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Abstract: Photon counting LiDAR can capture the 3D information of long-distance targets and has the
advantages of high sensitivity and high resolution. However, the noise counts restrict improvements
in the photon counting imaging quality. Therefore, how to make full use of the limited signal counts
under noise interference to achieve efficient 3D imaging is one of the main problems in current
research. To address this problem, in this paper, we proposes a 3D imaging method for undulating
terrain depth estimation that combines constant false alarm probability detection with the Bayesian
model. First, the new 3D cube data are constructed by adaptive threshold segmentation of the
reconstructed histogram. Secondly, the signal photons are extracted in the Bayesian model, and
depth estimation is realized from coarse to fine by the sliding-window method. The robustness
of the method under intense noise is proven by sufficient undulating terrain simulations and out-
door imaging experiments. These results show that the proposed method is superior to typical
existing methods.

Keywords: photon counting LiDAR; constant false alarm; Bayesian model; 3D imaging

1. Introduction

A 3D LiDAR imaging system based on single-photon detection technology can achieve
picosecond time resolution, using the time-correlated single-photon counting (TCSPC)
module to record the time-of-flight information of the echo photons [1–4]. Photon counting
LiDAR also shows unique advantages in long-distance detection due to the single-photon
detection sensitivity of the Geiger-mode avalanche photodiode (Gm-APD) [5,6]. It not
only improves the detection ability of unit laser pulse energy and dramatically reduces
the requirement of laser emission power but can also obtain more effective echo data by
increasing the detection time. The above advantages make photon counting LiDAR able
to solve the application limitations and technical problems of traditional linear detection
within a specific range. Therefore, photon counting LiDAR is increasingly used in three-
dimensional detection fields, such as topographic mapping, autonomous driving and
underwater detection [7–9].

When detecting the weak echo signal of a long-distance target, both the signal pho-
tons and the noise photons reaching the Gm-APD photosensitive surface may trigger the
photoelectric conversion process and generate an electrical pulse signal [10,11]. Therefore,
in addition to the effective information for the 3D reconstruction of the target, the weak echo
photon counts also carry noise counts. The noise level is closely related to the background
light and the detector’s dark counts. Although the use of a narrow-band filter module
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and the setting of the time gate can help to reduce the interference of background noise,
the echo data still contain more noise data, which restricts the improvement of image recon-
struction quality [12,13]. Aiming at this problem, the existing research methods generally
only analyze the echo data of each pixel in the time dimension. Hence, the quality of image
reconstruction decreases sharply at low signal-to-background ratio (SBR) values. In recent
years, scholars have introduced image spatial correlation to algorithm design, improving
the quality of photon counting imaging [14,15]. However, this kind of method is more
suitable for the 3D reconstruction of static targets with less fluctuation of depth information.
In particular, if the target’s depth information to be measured is in a state of continuous
change at low SBR values, the corresponding signal counts are discretely distributed in
multiple time bins of the histogram. At this time, the neighborhood data set constructed by
image spatial correlation cannot show prominent aggregation characteristics on the time
axis, which is not conducive to acquiring signal photon counts.

Therefore, for the problem of target imaging with varying depth fluctuations, the effi-
cient extraction of signal photon counting data is still an urgent problem to be solved. Based
on Bayesian inference, the relationship between the prior distribution and the parameters
of the likelihood function is constructed [16]. We can obtain new information from the data;
then, the prior probability is updated to obtain the posterior probability. Since the concept
of Bayesian inference was established, many researchers have continuously improved it.
It has been widely used in data processing in the fields of CCD, EMCCD, CMOS, multi-
spectral radar and multisensor fusion, as shown in Table 1. The application of Bayesian
statistical theory to different sensors indicates that the processing and analysis of data
based on the Bayesian statistical approach are helpful in obtaining better estimation results.

Table 1. Application classification of the Bayesian algorithm in different sensors.

Paper Sensor Approach

Gan [17] SAR Sparse Bayesian framework

Qu [18] CCD Dynamic Bayesian network

Riutort-Mayol [19] CMOS Bayesian multilevel random effects

Harpsoe [20] EMCCD Full Bayesian inference

Halimi [21] Multispectral LiDAR Hierarchical Bayesian

Tachella [22] Photon counting LiDAR Based on an area interaction process, Strauss process
and RJ-MCMC

Altmann [23] Photon counting LiDAR Adaptive Markov chain and Monte Carlo method

Yang [24] SAR and CCD sensor fusion Variational Bayesian inference

Ravindran [25] Camera, LiDAR and radar sensor fusion CLR-BNN

Based on this, we propose a single-photon 3D imaging method for targets with depth
fluctuations. The time bin position of each pixel where the signal counts are located can
be obtained by combining constant false alarm probability detection with the Bayesian
model. This method profoundly analyzes the statistical difference between noise and signal
counts in the time dimension of the echo data and comprehensively considers the spatial
correlation between the echo data of each pixel, aiming to mine more available information
from the limited echo data and improve the 3D reconstruction performance of the target.
The main contributions of the proposed method are as follows:

1. Construction of a new 3D cube data model at a low time resolution scale by setting a
constant false alarm probability, which greatly reduces the amount of data and the
computational complexity of subsequent processing;

2. Following the Bayesian framework, a posterior probability model of signal photon
counts is established to solve the time bin position. The time bin position of a single-
photon cluster can be updated by introducing the support point set;
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3. The extraction of signal counting data from coarse-scale to fine-scale is realized
by the sliding-window method, and the depth information can be obtained while
maintaining high precision;

4. Simulation and experimental results show that the proposed method has a positive
effect on the 3D imaging of targets with undulating depth information.

The remainder of this paper is structured as follows. In Section 2, typical existing
research on target 3D reconstruction algorithms is reviewed. In Section 3, the theoretical
knowledge of single-photon detection involved in this method is analyzed. In Section 4,
the proposed method is described in detail. In Section 5, terrain detection simulation
experiments with different depth fluctuations are carried out, and the reconstruction results
are displayed and analyzed. In Section 6, an outdoor long-distance target imaging verifi-
cation experiment is introduced, and the experimental results are analyzed. In Section 7,
we discuss the advantages and disadvantages of the proposed algorithm. In Section 8,
the work reported in this paper is summarized, and prospective future research directions
are proposed.

2. Related Work

With the development of photon counting imaging technology, a series of photon
counting 3D imaging algorithms have been developed [26–28]. According to the distribu-
tion characteristics of echo photon data in the time and space dimensions, it can be divided
into two estimation methods based on time and space–time correlation. The estimation
method based on time correlation usually only uses the statistical difference of photon data
in the time domain to distinguish signal counts and noise counts to achieve the purpose
of filtering. The peak method is the most simple and intuitive time-of-flight information
extraction algorithm [29]. This method solves the corresponding distance information by
extracting the time bin position of the maximum counts in the photon statistical histogram.
Nguyen et al. introduced and compared the performance of four different peak detec-
tion algorithms in [30]. The cross-correlation algorithm is another typical method. This
method analyzes the matching characteristics between the echo response and the system
instrument response function, which can obtain the target distance by calculating the cross
correlation [31]. Feng et al. proposed a fast depth imaging denoising method using the tem-
poral correlation of signal count data [32]. Based on the non-uniform Poisson probability
model, this method extracts the signal response set of each pixel by setting an appropriate
detection threshold. The above techniques can effectively filter out the interference of noise
photon counts in the case of high SBR and sufficient pulse accumulation times. However,
the detection time is usually limited in practical applications, and the reconstruction effect
declines sharply as the number of signal photon counts in the echo data decreases.

