `1 Sim, `2 Sim, PSNR, the structural similarity index (SSIM),
and the UQI. The `1 Sim and `2 Sim reflect the overall pixel distribution difference between
the original and inpainted images. The similarity values for these methods were relatively
close, thereby indicating that they could remove targets with a similar pixel distribution as
the original images. However, since buildings have different colors than the background,
the similarity between the results and the original will generally be lower when removing
targets. The target-hiding task aims to comprehensively remove designated objects. Lower
values for the evaluation metrics indicate fewer residual traces of the targets. The empirical
results demonstrated that our proposed approach achieved maximal suppression of the
target buildings compared with existing methods. Thus, our model had the minimum value
in both the SSIM and UQI indicators compared with the other models, thus proving its
efficacy in target hiding. To further substantiate the superiority of our method, additional
experimental validations were conducted as follows.



Remote Sens. 2023, 15, 4731 16 of 23

Table 4. Evaluation indexes of models on target hiding. Each indicator’s maximal and minimal
values are denoted by boldface and red font, respectively.

Methods Cont Atten Partial Conv Gated Conv RATH (Ours)

`1 Sim (%) 97.45 97.51 97.68 97.52
`2 Sim (%) 85.32 85.26 86.02 85.54

PSNR 18.19 18.32 18.60 18.33
SSIM (%) 88.92 88.71 88.71 88.18
UQI (%) 86.41 86.74 87.31 86.40

4.3. Experimental Comparison for the Edge-Guided Target-Hiding Task

Although the above method could, to some extent, effectively conceal targets, the
location and contour information of the inpainted images were still discernible. To address
this issue, we proposed an extension to our model by incorporating edge guidance for
image generation. Specifically, given that our primary objective is to hide objects, this
paper trained the models using only object edges. By changing the original object edge, the
proposed model effectively obscured an object’s location information to mislead the viewer.
In addition, the target-hiding model’s robust inpainting ability enabled the preservation
of valid detail characteristics of the targets, thereby concealing their location information.
There were two edge-generating methods for the edge-guided target hiding: one was the
automatic method by semantic segmentation, and the other was drawn by hand.

4.3.1. Edge Generated by Semantic Segmentation

This section compares the proposed method with the other models, and the results
are presented in Figure 13. The edges used in this experiment were generated by semantic
segmentation. The Partial Conv and Cont Atten methods did not incorporate the edge-
guided function. Comparative evaluations were thus restricted to gated convolution and
the proposed approach. Our model yielded results that were more similar to the original
images, as are demonstrated by the results in the yellow region of the figure. In particular,
the fake buildings generated by the two methods varied in color, whereas our model
reproduced the same color as the original buildings. However, we observed that the
existing methods struggled to handle large objects, with particularly poor results for large
buildings. Additionally, they were unable to deal with the connection part between the
foreground and background, such as the red region.

The comparison between our proposed method and the gated convolution model on
the edge-guided target-hiding task is presented in Table 5. To demonstrate the efficacy
of our method, this paper computed the similarity between the results and the original
images. Specifically, this paper replaced the true targets with fake targets at their respective
locations. A higher similarity evaluation index indicates a greater ability to perform this
task. Our method achieved higher values in all five indexes, which demonstrates its
superior suitability for the edge-guided target-hiding task.

Table 5. Evaluation indexes of models regarding edge-guided target hiding. The maximal values
within each indicator are denoted by boldface font.

Methods Gated Conv RATH (Ours)

`1 Sim (%) 97.45 97.84
`2 Sim (%) 85.31 86.44

PSNR 18.19 18.80
SSIM (%) 89.50 90.44
UQI (%) 88.21 89.01
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Figure 13. Edge-guided target-hiding case study with comparison. The images from left to right
represent the inputs, original images, the results of Gated Conv, and the results of our method. The
orange boxes illustrate the variations in edge-guided hiding outcomes, while the red boxes illustrate
the deficiencies in different models.

