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Abstract: When light traverses through water, it undergoes influence from the absorption and scatter-
ing of particles, resulting in diminished contrast and color distortion within underwater imaging.
These effects further constrain the observation of underwater environments and the extraction of
features from submerged objects. To address these challenges, we introduce an underwater color
image processing approach, which amalgamates the frequency and spatial domains, enhancing image
contrast in the frequency domain, adaptively refining image color within the spatial domain, and
ultimately merging the contrast-enhanced image with the color-corrected counterpart within the
CIE L*a*b* color space. Experiments conducted on standard underwater image benchmark datasets
highlight the significant improvements our proposed method achieves in terms of enhancing contrast
and rendering more natural colors compared to several state-of-the-art methods. The results are
further evaluated using four commonly used image metrics, consistently showing that our method
yields the highest average value. The proposed method effectively addresses challenges related to
low contrast, color distortion, and obscured details in underwater images, a fact especially evident in
various scenarios involving color-affected underwater imagery.

Keywords: image enhancement; contrast improvement; color correction; image fusion

1. Introduction

Underwater optical imaging is an important part of underwater exploration technol-
ogy, which is a universal requirement in many fields, such as underwater vehicle control [1],
marine geographic exploration [2], and underwater archaeology [3]. However, underwater
imaging suffers from quality degradation due to various factors in the water, mainly in
two aspects: on the one hand, the organic matter in the water body, as well as various
particles and microorganisms suspended in the water, will have a scattering effect on visible
light, including forward scattering and backward scattering, resulting in blurred target
objects, reduced signal-to-noise ratio (SNR), loss of details, and decreased imaging contrast;
on the other hand, the water has a strong absorption effect on light, and the degree of
absorption of different wavelengths of light is not consistent, resulting in color distortion of
underwater images [4]. The above issues greatly limit the application of underwater optical
imaging technology in ocean observation and detection; therefore, there is an urgent need
to develop an effective method to solve these problems.

At present, there are various methods for underwater image processing, which can
be roughly divided into physical model-based restoration methods, image enhancement
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methods, and deep learning methods. The method based on physical models, to some
extent, explains the degradation mechanism of underwater images, considering the prop-
agation and polarization characteristics of light in water during the image processing
process, which can improve the visual distance and clarity of the image. For example, the
polarization image restoration method utilizes the polarization characteristics difference
between the reflected signal light and backscattered light of the target to remove scattered
light, thus clearly restoring underwater objects [5-10]. Although these methods can im-
prove image quality to some extent, the effect of color correction on underwater images
is not ideal. Image enhancement methods do not consider the physical model of image
degradation and directly process the image pixel by pixel to improve the visual quality of
underwater images, such as histogram stretching, Retinex, and fusion methods [11-13].
Although these methods can improve the contrast and color of underwater images to some
extent, a single enhancement algorithm will fail in poor water quality or different types of
water quality situations. The method based on deep learning establishes an underwater
image degradation training library, and the underwater image can be restored due to its
robust nonlinear fit [14-17]. However, deep learning methods lack datasets for training
underwater real environments, which makes it difficult to cope flexibly with image restora-
tion problems in distinct water types with different distortions. Therefore, there is a need
for a method that can improve the contrast of underwater images while also correcting
the color of underwater images and can adaptively improve the imaging of various water
quality environments.

In this study, we proposed an underwater image processing method for contrast
enhancement in the frequency and color correction in the spatial domain. The judgment of
image color deviation type is to search the best background area of the original underwater
image through the Quadtree search method, and different color correction algorithms are
adopted for different color deviation images to achieve correction of underwater image
color bias. We use the method of homomorphic filtering in the frequency domain to obtain
the contrast-enhanced image. Finally, we adopt a fusion method based on the CIE L*a*b*
color space to combine the color-corrected image and contrast-enhanced image.

Compared with existing underwater image restoration algorithms, the proposed
algorithm has the clearest contrast, closest color reproduction to the real color, and highest
objective evaluation index. Meanwhile, this algorithm is not only limited to a single water
environment but can effectively improve the contrast of underwater images and color
distortion simultaneously.