Under weak echo detection or limited detection times, signal photon counts are easily
submerged. Therefore, the spatial correlation of the image was introduced to improve the
imaging quality. Kirmani et al. proposed the first photon imaging algorithm, which uses
the first photon detected by each pixel for target imaging and reflectivity estimation [33].
This algorithm has a better reconstruction effect and can recover detailed information about
the target at high SBR. However, the first photon count is likely to be generated by the
background light, and the 3D reconstruction of the target could be worse in the intense
noise background. Shin et al. proposed a sparse regularization target depth estimation
algorithm for array detection under weak light conditions [34]. The depth and intensity
information is estimated by establishing an accurate single-photon statistical detection
model and combining the lateral smoothness and longitudinal sparsity in the detected
scene space. In this method, the detection time of each pixel is the same, which is helpful in
realizing the parallel detection of each pixel. Rapp et al. proposed an algorithm for unmix-
ing signal and noise [35]. The acceptable minimum photon set is calculated by presetting
the proper detection false alarm probability, and a suitable time window (Tp < Twind 6 Tr)
is selected to find the time-of-flight dataset with the maximum photon count, where Tp and
Tr represent the laser pulse width and the detection period, respectively. The time-of-flight
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information of the signal photon cluster is filtered by the sliding window method, and con-
structing superpixel and regularization constraints to smooth the image. Li et al. proposed
a three-dimensional deconvolution computational imaging algorithm that abstracts the
solution of the 3D information of the image into a deconvolution model [36]. The three-
dimensional space–time matrix is used to solve the reflectivity and depth simultaneously,
and the relationship between the reflectivity and depth of the target is also optimized.
Hua et al. proposed the first signal photon unit (FSPU) imaging method [37]. The photon
data sequence that meets the requirements is selected by setting the number of echo photon
counts that can be accepted in a specific time range. The first signal photon unit data
are used instead of the first photon in the FPI algorithm. In the case of increasing noise,
the reconstruction effect of FSPU is significantly better than that of FPI. Chen et al. proposed
a single-photon imaging method based on multiscale temporal resolution combined with
adaptive threshold segmentation [38,39]. By constructing multiple histograms and pixel
blocks with different temporal resolutions, the practical distinction between noise and
signal is realized, but the quality of reconstruction in a noisy environment is degraded.

In addition, the deep learning algorithm can be applied to optimize single-photon 3D
imaging algorithms. Lindell et al. proposed an image reconstruction algorithm suitable for
sensor fusion detection [40]. By constructing a multiscale convolutional neural network to
process photon counting data from a single-photon detector array and intensity images
collected by the camera, the resolution of the target depth estimation is improved. Still,
the imaging quality is significantly reduced in long-distance detection. Through the use
of feature extraction and a non-local neural network, Peng et al. analyzed the correlation
characteristics of echo photons in the space–time dimension in long-distance detection
and combined the two loss terms of KL divergence and TV regularization to constrain the
network training so as to complete the extraction of echo signal photon counts under intense
noise [41]. Tan et al. established a multiscale convolutional neural network combined with
a defined loss function for multiple returns, which converts the depth extraction into the
removal of range ambiguity and can recover the detailed information of the target [42].
Peng et al. proposed an image reconstruction algorithm based on a unified deep neural
network that can obtain better reconstruction fidelity under low SBR and severe blurring
caused by multiple returns [43]. Although using deep learning algorithms improves the
overall control of the image, it often requires a lot of sample training.

In short, based on the analysis of the time dimension, the use of spatial connections
of pixels can make up for the lack of time sampling, which can improve the performance
of photon counting imaging. However, if the target distance information fluctuates sig-
nificantly, the imaging effect of the existing algorithm is non-ideal when the signal echo
is weak. Therefore, in this paper, we propose a photon counting 3D imaging method for
undulating terrain and verify the effectiveness of the proposed method in simulations of
terrain detection and outdoor imaging experiments.

3. Basic Theory
3.1. Data Model
3.1.1. Time Characteristics

In this work, we assume that the emitted laser pulse shape is Gaussian (s(t) =(
2πσp

2)−1/2 exp
(
−t2/2σ2

p

)
, where σp is the root mean square pulse width). As described

in [34], when the pixel
(

Ni, Nj
)

is detected by a laser pulse, the output response of the
Gm-APD detector is a non-homogeneous Poisson process with both noise and signal echo.
The total intensity is

λi,j(t) = ηαi,js
(
t− 2zi,j/c

)
+ ηbλ + bd (1)

where zi,j is the distance to be measured, αi,j is the target reflectivity, bλ denotes the back-
ground light level and bd is the detector dark counts. η = ηmηq represents the photon
detection efficiency, where ηm and ηq represent the avalanche efficiency and the quan-
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tum probability, respectively. In a detection period (Tr), the total photon counts can be
expressed as

Λi,j =
∫ Tr

0
λi,j(t)dt = ηαi,jS + (ηbλ + bd)Tr (2)

where S =
∫ Tr

0 s(t)dt.
In photon counting imaging detection, as shown in Figure 1, the echo photon counting

model can be obtained after the accumulation of four pulse detection cycles at pixel
(

Ni, Nj
)
.

It can be seen that the echo photon data of each pixel include two parts: signal counts and
noise counts, which are represented by red and blue lines, respectively. Signal detection has
the characteristics of slight variance. Therefore, the signal photon clusters can be considered
to be concentrated near the depth of the target to be measured. However, compared with
the signal data, it is generally believed that the noise data are constant or slightly changed
in a specific time range, showing the characteristics of uniform distribution.

Figure 1. Echo photon data observation model. Here, we show the generation process of echo photon
data in four pulse detection cycles when there is only one target to be measured. When the first and
third pulses are emitted, a signal count (red) is generated, and noise counts (blue) are generated
after each pulse is emitted. (The red dashed line represents the signal response, the blue dashed line
represents the noise response, and the black solid line represents the combined response.)

A detection period (Tr) can be divided into Nb equal interval time bins (∆), where
the time interval is defined as τ, that is, the time resolution of the histogram. Nb = Tr/τ
represents the total number of time bins in a detection period (Tr). After the accumulation of
multiple pulse detections, the echo photon counts in each time bin are counted. Signal and
noise can be distinguished by analyzing the different probability distribution characteristics
of the echo data.