4.3.2. Edge Generated by Hand Drawing

In this section, we drew some edges that differed from the original building. By using
masks to cover the buildings that were intended to be concealed, our models were able to
generate new objects on the incomplete images. These hidden results have been illustrated
in Figure 14. The ability to generate fake objects in both models is undeniable; however,
there are still differences regarding the relationship between the foreground and back-
ground. We made the building have a regular arrangement and painted edges and masks,
thereby giving the impression that there were roads in the images. Our model was able to
recognize the regular pattern and generate the expected roads between the fake buildings,
as is shown in the second row. Although the new roads in the first row were similar to
the original image, the crossover point of the two roads was not executed well. The two
images did not connect as ’T’ roads as we had expected. Our model was highly effective in
dealing with the connection points between the generated roads and the original roads,
as is demonstrated in the third row. As Figure 14 indicates, the finely designed mask and
edge images were able to guide the models in generating new and significantly different
complete images.



Remote Sens. 2023, 15, 4731 18 of 23

Overall, our proposed method produced significant improvements over the existing
approaches, thus effectively concealing the target location and contour information while
maintaining the visual fidelity of the original images.

Figure 14. Hand-drawn edge-guided target-hiding case study with comparison. The buildings were
regularly arranged in edges and masks. The orange boxes illustrate the variances in hiding outcomes
among the respective models.

5. Discussion

The proposed method demonstrates a particular aptitude for the target obfuscation
task, especially in confounding viewers through hand-drawn edge manipulation. This was
achieved through several key contributions. Firstly, the gated convolution was replaced
with a residual attention module during the core stages spanning downsampling to upsam-
pling. While the residual attention module shares a similar underlying mechanism with
gated convolution, the latter possesses a greater number of parameters, thereby conferring
superior representational capacity for feature extraction. Moreover, this module transmitted
the original features between successive gated layers, thereby constraining the inpainting
to better resemble the underlying image distribution. Consequently, our inpainting results
exhibited greater verisimilitude with the original images, as was evidenced by the optimal
quantitative similarity metrics.

Secondly, the fusion patch size was enlarged by substituting the identity matrix with
an all-ones matrix. In contrast to the identity matrix, which aggregates over two local neigh-
borhoods, the all-ones matrix can fuse scores across a broader eight-neighborhood region.
This module can thus be viewed as implementing a blurring operation. Consequently,
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the inpainting and original features are blended more seamlessly through this smoothing
process, thereby improving the qualitative integrity of the inpainted outputs.

Thirdly, the edge extraction operation was optimized through the integration of se-
mantic segmentation, which also conferred advantages for automated target obfuscation.
By training exclusively on target boundaries, the proposed method exhibited a particular
aptitude for hiding targets that were delineated by hand-drawn contours. This allowed real-
istic synthetic camouflage to be generated that accorded with the original data distribution,
thereby effectively confounding viewers.

In the end, this paper integrated semantic segmentation and target hiding into an
automated framework to handle large-batch data. This section describes the workflow
of our proposed application for automated target hiding by leveraging deep learning ap-
proaches. As illustrated in Figure 15, the framework first performs semantic segmentation
on the input image to generate semantic maps. Based on the maps, target regions can
be identified and concealed through two alternative techniques—direct replacement or
edge-guided synthesis—depending on the desired hiding effects. This automated pipeline
enables efficient batch processing for target hiding in large datasets.

Figure 15. Schematic diagram of the automated target-hiding application workflow.

We utilized Inception-v3 U-Net, which substituted the decoder with Inception-v3
as the semantic segmentation network. This approach achieves a relatively balanced
trade-off between training efficiency and segmentation performance. The dilate operation
expands the prediction area, thereby reducing the impact of semantic segmentation errors
on target-hiding outcomes. Our proposed framework focused on achieving effective target
hiding. This paper presents two techniques to process original images containing targets,
depending on the desired hiding effects.

The first employs a direct target-hiding method, which takes an image and mask
as inputs, where the mask delineates the coverage area and is derived from dilating the
segmentation outputs. This method aims to completely remove targets from the original
image. The second leverages an edge-guided approach with the image, mask, and edge as
inputs. The edge also originates from segmentation but preserves more spatial details. This
edge-guided technique generates simulated targets for more natural integration rather than
removal. As discussed in Sections 4.2 and 4.3, the two methods achieve very different hiding
effects—one eliminates real targets, while the other synthesizes fake targets. Our framework
provides the flexibility to produce varied results based on the desired concealment goals.