2. Background

This section outlines the basic principle underlying light propagation in water. For an
ideal transmission medium, the light received by the detector is mainly influenced by the
properties of the target object and the characteristics of the camera, which is suitable for
atmospheric imaging. However, underwater imaging is more complex than atmospheric
imaging. For example, the depth of underwater imaging directly affects the amount of light
that the camera can receive, and as the depth of underwater imaging increases, the light
collected by the camera decreases, resulting in a blue or green color bias in the captured
image. In addition to water molecules, there are also a large number of components in
water that can affect optical properties, such as floating plants, organic particles, bubbles,
etc. Therefore, the degree of particle density of light passes through is several hundred
times higher in seawater than in a normal atmosphere [18], which causes a greater degree
of scattering and absorption of underwater light, resulting in blurred underwater images
and color deviation [4].

Comprehensive studies by McGlamery [19] and Jaffe [20] have shown that the light
received by the image detector consists of three components: direct component, forward
scattering component, and backward scattering component; the total radiation reaching the
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camera is a linear superposition of these three components. Therefore, the imaging model
can be simplified as:
ETIEd+Ef+Eh 1

where Et represents the total radiation energy captured by the camera; E;, E¢, and Ej, de-
note direct component, forward scattering component, and backward scattering component,
respectively.

The direct illumination component is the component of light reflected directly from
the target object to the camera, which can be represented by the following equation:

Ea(x) = J(x)e P = J(x)t(x) @

where J(x) refers to the direct reflection part of the target scene; p represents the attenuation
coefficient of light in water; d(x) denotes the distance from the camera to the scene at the
position (x); e P4(%) is an exponential attenuation function, so it can be expressed as (x).

The backscattering component is caused by artificial light or surrounding light that
hits particles in the water and is reflected to the camera. Backscattered light is like a layer
of “fog” on the object; it can be expressed in mathematical formulas as follows:

Ejp = Boo(x)(1 — e PI¥)) 3)

where By (x) is a color vector known as the backscattered light.

Generally, the forward scattering component can be ignored because the distance
between the target and the camera is very close, while the forward scattering component
is very small. Therefore, the underwater scattering model is simplified to the following
equation:

I(x) = J(x)e P 4 Boo(x) (1 — e P1) )

From Equation (4), it is clearly seen that the underwater imaging model can represent
the cause of image blurring when light propagates in water, and to obtain a clear underwater
image, it must recover J(x). However, it does not reflect the fact that color cast strongly
depends on light wavelength in an underwater environment. Therefore, in the next section,
we perform color correction by compensating underwater light wavelengths.

3. Method

Our goal was to achieve both color correction and contrast enhancement for different
underwater scenes. One single color correction method is not suitable for all underwater
scenes, while a single enhancement algorithm cannot obtain the effect of image color
correction and contrast enhancement at the same time. The flowchart diagram of the whole
method is shown in Figure 1. First, this paper divides the underwater images into several
categories and adopts different color correction algorithms for different color cast types
to achieve adaptive color correction. Then, in order to obtain contrast-enhanced images,
this paper uses homomorphic filtering in the frequency domain to enhance high-frequency
detail information and reduce low-frequency background noise in images. However, only
one of the above methods alone cannot achieve color correction and contrast enhancement
images at the same time, so in this paper, we fuse the color-corrected image and the
contrast-improved image on the CIE L*a*b* color space.
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Figure 1. Flowchart of the proposed method.