3.1.2. Spatial Characteristics

From the spatial correlation of the image, it can be seen that there is a correlation
between the echo photon data of adjacent pixels in the photon counting LiDAR detection,
that is, the photon counts of the pixel

(
Ni, Nj

)
and its neighborhood pixels are very likely

to come from a similar distance. Since pixels with similar lateral positions and reflectivity
often belong to the same object and have similar depths, the method of echo photon data
detection in similar pixels can be used to make the aggregation characteristics of signal
photon clusters more apparent, as shown in Figure 2.
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Figure 2. Space sampling schematic diagram of photon counts. When there is no signal count in the

echo photon data of the pixel
(

Ni, Nj

)
, the count data of its 3 × 3 neighborhood pixels can be used

to form a new dataset, which is helpful in solving the time range of the signal counts of the pixel
(The red dashed line represents the signal response and the blue dashed line represents the noise
response).

3.2. Probability Model

The single-photon detection model conforms to statistical optics theory. Since the
echo signal reflected by the target is usually weak, the generation of signal and noise
photoelectrons can be approximately considered to satisfy the Poisson random process,
and the superposition model can also be modeled by Poisson distribution [10,44]. In single-
pulse detection, the time bin (∆) is used as the sampling unit, and the total photon counts
in time bin ∆ are

nq
i,j = ns

i,j + nn
i,j =

∫ t+τ

t
λi,j(t)dt (3)

where q ∈ [1, Nb]. Here, we define ns
i,j = ηαi,j

∫ t+τ
t s(t)dt and nn

i,j = (ηbλ + bd)τ, which
represent signal counts and noise counts, respectively. The influence of dark counts (bdτ)
is obviously less than that of background light, which can be ignored in most daytime
radiation analyses. The probability density function of producing k photoelectrons in time
bin ∆ is

P(k) =

(
nq

i,j

)k

k!
exp

(
−nq

i,j

)
(4)

Based on this, the probability of at least one detection event is

PDS = PA

[
1− exp

(
−nq

i,j

)]
(5)

where PA = 1/(1 + ηΨntd) is the arm probability, Ψn is the noise count rate and td is dead
time of the detector.

If the response of the detector is triggered by noise photons, it is called a false alarm.
If the noise photon triggers at least one avalanche event, the false-alarm probability of
single-pulse detection can be obtained as

PFAS = PA

[
1− exp

(
−nn

i,j

)]
(6)
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In actual detection, the SBR of the system is usually improved by multiple detections.
We assume that the cumulative number of pulses is M, and the detection probability and
false-alarm probability can be expressed as

PD =
M

∑
k=kth

Ck
MPk

DS(1− PDS)
M−k (7)

PFA =
M

∑
k=kth

Ck
MPk

FAS(1− PFAS)
M−k (8)

where ki,j = 1, 2, ..., M, and kth stands for the signal recognition threshold.
When the numbers of pulse accumulations and signal photon counts increase, the de-

tection probability of the system increases. At the same time, the false-alarm probability
increases with an increase in the number of noise photon counts. When the signal recogni-
tion threshold is set, the detection probability and the false-alarm probability are reduced,
and the influence on the false-alarm probability is pronounced. Therefore, in practical
applications, the appropriate signal recognition threshold (kth) can be selected according to
the expected detection probability (PD) and the acceptable false-alarm probability (PFA).

4. Methods

In the 3D imaging of the target, the echo photon data of each pixel are randomly
generated by the scene attributes. We constructed a 3D echo data cube with time resolution
of τ, which consists of the echo photon counts of the whole image, as shown in Figure 3a.
Each pixel contains a photon statistical histogram, as shown in Figure 3b. Due to the
interference of noise counts, the signal counts in the histogram are likely to be submerged,
which not only increases the difficulty of practical information extraction but also leads to
significant estimation error. In addition, the amount of data calculation for depth estimation
also increases with the increase in noise interference.

Figure 3. Three-dimensional echo photon data schematic diagram. (a) The 3D echo data cube is
composed of all pixels of the whole image when the time resolution is τ. (b) Photon statistical
histogram of a single pixel in the cube, where the horizontal axis represents the position information
of the time bin and the vertical axis represents the number of photons in each time bin.

In our previous work [38], a single-photon imaging method with multiscale time reso-
lution was proposed. This method clusters the signal counts into a time bin by generating
multiple histograms with different time resolutions and adaptive threshold segmentation
techniques, then separates them from the noise. Based on the idea of this method, we
further propose a photon counting 3D undulating terrain depth estimation method based
on the Bayesian model. The main ideas are shown in Figure 4.
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Figure 4. Framework of our proposed method.

The overall idea of our method is to complete the rough extraction of signal photon
counts at a low time resolution scale. Then, based on the obtained photon count data, a slid-
ing window of appropriate width is set to accurately extract the time-of-flight information
of each pixel at a high time resolution scale, and the target distance estimation process is
realized from coarse to fine. The proposed method includes three main steps. In the first
step, the histogram of each pixel is reconstructed by reducing the time resolution, and the
constant false-alarm probability is set to adaptively adjust the signal recognition threshold
to complete the rough screening of the data. In the second step, the support point set is
introduced, and the Bayesian estimation model is constructed. The prior probability and
likelihood probability of the Bayesian model are used to filter and discriminate the time bin
position information of signal counts. In the third step, the photon counting data obtained
by the above processing are processed by the sliding window method, and the distance
information of each pixel can be obtained at a high time resolution scale.

4.1. Construction of the New Cube Data Model

We assume that the image size is Nr × Nc, and each pixel is accumulated by M
detection cycles. The 3D cube data with time resolution of τ can be expressed as H0 =

∑Nr
i=1 ∑Nc

j=1

(
Ni, Nj, pq

i,j, nq
i,j

)
, where q ∈ [1, Nb], pq

i,j and nq
i,j represent the q-th time bin of

pixel
(

Ni, Nj
)
, the photon statistical histogram and the photon counts in the q-th time bin,

respectively. Based on the theory discussed in Section 3.2, it can be concluded that the
false-alarm probability is related to the noise counts and the signal recognition threshold.
When the false-alarm probability is determined, the signal recognition threshold is adjusted
adaptively according to the number of noise counts.

Therefore, when we set the acceptable false-alarm probability (PFA), the signal recogni-
tion threshold (kth) of each pixel is

P
[

M, Ψn,R τ, kth

]
6 PFA (9)

where Ψn is the noise count rate. The time resolution of the reconstructed histogram can be
expressed as

{Rτ|Rτ = ζR0τ, ζR0τ ∈
[
1, 6σp

]}
, where σp = FWHM/2

√
2 ln 2 represents

the root mean square pulse width, and FWHM is the full width at half maximum of the laser
pulse. R0 is the reduction multiple of the time resolution when histogram reconstruction is
performed for the first time. ζR0 represents reduction multiple when the time resolution is
continuously reduced for histogram reconstruction, where ζ = {1, 2, ..., ζN |ζN ∈ N∗}.