Figure 16 compares the outputs of our direct target-hiding and edge-guided target-
hiding techniques. From left to right are the following: original images, semantic seg-
mentation results, target-hiding inputs, edge-guided inputs, direct hiding outputs, and
edge-guided outputs. The target-hiding inputs provide only location information, thus
resulting in random synthesized objects such as trees, grass, buildings, or parking lots in
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the filled regions. Thus, direct hiding is better suited for completely removing any targets
from the images.

In contrast, the edge-guided inputs contain contour information delineating fore-
ground objects. Thus, the edge-guided model training is more targeted and learns to
generate replacements that are consistent with the input contours. When the input edges
match the typical foreground patterns seen during training, such as buildings, the model
synthesizes building-like structures in the missing areas. Furthermore, the edge-guided
approach captures relationships between foreground and background elements such as
buildings and roads. This domain-specific knowledge enables more semantically coher-
ent and natural scene completion compared to direct target hiding. The edge guidance
provides critical spatial cues to generate plausible foreground objects that blend with the
original backgrounds.

Figure 16. Comparison of target hiding and edge-guided target hiding. From left to right: original
images, semantic segmentation results, target-hiding inputs, edge-guided inputs, direct hiding
outputs, and edge-guided outputs. The orange boxes illustrate the variations in hiding outcomes,
while the red boxes illustrate the deficiencies in different methods.

Furthermore, the edge utilized is a simple binary image of white and black pixels
that can be easily generated. As shown in Figure 14, a random mask and hand-drawn
outline could also be supplied to our framework. However, the hand-drawn outline should
reflect similar spatial distributions as the targets, such as buildings in a regular grid layout.
When provided with a reasonable edge, our proposed edge-guided target-hiding technique
can effectively conceal the desired target regions. The ability to use crude inputs such as
hand-drawn outlines highlights the robustness and flexibility of our edge-guided approach
for target hiding under varied conditions.
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However, for both inpainting and hiding outcomes, the boundary between the in-
painted and original pixels exhibited discontinuities in the final rendered results. While not
always conspicuous to casual human observation, these artifacts such as ghosting neverthe-
less persist, even though they may not be readily apparent upon cursory visual inspection.
The underlying cause stems from reliance on the `1 or `2 loss functions during optimization.
Despite minimizing aggregate pixelwise deviation, such losses fail to explicitly encode
spatial smoothness constraints between real and inpainting areas. An important direction
for future work involves developing edge-aware losses that are attuned to both target
boundaries and missing region contours.

6. Conclusions

In this work, we proposed the RATH model for hiding targets in emergency remote
sensing mapping. The distinctive feature of our approach is the substitution of gated
convolutions with a residual attention mechanism, thereby enabling the propagation
of original features between the downsampling and upsampling stages. This allows
synthetic targets to be generated that conform to the true data distribution. Our model
demonstrated a high aptitude for target-hiding tasks while maintaining computational
efficiency. The residual attention mechanism also resolved issues of gradient instability
without compromising the hiding effect. Furthermore, this paper replaced the kernels
used for fusing contextual attention layers with full one matrices to enlarge the patch size.
In addition, this paper extended the edge-guided function to preserve target contours
and positions, thus misleading viewers with fabricated targets. The edges came from
the semantic segmentation results. Compared with other methods, our method had 1M
fewer training parameters than Gated Conv, as well as the highest similarity, at 90.44%
SSIM, for edge-guided target hiding. Experiments proved that our model is well-suited
for target-hiding tasks. Finally, by integrating semantic segmentation, our framework can
efficiently process large batches of remote sensing data in an automated manner.

Although our proposed model demonstrated effectiveness for both image inpainting
and target-hiding tasks, artifacts such as ghosting and discontinuities remained evident
along the boundaries between the inpainted and original regions. This stems from the cur-
rent approaches failing to integrate loss functions that explicitly promote the edge congruity
between synthesized and authentic areas. This could result in artifacts or discontinuities
along the boundaries. To address these limitations, weighting the `1 or `2 loss function,
which is analogous to the contour loss approach proposed in [16], will be explored in
future work to enhance boundary smoothness and enable seamless transitions between
synthesized and authentic areas.
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