3.1. Underwater Image Classification

By analyzing a large number of underwater images, we divided the underwater images
into four categories: greenish, blueish, yellowish, and colorless bias. The judgment of image
color deviation type is to search the best background area of the original underwater image
through the Quadtree searching method [21]. The background light is often estimated
as the brightest color in an image since the scattering of light by water particles causes a
bright color. Avoiding objects that are brighter than the background light may lead to an
unsatisfactory selection of background light. We used the variance to determine the best
background area. The formula for scoring the best background area is as follows:

Q=2 T TE@)+LT )+ Ex) - 20 (x)]
ce{r,gb} x=1 x=1

1 — (5)
—x> IC _ IC
o ce{gg,b} = i)~

where Qy denotes the variance score of the kth region; # is the number of pixels in the
kth region; ¢ € {r,g,b} denotes the red, green, and blue color channels of the image; T,f
represents the mean value of the image in the kth region; If(x) denotes the pixel value of
the image in the kth region; I} (x), I;{g (x), and I}c’ (x) indicate the red, green, and blue color
channel pixel values in the kth region, respectively.

An example to determine underwater image color cast is illustrated in Figure 2. We
first divided the underwater image into four equal sub-regions and then calculated the
variance of each region. Because the background light is the brightest color in an image,
the highest score region is selected as the candidate region. We repeatedly divided the
candidate region into four equal sub-regions and recursively looped the above steps until
the size of the candidate region was smaller than a set threshold. The threshold was set
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to the number of pixels in the candidate areas that is less than 1% of the original image
pixels [22], which avoided errors in color-cast judgment caused by bright spots or target
interference in the underwater image. It is worth noting that this method can be misjudged
when the entire image background is originally colored, but in real-world scenarios, this is
rarely the case, so this method is still valid in most cases.

Figure 2. An illustration to search for the best background area (The red lines indicate the region of
each division and the circle denotes the area of the final selection).

Further, the color deviation type of the underwater image is determined based on
the mean value of pixels of each channel in the best background area. Firstly, the red,
green, and blue channels in the best background area are separated, and their mean pixel
values are calculated. Based on which channel has the highest mean value, the type of color
deviation in underwater images can be determined. If the mean values of each channel in
the best background area are all equal, then there is no color deviation in the underwater
image. The color cast processing of the images is discussed in the next subsection.

3.2. Underwater Image Color Correction

In the previous subsection, the underwater image color cast was divided into four
categories. The appearances of the images without distortion are similar to the ground
scenes, so we only performed the contrast enhancement process. For several other color
distortions, we use different color correction methods.

For the correction of the greenish underwater image color, the image histogram is
first drawn, then the density of gray values distribution and the cumulative histogram
distribution of gray values are calculated from the histogram, the cumulative distribution
is taken as positive, and finally normalized.

For bluish underwater images, the color correction is compensated for the red channel.
The green channel is usually the lowest attenuated channel in underwater images and has
more details relative to the other two channels. Therefore, the green channel is used as the
reference channel to compensate for the highest attenuation channel using the grayscale
world assumption method [18,23]. After preliminary compensation of the red channel, a
greater dynamic range of image pixel gray levels is achieved by applying gain adjustments
to all three channels. The red channel compensation formula is given by Equation (6), and
the stretching formula for each channel is Equation (7).

Ie(x) = L(x) + a(lg — I) (1 — L(x))Ig(x) (6)
I’r(x) =K, x (Irc(x) - Irc_min)

I'g(x) = Kg x (Ig(x) — Ig min) @)
I'p(x) = Ky x (Ip(x) = Iy_min)

K. =255/D, (8)

where I;c(x) represents the red channel after compensation; I;(x), I¢(x), and I;(x) denote
the red, green, and blue channels of underwater image; I, I, and I, are the mean value in
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each channel of the best background area, respectively; I';(x), I'¢(x), and I’y (x) represent
the image values of each channel after dynamic adjustment; K;, K¢, and K are the gain
coefficient for each color channel; D. denotes the difference between the maximum gray
level and the minimum gray level of each channel, c € {r,g,b}; Lic yin, I o min, and Ig_min
indicate the minimum value of each channel after channel compensation. « denotes a
constant parameter and is set to 1, which is appropriate for subsequent processing.