It is assumed that the reconstruction time resolution of the photon statistical his-
togram is Rτ = R0τ, and that the total number of time bins in the detection period
(Tr) is RNb = Nb/Rτ. Based on this, we can obtain the reconstructed 3D echo data
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(RH0 = ∑Nr
i=1 ∑Nc

j=1

(
Ni, Nj, pr

i,j, nr
i,j

)
) with time resolution (R0τ) by performing histogram re-

construction on each pixel. Then, we can extract the photon counts (RNi,j =
{

Rnk
i,j|k ∈ r

}
),

which are higher than the signal recognition threshold (kth). The corresponding time bin
position (RPi,j =

{
R pk

i,j|k ∈ r
}

) in the reconstructed 3D echo data (RH0) of pixel
(

Ni, Nj
)

can also be obtained, where r =
{

r|RH0

(
Ni, Nj, pr

i,j, nr
i,j

)
> kth, r ∈

[
1,R Nb

]}
.

The specific process of setting a constant false-alarm probability to extract the signal
photon cluster is shown in Figure 5.

Figure 5. Photon counting data extraction process under constant false-alarm probability. (a) The
reconstructed histogram with a time resolution of R0τ. (b) The new cube data with a time resolution
of R0τ obtained by constant false-alarm detection. (c) Subhistogram of a single pixel in the new cube
composed of photon counts higher than the signal recognition threshold (kth).

Through the above preliminary screening processing, we can obtain the new cube data
model (RHk

0 = ∑Nr
i=1 ∑Nc

j=1

(
Ni, Nj,R pk

i,j,
R nk

i,j

)
, where k ∈

[
1,R Nb

]
). At this time, the sub-

sequent data to be processed (RHk
0) are considerably reduced compared to the amount of

data in H0. The specific calculation process of the method is shown in Algorithm 1.

Algorithm 1: Adaptive threshold detection method under a constant false alarm

1: Input H0, PFA, Rτ = R0τ, M, Ψn
2: for i = 1 : Nr
3: for j = 1 : Nc

4: Initialize:RPi,j = 0,R Ni,j = 0, Ri,j =
(

RPi,j,R Ni,j

)
5: compute kth: P

[
M, Ψn,R τ, kth

]
6 PFA

6: update r =
{

r|R H0

(
Ni, Nj, pr

i,j, nr
i,j

)
> kth, r ∈

[
1,R Nb

]}
RPi,j =

{
R pk

i,j|k ∈ r
}

R Ni,j =
{

Rnk
i,j|k ∈ r

}
Ri,j =

(
RPi,j,R Ni,j

)
7: if R H0

(
Ni, Nj, pr

i,j, nr
i,j

)
< kth, r ∈

[
1,R Nb

]
8: Rτ = 2R0τ
9: repeat the above steps
10: end if
11: end for
12: end for
13: R Hk

0 = ∑Nr
i=1 ∑Nc

j=1

(
Ni, Nj,R pk

i,j,
R nk

i,j

)
14: Output: R Hk

0
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4.2. Bayesian Screening Process

Based on the new cube data RHk
0 = ∑Nr

i=1 ∑Nc
j=1

(
Ni, Nj,R pk

i,j,
R nk

i,j

)
, we introduce the

support point set Si,j of pixel
(

Ni, Nj
)
, which is composed of the photon counts of its

eight adjacent pixels. Assuming that Si,j =
(SPi,j,S Ni,j

)
, the time bin position and the

corresponding photon counts are respectively expressed as SPi,j =
{

S p1
i,j,

S p2
i,j, ...,S pm

i,j

}
and

SNi,j =
{

SN1
i,j,

S N2
i,j, ...,S Nm

i,j

}
, where m ∈

[
1,R Nb

]
, S pm

i,j and SNm
i,j respectively represent

the time bin position and the number of photon counts.
When the support point set Si,j is given, the signal photon counts RNi,j

∗ and the time
bin position RPi,j

∗ of each pixel can be obtained by using the preset time bin position
detection threshold pth. The overall architecture of the Bayesian estimation is shown
in Figure 6.

Figure 6. The overall architecture of the Bayesian estimation method. When the support point set
(Si,j) is known, the preset time bin position detection threshold (pth) is used to determine the position
of the time bin where the signal photon cluster is located. Then, it is judged whether the photon
counts at this position and the photon data of Si,j satisfy the Poisson distribution so as to obtain the

time bin position (RPi,j
∗) and the corresponding photon number (R Ni,j

∗) of pixel
(

Ni, Nj

)
that satisfy

the Bayesian model.

The the Bayesian model is mainly constructed to extract the time bin position with the
most photon counts of each pixel. The time bin position of the signal photon cluster can be
estimated in the Bayesian model, that is

p
(

RPi,j|SNi,j,S Pi,j

)
=

p
(SNi,j|RPi,j

)
p
(RPi,j|SPi,j

)
p
(

SNi,j|SPi,j
) (10)

where p
(RPi,j|SPi,j

)
and p

(SNi,j|RPi,j
)

are the prior distribution and likelihood probability,
respectively. The denominator (p

(SNi,j|SPi,j
)
) is independent of the estimated value of RPi,j,

so it is ignored here.
The actual depths of pixel

(
Ni, Nj

)
and its support point set are usually in a limited

depth interval. Therefore, the time-of-flight information corresponding to these depth
values is also within a limited range. Based on this feature, we assume that the prior
probability of the time positions to be solved obeys the Gaussian distribution

p
(

RPi,j|SPi,j

)
∝

exp

[
−
(

R pk
i,j−

Sµi,j

)2

2σ2

]
i f |R pk

i,j −S µi,j| 6 pth

0 otherwise

(11)

where pth is the time bin position detection threshold, the specific selection rules of which
are introduced in Section 5.2.
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We accumulate the time bin position (SPi,j) of the echo photon data in the support
point set (Si,j) into the same coordinate system and define the time bin position with the
most occurrences as the Gaussian distribution mean, as shown in Figure 7.

Figure 7. The selection diagram of the Gaussian distribution mean (Sµi,j). The time bin position
(SPi,j) of the echo photon data in the support point set (Si,j) is accumulated into the same coordinate
system, and the time bin position with the most occurrences is selected as the Gaussian distribution
mean. The horizontal axis represents the position of the time bin, and the vertical axis represents the
proportion of the position of each time bin.

Thus, the preliminary estimation of the position of the time bin where the signal
photon cluster is located can be expressed as

RP′i,j = arg max
RPi,j

[
p
(

RPi,j|SPi,j

)]
= arg max

RPi,j

exp

− (RPi,j −S µi,j
)2

2σ2

 (12)

Next, we need to solve the likelihood probability. The echo signal received by photon
counting LiDAR is usually very weak. The generation of signal photon counts can be
approximated to satisfy the Poisson random process. Therefore, we describe the likelihood
probability as Poisson distribution

p
(

SNi,j|RPi,j

)
=


(Sλi,j)

R Ni,j

R Ni,j!
exp

(
−Sλi,j

)
i f RN′i,j ∼ Pois

(SNi,j
)

0 otherwise
(13)

where Sλi,j is the mean value of the Poisson distribution of the support point set’s photon

counts, and RN′i,j =
{

RNt
i,j|t ∈ k

}
represents the number of photon counts corresponding

to RP′i,j, where k =
{

k|R pk
i,j =

R P′i,j, k ∈
[
1,R Nb

]}
. A discriminant diagram of the Poisson

distribution is shown in Figure 8.
Through the Bayesian screening process, we can estimate the time bin position and

the number of signal photon counts:

RPi,j
∗,R Ni,j

∗ = arg max
RPi,j ,S Ni,j ,SPi,j

[
p
(

RPi,j|SNi,j,S Pi,j

)]
= arg max

RPi,j ,S Ni,j ,SPi,j

[
p
(

SNi,j|RPi,j

)
p
(

RPi,j|SPi,j

)]
(14)

The specific process is shown in Algorithm 2.
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Figure 8. Discriminant diagram of the Poisson distribution to judge whether the photon number
(R N′i,j) corresponding to the result obtained under the prior condition and the photon number (R Ni,j)
in the support point set (Si,j) satisfy the Poisson distribution. The distribution of the photon counts
that conform (green) and do not conform (red) to Poisson distribution in the histogram is shown.

Algorithm 2: Signal photon cluster extraction method based on the Bayesian model

1: Input R Hk
0 , RPi,j, SPi,j,S Ni,j, Sµi,j

2: Bayesian model: p
(

RPi,j|S Ni,j,S Pi,j

)
∝ p
(

S Ni,j|RPi,j

)
p
(

RPi,j|SPi,j

)
3: for i = 1 : Nr
4: for j = 1 : Nc
5: if |R pk

i,j −
S µi,j| 6 pth

6: p
(

RPi,j|SPi,j

)
∝ exp

[
−
(

R pk
i,j−Sµi,j

)2

2σ2

]
, k ∈

[
1,R Nb

]
7: update RPi,j

′ = arg max
R Pi,j ,S Pi,j

[
p
(

RPi,j|SPi,j

)]
k =

{
k|R pk

i,j =
R Pi,j

′, k ∈
[
1,R Nb

]}
RPi,j =

{
RPt

i,j|t ∈ k
}

R N′i,j =
{

R Nt
i,j|t ∈ k

}
8: if R N′i,j ∼ Pois

(
S Ni,j

)
9: update RPi,j =

R P′i,j
RPi,j

∗,R Ni,j
∗ = arg max

R Pi,j ,S Ni,j ,S Pi,j

[
p
(

S Ni,j|RPi,j

)
p
(

RPi,j|SPi,j

)]
10: end if
11: else
12: RPi,j

∗ = 0, R Ni,j
∗ = 0

13: end if
14: end for
15: end for
16: H = ∑Nr

i=1 ∑Nc
j=1

(
Ni, Nj,R Pi,j

∗,R Ni,j
∗
)

14: Output: H

4.3. Depth Information Estimation

Based on the Bayesian estimation result (H = ∑Nr
i=1 ∑Nc

j=1

(
Ni, Nj,R Pi,j

∗,R Ni,j
∗)), the

time bin position of the signal counts is obtained when RPi,j
∗ 6= 0. Otherwise, the time bin

position information is not obtained, and we call these pixels “empty” pixels. It is necessary
to construct the support point set of pixel

(
Ni, Nj

)
again to find the time interval where
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the signal counts are located. The extraction of “empty” pixel photon count data and the
sliding window diagram are shown in Figure 9.

Figure 9. The extraction of “empty” pixel photon count data and the sliding window diagram.

(a) The 3D echo data cube composed of pixel
(

Ni, Nj

)
and its 3 × 3 support point set after Bayesian

estimation. (b) The number of signal counts of each pixel in the support point set. (c) The time
interval of the signal counts in (b) when the time resolution is R0τ. We extract the photon count data
in this time interval in the 3D echo data cube with a time resolution of τ and use a sliding window to
slide through all the extracted data in turn.

According to the estimated time bin position information, the photon counts at
the corresponding position of each pixel are extracted from the original data (H0 =

∑Nr
i=1 ∑Nc

j=1

(
Ni, Nj, pq

i,j, nq
i,j

)
) with a time resolution of τ. Then, we use a window of size

w = Υτ to slide through the extracted photon count data (RK ∈
{

1, 2, ...,R k
}

, where
Υ 6 R0). The window position and the number of photons with the largest photon counts
are recorded, and the time of flight (ti,j) of each pixel can be obtained. The depth informa-
tion can be calculated using the formula ẑi,j = cti,j/2 so as to reconstruct a 3D image of the
target scene.

5. Simulations
5.1. Undulating Terrain Detection

We performed simulations of undulating terrain detection to verify the reconstruction
effect of the proposed method. Here, the Monte Carlo method generates echo photon data
obeying Poisson distribution. Echo data with different noise intensities are generated by
setting different noise fluxes. In the simulation, the detection period is Tr = 0.5 ms, the
time resolution is τ = 500 ps, the photon detection efficiency is η = 2.8% and the pulse
accumulation time is M = 20. Based on the simulated data, the average count generated by
each laser echo pulse is 0.16, so the photons per pixel (PPP) level are 3.2 when 20 pulses
are accumulated.

We chose three kinds of terrain with different undulating degrees as the detection
target. The position of the three terrains on the map, the terrain truth depth image and the
point cloud map containing noise data are shown in Figure 10.
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Figure 10. Undulating terrain detected in three simulation experiments. From left to right: the posi-
tion of the three terrains on the map, the true value of the depth and the three-dimensional scatter
map of the terrain containing noise data. (a) Terrain 1 with a depth variation of 13.3 m. (b) Terrain 2
with a depth variation of 39.2 m. (c) Terrain 3 with a depth variation of 58.1 m.

5.2. Simulation Results
5.2.1. Algorithm Parameters and Evaluation Criteria

We must first determine the time bin position detection threshold used in our method.
The specific steps are:

1. Combined with the distribution characteristics of photon counts in the time and space

dimensions, the data (RHk
0 = ∑Nr

i=1 ∑Nc
j=1

(
Ni, Nj,R pk

i,j,
R nk

i,j

)
) selected by a constant

false-alarm detection are equivalent to a detection period. Figure 11a shows the
statistical result of data (RHk

0) in terrain 1. It can be seen that the photon counts show
prominent aggregation characteristics within a certain range.

2. The photon counts in the interval where the echo data are concentrated are extracted
for Gaussian fitting. The results are shown in Figure 11b. It can be observed that
the standard deviation of Gaussian fitting of terrain 1 is σg1 = 9.36. Repeating the
above steps, the Gaussian fitting results of terrain 2 and terrain 3 are σg2 = 20.57 and
σg3 = 41.96, respectively. The fitting curves are shown in Figure 11c,d.
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Figure 11. The results of Gaussian fitting. The data used for Gaussian fitting are the new cube data
(R Hk

0) of the whole image, with an image size of 30 × 32 and a PPP level of 3.2. (a) Data (R Hk
0) of

Terrain 1 equivalent to a detection period. (b) Terrain 1 with a depth variation of 13.3 m. (c) Terrain 2
with a depth variation of 39.2 m. (d) Terrain 3 with a depth variation of 58.1 m.

The above Gaussian fitting is based on the data (RHk
0) of the entire detection area.