For the yellowish images, the red channel is used as the reference channel to compen-
sate for the green channel and blue channel; the compensation forms as follows:

{ Ioc(x) = Ig(x) + a(l; — Ig) (1 — L (x))I;(x) )
Ipe(x) = Ip(x) + B(Ir — Ip) (1 = Ip(x) ) Ir(x)

where Ioc(x) and Iy (x) represent the green channel and blue channel after compensation,
respectively; B denotes constant parameter and is also set to 1. The other symbols in the
compensation equations of the greenish and bluish images have the same meaning as in
Equation (6).

3.3. Detail Restoration

In the previous subsection, we proposed a color correction algorithm for different
categories of underwater images, and the quality of the images improved significantly after
the color correction algorithm, but obtaining a high authenticity appearance of underwater
images is not sufficient; the problem of fog still exists in the color-corrected images, causing
low contrast and blurriness.

In this work, homomorphic filtering (HF) is employed to enhance image contrast.
The reason for using HF is that the HF relies on the illumination-reflection model of the
image to divide the image into incident and reflected components. The incident and the
reflection component represent low-frequency and high-frequency parts of the image,
respectively [24]. The HF not only enhances the high-frequency information of the image
but also attenuates the low-frequency information of the image. It enhances the detailed
part of the image and diminishes the background noise, thereby obtaining a high-contrast
image. Finally, the limiting contrast adaptive histogram equalization (CLAHE) [25] is used
to further enhance the brightness and details of the overall image.

The process of HF is to first convert the original underwater RGB image to a grayscale
image and then convert the grayscale image to the frequency domain for HE. An image can
be expressed as:

flxy) =i(xy) r(xy) (10)

where i(x,vy), r(x,y), and (x, y) represent incident component, reflected component, and
image coordinates, respectively.

The incident and reflected components cannot be directly separated because they are
in the form of multiplication, so it is necessary to take the logarithm of both sides of the
above equation to obtain Equation (11):

Inf(x,y) =Ini(x,y) +Inr(x,y) (11)
Fourier transform of both sides of Equation (11) is obtained as follows:
FFT[In(f(x,y)] = FFT[In(i(x,y)) + FFT(In7(x,y)] (12)
It can be simplified as:

F(u,v) = I(u,v) + R(u,v) (13)
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A frequency domain function is used to filter both sides of Equation (13) to obtain
Equation (14), and the frequency domain function is the transfer function of the homomor-
phic filter; it is expressed as Equation (15).

S(u,v) = H(u,v)F(u,v) = H(u,v)I(u,v) + H(u,v)R(u,v) (14)

H(u,v) = (rg —rp)[1— e*C(DZ(”'U)/Dg)] (15)

where ry, 71, and Dy denote high-frequency gain, low-frequency gain and cutoff frequency,
respectively. D(u,v) represents the distance from the frequency (u,v) to the center fre-
quency (ug, vp).

In practice, the parameter values ry > 1 and r;, < 1 are responsible for extracting
more features from the input image. The selection of Dy is related to the spectral amplitude
contrast corresponding to the illumination scene and reflection coefficient, which generally
requires several searches for the optimal value. After experiments, we chose ry= 1.5,
r.= 0.5, and Dy= 2000 to produce a visually pleasing enhanced effect with more details.

After filtering, the Fourier inverse transform is performed, and the spatial image is
finally obtained by taking the inverse logarithmic. The process is expressed as follows:

s(x,y) = IDFT[S(u,v)] (16)

g(xy) = e =ig(x,y) +ro(x,y) (17)

where ig(x,y) and ry(x,y) are the incident component and reflected component of the
image after HF processing, respectively.

Finally, the CLAHE is applied to further enhance the brightness and details of the
overall image.