Because the terrain depth information is continuously changing and the support point set
only contains the terrain depth information in a small neighborhood, the terrain depth
difference in the support point set can be considered to be smaller than the entire target
detection area. Therefore, the dispersion of the position distribution of the time bin where
the actual depth of each pixel in the support point set is lower than that of the entire image.
In the Gaussian distribution, ±σ contains a probability of 68.3%. Therefore, we set the time
bin position detection thresholds of the three terrains as pth1 = 18, pth2 = 42 and pth3 = 84,
respectively.

To intuitively evaluate the 3D reconstruction ability of different methods, we use
the root mean square error (RMSE) and the signal-to-reconstruction error ratio (SRE) as
evaluation criteria [45]

RMSE =

√√√√ Nr

∑
i=1

Nc

∑
j=1

(
ẑi,j − zi,j

)2/Nr Nc (15)

SRE =
Nr

∑
i=1

Nc

∑
j=1

10 log10

(∥∥ẑi,j
∥∥2
/∥∥ẑi,j − zi,j

∥∥2
)

(16)

5.2.2. Results of Undulating Terrain Detection

Current typical research methods of signal photon count adaptive screening using con-
stant false-alarm probability include the Chen algorithm and the Rapp algorithm. The Chen
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algorithm uses the technique of reconstructing multiscale time resolution histograms to sep-
arate signal and noise. The selection of the reconstruction time resolution is usually more
significant than the laser pulse width. The Rapp algorithm filters out the photon counts that
meet the detection conditions by establishing a superpixel, and its data calculation amount
is usually significant. In order to verify the reconstruction effect of the proposed method,
several sets of undulating terrain reconstruction comparison experiments are carried out.

In the simulations, the noise count rates are set to 0.10 Mcps, 0.77 Mcps, 1.41 Mcps
and 1.84 Mcps. We quantitatively compare the effects of terrain 3D reconstruction using
the Rapp algorithm, the Chen algorithm and our method at different noise count rates.
The histogram reconstruction parameter (Rτ = {5τ, 10τ, 20τ}) and the sliding window
width (w = 2τ) are used in our method.

The depth variation of undulating terrain 1 is 13.3 m. Figure 12 and Table 2 show
the reconstruction results of different methods. The effect of the Chen algorithm is the
worst among the three methods. The estimated depth information is more accurate when
the noise count rate is lower than 0.77 Mcps. However, the reconstruction performance
decreases sharply as the noise intensity increases. Compared with the reconstructed image
results of the Rapp algorithm, the estimation results of the proposed method are closer to
the undulating state of the actual terrain. The depth information estimated by the Rapp
algorithm has fluctuations, and the performance is not as good as that of our method.

It can be seen from the reconstruction results of terrain 1 that the depth estimation
values obtained by our method are most consistent with the actual values under four noise
count rates. The performance of terrain reconstruction using our method is significantly
better than the other two methods. When the noise count rate is 0.10 Mcps, the RMSE
and SRE obtained by the proposed method are 0.05 m and 71.52 dB, respectively. When
the noise count rate increases to 1.84 Mcps, the RMSE increases to 0.14 m, and the SRE
decreases to 62.38 dB. From the increment of RMSE and SRE, it can be seen that with the
change in noise interference intensity, the proposed method still presents relatively superior
terrain depth estimation results and better restores the undulating state of the terrain.

The depth variation of undulating terrain 2 is 39.2 m. Figure 13 and Table 3 show the
reconstruction results of different methods. When the noise count rate is between 0.10 Mcps
and 1.84 Mcps, the RMSE of terrain reconstruction using our method increases from 0.09 m
to 0.28 m, the RMSE of the Rapp algorithm increases from 1.40 m to 2.13 m and the RMSE
of the Chen algorithm increases from 1.23 m to 16.89 m. The variation range of the RMSE
show that for the depth estimation of undulating terrain 2, the proposed method has a
minor estimation error at the same noise count rate, and the effect is more significant.

Under the four noise counting rates, the SREs obtained using the proposed method
are 64.23 dB, 59.01 dB, 53.05 dB and 53.82 dB, respectively. Figure 13 show that the 3D
undulating terrain image reconstructed by our method is smoother and has a better visual
presentation effect. Compared with the reconstruction result of low noise interference
(0.10 Mcps), the influence of solid noise interference (1.84 Mcps) is increased. Still, our
method and the Rapp algorithm both show acceptable results, and the method proposed
in this paper is better. The maximum RMSE obtained by our method is 0.28 m. In com-
parison, the minimum RMSE of the Rapp algorithm is 1.40 m, which indicates that the
method has superior depth information estimation performance for the echo photon data
of undulating terrain 2.

The depth variation of undulating terrain 3 is 58.1 m. Figure 14 and Table 4 show the
reconstruction results of different methods. The results show that when the noise count
rate is higher than 1.41 Mcps, the depth information estimated by the Chen algorithm has a
significant error, and almost no reliable information can be obtained. The maximum RMSE
of the proposed method is 1 m. Rapp’s RMSE is between 3.26 m and 3.68 m due to the
significant estimation error, and the estimation results are not as good as those obtained
with our method. The proposed method can better restore the continuous depth fluctuation
state of terrain 3.
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Figure 12. Reconstruction results of undulating terrain 1. (a) Noise count rate @ 0.10 Mcps. (b) Noise
count rate @ 0.77 Mcps. (c) Noise count rate @ 1.41 Mcps. (d) Noise count rate @ 1.84 Mcps.

Table 2. The RMSE and SRE results of different methods on terrain 1 with a depth variation of 13.3 m.

Noise Count Rate (Mcps) Method RMSE (m) SRE (dB)

Chen 0.49 51.27
0.10 Rapp 0.31 55.14

Proposed 0.05 71.52
Chen 1.07 44.39

0.77 Rapp 0.26 56.56
Proposed 0.07 67.95

Chen 3.29 34.72
1.41 Rapp 0.28 56.17

Proposed 0.14 62.33
Chen 6.94 28.41

1.84 Rapp 0.25 56.93
Proposed 0.14 62.38
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Figure 13. Reconstruction results of undulating terrain 2. (a) Noise count rate @ 0.10 Mcps. (b) Noise
count rate @ 0.77 Mcps. (c) Noise count rate @ 1.41 Mcps. (d) Noise count rate @ 1.84 Mcps.

Table 3. The RMSE and SRE results of different methods on terrain 2 with a depth variation of 39.2 m.

Noise count rate (Mcps) Method RMSE (m) SRE (dB)

Chen 1.23 41.09
0.10 Rapp 2.13 36.35

Proposed 0.09 64.23
Chen 6.26 27.05

0.77 Rapp 1.40 40.00
Proposed 0.16 59.01

Chen 10.12 23.05
1.41 Rapp 1.92 37.24

Proposed 0.31 53.05
Chen 16.89 18.98

1.84 Rapp 2.05 36.70
Proposed 0.28 53.82
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Figure 14. Reconstruction results of undulating terrain 3. (a) Noise count rate @ 0.10 Mcps. (b) Noise
count rate @ 0.77 Mcps. (c) Noise count rate @ 1.41 Mcps. (d) Noise count rate @ 1.84 Mcps.