3.4. Image Fusion

To obtain contrast enhancement and color correction simultaneously, we utilized a
channel fusion method to fuse the contrast-enhanced image and color-corrected image on
the CIE L*a*b* color space. Since the brightness and color channels are separated on the
CIE L*a*b* color space, we transformed the contrast-enhanced image and color-corrected
image to the CIE L*a*b*color space. The L* channel of contrast-enhanced image has more
details of the scene, while the a* channel and the b* channel of the color-corrected image
have more accurate color information. Then, we fused the best results of two processing
methods while obtaining images with contrast-enhanced color correction, and the fused
image is computed as:

Liap = Cat((") ) Ie*n/aCC/ bCC) (18)

where I, is the final fused image. I, is the L channel of contrast-enhanced image. a.
and b.. denote the a* channel and the b* channel of the color-corrected image, respectively.
w is the coefficient of fusion, which is adjusted to change the background color to make
the fused image more underwater. cat() represents the image fusion function used to join
three arrays into one matrix. Finally, we converted the Lab color space to RGB space. As
shown in Figure 3, the color-corrected and contrast-enhanced image was acquired from
the previous two subsections, but its processing resulted in haze or no color. The without
fusion illustrates that HF, after color correction of RGB color channels, obtains wrong
results. The fusion method can obtain color correction and contrast enhancement images at
the same time.



Remote Sens. 2023, 15, 4699

8of 17

Color-corrected

Contrast-enhanced

Raw image

Figure 3. The ablation experiment compares different fusion and without-fusion underwater images.

4. Results and Evaluation

In this section, we first verify the proposed underwater image processing method. Sub-
jective qualitative evaluation, quantitative evaluation, and application test are implemented.
Then, we compare our method with other specialized image restoration/enhancement
methods, including MSRCR [26], GDCR [27], IBLA [28], and Two-step [29].

4.1. Validation of Our Method

To validate the effect of contrast enhancement and color correction, we randomly
selected four raw images with different color bias types from UIEB [30] and EUVP [31]
datasets to demonstrate the verified effect of the proposed method. We classified these
images into four categories: greenish images, bluish images, yellowish images, and undis-
torted images. UIEB is a comprehensive research and analysis of real-world datasets,
including 950 real-world underwater images. EUVP contains separate sets of paired and
unpaired images of poor and good perceptual quality. All codes were from open-source
codes. In experiments, we used the method proposed in the previous section to perform
color correction and contrast enhancement on these images.

Figure 4a shows the raw underwater images, which exhibit color distortion or low
contrast. For undistorted images, we only enhance their contrast. For the other category
of color-cast underwater images, we process it in the following ways: green correction
method, blue correction method, and yellow correction method. Figure 4b uses an image
enhancement method based on HF, which performs well in terms of clarity. Figure 4c
shows the result of color correction, which can be seen to have a realistic appearance
but has little effect on the images of detail. Figure 4d shows the results of the fusion of
contrast enhancement and color correction on the CIE L*a*b*, which not only removes
color deviations but also highlights structural details because it could make full use of the
advantages of the two input images of the fusion.
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Greenish

Blueish

Yellowish

(a) Raw images (b) Contrast enhancement  (c) Color correction (d) Final images

Figure 4. The processing results of different color-cast images.

4.2. Comparison with Other Methods

This section compares the methods of MSRCR, GDCP, IBLA, and Two-step. The results
are shown in Figures 5-7. The histogram distribution of the RGB channels after processing
by each algorithm is also plotted.

E) )

e 0
 levels Gaylwls  craylevais

(a)Raw image (bMSRCR (c)GDCP (dIBLA (e)Two-step (HOur method

\\\\\\\\ Gray lavels

Figure 5. Greenish image processing result and corresponding tricolor histograms: (a) raw images
and corresponding tricolor histograms; (b) result using the method of MSRCR and corresponding
tricolor histograms; (c) result using the method of GDCP and corresponding tricolor histograms;
(d) result using the method of IBLA and corresponding tricolor histograms; (e) result using the method
of Two-step and corresponding tricolor histograms; (f) result using our method and corresponding
tricolor histograms.
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(a)Raw image

onyiovs”
(a)Raw image

NSRCR e @A O (00w method
Figure 6. Bluish image processing result and corresponding tricolor histograms: (a) raw images and
corresponding tricolor histograms; (b) result using the method of MSRCR and corresponding tricolor
histograms; (c) result using the method of GDCP and corresponding tricolor histograms; (d) result
using the method of IBLA and corresponding tricolor histograms; (e) result using the method of
Two-step and corresponding tricolor histograms; (f) result using our method and corresponding
tricolor histograms.