Table 4. The RMSE and SRE results of different methods on terrain 3 with a depth variation of 58.1 m.

Noise Count Rate (Mcps) Method RMSE (m) SRE (dB)

Chen 1.08 48.22
0.10 Rapp 3.43 38.16

Proposed 0.53 54.32
Chen 6.05 33.24

0.77 Rapp 3.34 38.37
Proposed 0.73 51.56

Chen 19.09 23.48
1.41 Rapp 3.26 38.59

Proposed 0.78 50.97
Chen 31.33 19.60

1.84 Rapp 3.68 37.54
Proposed 1.00 48.84
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Under the four noise count rates, the minimum RMSE values of terrain reconstruction
using the Chen algorithm, the Rapp algorithm and the proposed method are 1.08 m, 3.43 m
and 0.53 m, respectively. The RMSE obtained by the proposed method is at least 50.9%
lower than that obtained by the other two methods. The SRE results presented in Table 4
show that the minimum SRE values of terrain reconstruction using the Chen algorithm, the
Rapp algorithm and the proposed method are 19.60 dB, 37.54 dB and 48.84 dB, respectively.
The proposed method has the best SRE at the same noise count rate. The reconstruction
results of undulating terrain 3 further prove the robustness of the proposed method to the
echo photon data generated by the target with depth fluctuation.

5.2.3. Summary of Simulation Detection Results of Undulating Terrain

Under different noise count rates, the RMSE and SRE change curves obtained using
various methods to reconstruct the three undulating terrains are shown in Figure 15.
Figure 15a shows the changing trend of RMSE, and Figure 15b shows the change in SRE.
Compared with the Chen algorithm, our method can not only retain as many signal counts
as possible but also reduce the interference of noise counts by setting the time resolution
of histogram reconstruction in the range of ±3σ. Therefore, the estimation results of the
depth information of the terrain obtained by the proposed method are more consistent
with the actual depth information. Compared with the Rapp algorithm, our method uses
reconstructed histograms and adaptive signal segmentation technology for rough data
extraction. Then, by introducing a support point set, data screening and discrimination
are carried out in the Bayesian framework, which not only helps to reduce the amount of
calculation but also dramatically improves the accuracy of data discrimination.

Figure 15. The simulation results of three undulating terrains using different algorithms under
different noise levels. (a) RMSE. (b) SRE.

From Figure 15a, it can be concluded that in the depth estimation of the three undulat-
ing terrains, the obtained RMSE values gradually increase as the noise intensity increases.
However, the RMSE increment of the proposed method is significantly lower than that of
the other two methods and has the slightest estimation error. The variation of undulating
terrain depth also affects the quality of reconstruction. When the noise count rate is the
same, the RMSE of reconstruction gradually increases with the increase of the variation of
the three undulating terrains. Compared with the other two methods, the proposed method
has the smallest RMSEs under the same noise interference for different undulating terrains,
and the estimation error is within an acceptable range. It can be seen from Figure 15b
that the SRE of terrain reconstruction decreases with increased terrain depth fluctuation.
The SREs of the proposed method are higher than those of the other two methods at the
same noise count rate, with better estimation results.

The proposed method shows promising results in reconstructing three different ter-
rains. The minimum RMSEs for the reconstruction of undulating terrain 1, undulating
terrain 2 and undulating terrain 3 are 0.05 m, 0.09 m and 0.53 m, respectively. The cor-
responding SREs are 71.52 dB, 64.23 dB and 54.32 dB, respectively. Although the recon-
struction error of the proposed method gradually increases with the fluctuation of the
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noise count rate and undulating terrain depth information, it still has the best RMSE
and SRE compared with the other two methods. By comparing the simulation results of
the three groups of undulating terrain detection, our method has proven effective in 3D
reconstructing of targets with depth fluctuation in high-noise scenarios.

6. Experiments
6.1. Experimental System

A schematic diagram and the main parameters of the photon counting LiDAR system
are shown in Figure 16 and Table 5 [46]. In the laser emission unit, the pulse beam passes
through the beam splitter (BS), the reflecting mirror (RM), the beam expander (BE) and
the 45° perforated reflector (PM); then, it reaches the scanning module. After adjustment of
the transmission direction of the laser pulse by the fast steering mirror (FSM) controlled by
digital signal processing (DSP), it falls on different positions of the target to form a laser
detection dot matrix in the detection area. The echo signal is filtered by a narrow-band
filter (NBF) after passing through the FSM, the PM and the optical focusing lens (FL) and is
transmitted to the photosensitive surface of the Gm-APD single-photon detector through
multimode fiber. After the echo signal is photoelectrically converted, the time-of-flight
information of the laser pulse is measured and recorded by the TCSPC module with a time
resolution of τ = 64 ps. The distance information corresponding to a certain point of the
target can be obtained. A 3D image reflecting the spatial information of the target can be
obtained by performing space–time mapping transformation on the distance information
of each point. The laser pulse emitted by the visible light laser is used as an indicator laser
to facilitate visual observation of laser pointing.

Figure 16. Experimental setup of our photon counting LiDAR system. (a) Block diagram. (b) Physical
image of the experimental device. BS, beam splitter; RM, reflecting mirror; BE, beam expander; PM,
45° perforated reflector; FL, optical focusing lens; NBF, narrow band-pass filter; FSM, fast steering
mirror; DSP, digital signal processing; Gm-APD, Geiger mode avalanche photodiode.

Table 5. Main parameters of the experimental system.

Parameter Value

Wavelength 1064 nm
Pulse width 3.5 ns

Time resolution 64 ps
Laser divergence angle 1.13 mrad

Dead time 41.3 ns
Filter bandwidth ±3 nm

Photon detection efficiency 2.8%
Pulse repetition frequency 5–6 kHz

6.2. Building Imaging Results

To verify the performance of the proposed method in a real imaging environment,
we carried out outdoor experiments. The wavelength of the pulsed laser is 1064 nm,
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the repetition frequency is 5.4 kHz and the image size is 60 × 60 pixels. The target scene
we selected is an outdoor building, and the area indicated by the yellow dotted box is our
detection range, as shown in Figure 17a. The imaging experiments are carried out in a long
time mode and a short time mode. The single-pixel scanning dwell times corresponding
to the two modes are 1 s and 100 ms, respectively. The aim of the long time mode is to
accumulate enough pulse detection times to obtain the true depth image. The short time
mode is mainly used to obtain echo photon data containing different noises for subsequent
algorithm effect verification. Due to the system’s limited storage memory, the time gate of
each pulse is set to 10 µs.

Figure 17. (a) Image of the building in the visible light band in the range of 850–950 m. (b) Three-
dimensional profile corresponding to the selected area shown in (a) (The yellow dashed frame
indicates the range of the detection area).

A continuous-wave laser with a wavelength of 1064 nm is used as the noise source
to simulate the noise environment of different intensities, and the noise level is changed
by adjusting the output power. We use a 1 × 2 multimode fiber coupler with a splitting
ratio of 1:99 to transmit the echo optical signal to the photosensitive surface of the Gm-
APD, including the optical signal received by the receiving optical system and the noise
signal generated by the continuous wave laser. Ports with splitting ratios 99% and 1% are
connected to the optical receiving system and continuous wave laser, respectively.

When collecting the echo photon data of the true depth image, the long time mode is
set, and the continuous-wave laser is turned off. The outdoor building imaging experiments
are carried out at 5 p.m., and the TCSPC module collects data. In the data acquisition
experiment of the true depth image, we set the scanning time of each pixel to 1 s, with a
pulse accumulation number of each pixel of 5.4 K. At this time, we analyze the data and
determine an average count generated by each laser pulse of 0.16. The results show that
the number of signal counts generated by a single pulse in the designed outdoor imaging
experiments is consistent with the setting in the simulations. Then, we use the peak and
median filtering to obtain the building contour depth image, as shown in Figure 17b.
Figure 18 shows that the distance of the building is between 850 m and 950 m.

We designed three sets of comparative experiments. Different noise environments
are simulated by setting three different continuous-wave laser intensities. During the
experiments, the intensity of the emitted laser signal of the pulsed laser is kept unchanged,
and the short time mode is set. We turn on the continuous-wave laser and adjust its optical
power to a lower level. The noise count rate is 0.23 Mcps, and the photon counting echo
data generated by the outdoor building are collected. Then, we increase the optical power
of the continuous-wave laser to moderate intensity, and the corresponding noise count rate
is 0.56 Mcps. We collect the echo photon data of the building imaging. Finally, we continue
to increase the optical power of the continuous-wave laser. When the noise count rate is
about 1.02 Mcps, the echo photon data of building imaging detection under substantial
noise interference is collected. The corresponding SBR levels can be obtained by the formula
SBR = Ns/Nn, which are 0.17, 0.06 and 0.03, respectively.
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Figure 18. The building depth estimation results obtained using the proposed method. (a) Noise
count rate @ 0.23 Mcps. (b) Noise count rate @ 0.56 Mcps. (c) Noise count rate @ 1.02 Mcps.

To be consistent with the PPP level of 3.2 in the simulations, we intercept the echo
photon count data of 20 pulse cycles as the dataset for subsequent algorithm performance
verification. Then, we use the proposed method to perform 3D imaging at three different
noise count rates, where Rτ = {25τ, 50τ, 100τ} and w = 2τ. The 3D imaging results of
the building are shown in Figure 18. At low noise intensity, the surface contour depth
of the building reconstructed by the proposed method is relatively smooth. As the noise
interference increases, the estimation error of some pixels increases, but it still shows the
depth change of the target building, which is represented by different colors.

Furthermore, the Chen and Rapp algorithms are compared with our method. The RMSE
and SRE results of the different methods on the outdoor building are shown in Table 6.
At the three noise count rates, the RMSEs obtained by the proposed method are 2.97 m,
2.99 m and 3.23 m, and the SREs are 49.60 dB, 49.52 dB and 48.86 dB, respectively. The 3D
imaging performance of the proposed method is significantly better than that of the other
two methods. Although the imaging effect of our method is reduced in the case of noise
interference enhancement, the obtained estimation results are still superior to those ob-
tained with the Chen and Rapp algorithms. The results further reflect the effectiveness
of the proposed method in 3D imaging under strong noise, which is consistent with the
conclusions obtained in simulation experiments. The results of outdoor building imaging
show that when the noise count rate is the same, the RMSE obtained using our method
for 3D reconstruction is the lowest, and the SRE is the highest. The proposed method can
achieve the best numerical results and the slightest depth estimation error on the echo
dataset for long-distance outdoor building imaging.

Table 6. The RMSE and SRE results of different methods on an outdoor building at a distance of
850–950 m.

Noise Count Rate (Mcps) SBR Method RMSE (m) SRE (dB)

Chen 3.73 47.61
0.23 0.17 Rapp 3.73 47.61

Proposed 2.97 49.60
Chen 4.11 46.75

0.56 0.06 Rapp 3.31 48.64
Proposed 2.99 49.52

Chen 6.18 43.20
1.02 0.03 Rapp 3.78 47.51

Proposed 3.23 48.86

7. Discussion

Photon counting LiDAR can achieve high-sensitivity detection at the single-photon
level, but the noise counts are not conducive to the high-quality extraction of target infor-
mation. Reasonable design of the signal processing algorithm is helpful in improving the
imaging quality of photon counting LiDAR. However, the reconstruction effect is reduced
for detection scenes in which the depth information changes continuously. Based on this,
the method proposed in this paper has the following advantages:
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1. The reconstruction time resolution of the histogram is set within 6 times of the laser’s
root mean square pulse width, which helps to filter out noise interference while
retaining the signal data as much as possible. A new cube data model is constructed
by adaptive threshold segmentation of the reconstructed histogram.

2. In the Bayesian model, the position and the number of signal photon counts at the
coarse time resolution scale can be extracted accurately by setting the time bin position
detection threshold. Then, a sliding window is used to obtain estimation results with
high time resolution.

3. Based on the new cube data model constructed by adaptive threshold segmentation,
it is helpful to introduce other advanced image algorithms to optimize the data
filtering process.

4. The amount of echo photon data of photon counting LiDAR is usually tremendous,
and the extraction of signal counting requires a lot of computing resources. The pro-
posed method shows a coarse-to-fine depth estimation process, which not only dramat-
ically reduces the amount of subsequent data calculation through data preprocessing
but also helps to improve imaging accuracy in actual detection. In view of the practical
application requirements of existing photon counting LiDAR imaging technology, we
plan to apply the proposed method to the data processing of airborne topographic
surveys, urban digital 3D map drawing and glacier detection in future work.

Undulating terrain simulation and outdoor experiments show that our method achieves
better results than the other tested methods. At the same time, our ideas can still be further
optimized; the primary deficiencies are as follows:

1. The time bin position detection threshold was selected from the global optimization
perspective, which affects the data screening results. In the future, we will optimize
the threshold selection process from the local echo data to obtain better performance.

2. In actual detection, multiple surfaces with different depths may exist in a pixel. This
factor is not considered in this paper. Multiple-surface recognition is a problem that
needs to be solved in future work.

8. Conclusions

In this paper, the time–space characteristics of the photon counts are deeply analyzed,
and a method for 3D undulating terrain depth estimation based on the Bayesian model
is proposed. This method completes the adaptive coarse screening of photon counts by
setting a constant false-alarm probability, which significantly reduces the complexity of
subsequent processing. This rough screening method is also applicable in fluctuating noise
environments. The Bayesian model is constructed to extract the position and number of
signal photon counts, and depth estimation from coarse to fine is realized using a sliding
window. We carried out sufficient simulations and outdoor target imaging experiments.
The results show that the proposed method has a better effect and is superior to typical
existing methods for 3D imaging of the target (long-distance building) with continuous
change of depth information. The proposed method can achieve high-sensitivity and
high-precision detection of the target under low false-alarm probability and is suitable for
3D imaging of the target with continuous change of depth information under intense noise
interference. On this basis, future work will study the realization of 3D imaging of targets
under substantial noise interference at lower signal photon counts and further improve the
performance of the proposed method.
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