o
100 150 B E)

(b)MSRCR

00 150 100 00 .
Gray lovais Gray levots

()GDCP (@)IBLA (&) Two-step (HOur method

Figure 7. Yellowish image processing result and corresponding tricolor histograms: (a) raw images
and corresponding tricolor histograms; (b) result using the method of MSRCR and corresponding
tricolor histograms; (c) result using the method of GDCP and corresponding tricolor histograms;
(d) result using the method of IBLA and corresponding tricolor histograms; (e) result using the method
of Two-step and corresponding tricolor histograms; (f) result using our method and corresponding
tricolor histograms.

As can be seen in Figures 5b, 6b and 7b, MSRCR is based on the SSR algorithm to
introduce the color recovery factor, but its effect on color correction is very limited and
even appears to color shift for bluish images. GDCP has poor color correction results and
image contrast results, as depicted in Figures 5c¢, 6¢ and 7c. This is due to the attenuation of
the red channel in the underwater image, which makes it difficult to obtain accurate depth
of the underwater image scene when estimating the underwater image. In Figure 7d, IBLA
produces blue artifacts, while in Figures 5d and 6d, it can hardly remove unwanted color
casts and has no noticeable effect on contrast enhancement. As shown in Figures 5e and 6e,
the Two-step algorithm is effective for color correction of greenish and yellowish images.
However, as depicted in Figure 7e, Two-step introduces undesirable reddish distortion
in the processing image, and the resulting images have low local contrast and unclear
details. Our method achieves good results in processing various categories of color-cast
underwater images and improves the contrast and texture of the image, as shown in
Figures 5f, 6f and 7f. From the histograms of the RGB color channels, it can also be seen
that the RGB color channels of the image processed by our method are the closest, indicating
the minimum difference and the best color correction for the image.

Figure 8 presents the results of these methods on a wide range of underwater images
from the UIEB [30] and the UCCS [32] datasets. UCCS contains three subsets: blue, blue-
green, and green subsets. We selected multiple images of each type for a comprehensive
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comparison. The method of GDCP only slightly improves the images. The IBLA has little
effect on the images and produces blue artifacts for some yellowish images. The MSRCR
corrects the color to a certain extent, but the specific details of the image are not well
revealed. The Two-step has good performance, but it does not dehaze and has little effect
on the images with a green appearance. However, ours can eliminate the color cast and
excels well in terms of clarity.

(a)

(b)

(@

()

U]

(0)]

@®

@

®)

U]

Rawimages MSRCR GDCP IBLA Two-step Ours

Figure 8. Visual comparison: (a—n) different types of underwater images from UIEB dataset and
UCCS dataset.
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To quantitatively evaluate the performance of the processing methods of underwater
images in Figure 8, we present the UCIQE [33], UIQM [34], PCQI [35], and EME [36] scores
of different methods in Tables 1 and 2. UCIQE is a linear combination of chroma, saturation,
and contrast to quantitatively assess the blurring, non-uniform chromatic aberration, and
contrast of underwater images. The larger the value of UCIQE, the better the image in terms
of color balance, sharpness, and contrast. UIQM is a comprehensive image evaluation
criterion for underwater image degradation mechanisms, with higher values representing
images with higher contrast, sharpness, and color balance. PCQI calculates the average
intensity, information intensity, and signal structure in each image block and evaluates the
distortion of the image in these three perspectives, with larger values representing better
image contrast. The EME divides the image into small areas, calculates the ratio of the
maximum and minimum grayscale values in each area, and then calculates the average
contrast of all areas as the image quality of the global image, and the higher the EME value,
the better the image quality.

Table 1. UCIQE and UIQM values of different methods in Figure 8.

N MSRCR GDCP IBLA Two-Step Ours
Methods UCIQE UIOM UCIQE UIOM UCIQE UIOM UCIQE UIOM UCIQE UIOM
(a) 0.534 3.548 0.360 —1.993 0.374 —0.136 0.467 3.472 0.596 5.323
(b) 0.583 3.012 0.537 2.983 0.518 1.432 0.552 3.299 0.648 4.693
() 0.500 4.062 0.373 1.460 0.427 2.088 0.458 4.408 0.585 4.972
(d) 0.510 5.414 0.368 —0.367 0.411 —0.221 0.420 3.472 0.582 5.021
(e) 0.521 2.329 0.371 —1.124 0.505 0.643 0.608 4.274 0.383 4.448
) 0.488 3.165 0.628 3.993 0.542 1.316 0.566 5192 0.547 5.412
(g) 0.458 2.749 0.517 0.565 0.555 2172 0.584 5.318 0.542 5.236
(h) 0.506 3.236 0.672 4.635 0.522 1.651 0.598 4.936 0.565 4.966
(1) 0.556 2.432 0.558 0.749 0.599 1.880 0.612 4.939 0.569 4.968
G) 0.560 2.862 0.538 0.987 0.503 2.198 0.581 4.198 0.618 4.350
(k) 0.477 2.607 0.546 3.362 0.492 4218 0.479 4.018 0.526 4.451
@ 0.534 1.649 0.491 1.718 0.632 1.082 0.514 1.674 0.519 2.084
(m) 0.502 2.793 0.659 4.862 0.691 5.021 0.587 4.078 0.570 3.854
(n) 0.523 3.385 0.516 3.586 0.615 2.628 0.521 4.031 0.577 4.340
The bold highlights the best indicator results.
Table 2. PCQI and EME values of different methods in Figure 8.
MSRCR GDCP IBLA Two-Step Ours
Methods
PCQI EME PCQI EME PCQI EME PCQI EME PCQI EME
(a) 1.305 21.145 1.042 12.341 1.022 4.030 1.276 14.710 1.327 21.285
(b) 1.017 14.258 0.897 7.824 1.067 7.665 1.189 10.742 1.259 10.272
(c) 1.130 3.464 0.962 2.732 1.105 4.961 1.162 4.954 1.231 9.261
(d) 1.261 3.466 1.002 7.237 1.124 11.647 1.170 6.848 1.308 14.157
(e) 0.700 1.706 0.623 3.555 1.082 8.197 0.853 4.909 0.911 7.321
(f) 0.850 5.379 1.182 15.208 1.127 11.646 1.337 16.101 1.397 16.802
(g 0.655 8.226 0.853 16.317 1.115 18.587 1.330 23.183 1.343 22.967
(h) 0.882 5.833 1.17 19.039 1.099 15.552 1.300 16.496 1.352 18.453
(i) 0.600 10.277 0.857 19.848 1.049 10.764 1.257 24.038 1.278 26.479
G) 0.943 5.322 0.834 5.051 1.122 11.464 1.096 7.748 1.204 17.517
(k) 0.958 2.035 0.983 4.478 0.979 1.885 1.113 4.431 1.267 6.847
] 0.865 1.144 0.796 1.225 1.035 2.340 0.965 1.769 1.053 3.638
(m) 0.949 1.714 1.060 2.946 1.011 4.395 1.066 4.026 1.205 6.046
(n) 0.999 2.080 0.929 2.084 0.722 2.887 1.149 3.733 1.264 7.640

The bold highlights the best indicator results.

From the quantitative evaluation values in Tables 1 and 2, the proposed method
obtains the highest scores for most evaluation metrics. For better evaluation, we plotted the
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distribution of the mean values of the four evaluation indicators for different processing
methods; as depicted in Figure 9, the average value of our method is the highest, and
the distribution curve of the average value is at the top layer, indicating that our method
is superior to the other four image processing methods. Comprehensively, the results of
subjective evaluation and objective evaluation demonstrate that our method has higher
contrast, more detailed features, and a more realistic appearance.
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Figure 9. Distribution of evaluation average values for different image processing methods.

4.3. Application Tests

To further show the effectiveness of our method, we built a custom system for under-
water imaging, which can be used at a depth of 100 m. The system is shown in Figure 10a.
The system capture device uses the integrated movement of Hikvision (DS-2ZMN0409S),
which allows for installation in a smaller sealed compartment. The internal automatic white
balance function of the capture device is turned off. The system housing is manufactured
by 316L stainless steel and is commercially available.

Figure 10. (a) Underwater cameras; (b) test pool.

We performed experiments in a real pool and placed a wooden stick, a plastic
shell, and fishing nets in the water as an underwater scene. The size of the test pool
is15m X 8 m x 6 m, as depicted in Figure 10b. We used a homemade underwater camera
to capture images. Six different object distances were set in experiments, i.e., 1 m, 2 m, 3 m,
4m, 5m, and 6 m. The depth of equipment is approximately 1-1.5 m, and the camera was
placed in the center of the pool. The experimental pool was indoors, and the experiment
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was conducted during the daytime, using only indoor fluorescent lighting sources with
an intensity of approximately 300 Lux, with no additional light sources added to the pool.
In practical use, if the detection water is deep or the water quality has high turbidity,
additional light sources can be added according to actual needs, or even polarized light
sources can be added to suppress scattered light interference.

The real experimental underwater images are shown in the left column of Figure 11;
the distance increases from top to bottom. It can be seen that the appearance of the images is
greenish, and as the distance increases, the images become blurry due to the scattering and
absorption of water. Figure 11f shows the restoration results of our method under different
distance conditions, while these results are compared with other methods and assessed by
image quality evaluation metric. As can be observed, the approaches of MSRCR, GDCP, and
IBLA perform poorly in processing images of different distances. Two-step can eliminate
the color deviation to a certain extent, but it produces red artifacts. However, the image
color correction by our method is visually pleasing. Meanwhile, the contrast and details are
well enhanced. Figure 11g,h presents enlarged views of the details in a red dashed rectangle.
We can easily see the fishing net from the enlarged image, and as the distance increases,
our method remains effective, which demonstrates the good generalization performance
of our method. Table 3 gives the average evaluation scores of these methods applied to
different distances of images in terms of UCIQE, UIQM, PCQI, and EME. From the results,
our method obtains the two highest scores and a suboptimal score in the four evaluation
criteria. In summary, our proposed method has an excellent appearance and the most
quantitative evaluation values.

.

(b)MSRE‘,R (c)GDCP d)IBLA (e)Two-step . (f)Ours

Figure 11. Experimental results under different distances. Distance increases from top to bottom:
(a) raw images; (b) MSRCR; (c) GDCP; (d) IBLA; (e) Two-step; (f) ours; (g,h) the enlarged images in a
red dashed rectangle.

Table 3. Average quantitative results of evaluation in Figure 11.

Methods UCIQE UIQM PCQI EME
MSRCR 0.294 —-1.011 0.686 0.745
GDCP 0.397 —2.097 0.875 2.163

IBLA 0.449 —0.991 1.030 4.194

Two-step 0.482 1.884 1.052 2.759

Ours 0.502 1.984 1.003 3.874

The bold is highlights the best indicator results.
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In addition, because the color bias of the images is related to the water quality, the
acquisition of different color deviation images requires the addition of different substances
to the water. The pool (15 m X 8 m x 6 m) in this experiment is large, and a large amount
of water needs to be replaced after adding substances to the water, so only green images
were acquired. In the future, we will capture other colors of water-quality images when
there are suitable occasions.

5. Conclusions

In this paper, we introduce an effective underwater image processing method capable
of simultaneously enhancing contrast and rectifying color casts. The proposed approach
comprises several key steps. Initially, raw underwater images are classified according to the
variance of the optimal background region. Subsequently, a color correction step is applied
in accordance with the identified color bias, resulting in a color-neutral underwater image.
Then, the original underwater image undergoes homomorphic filtering; this procedure
accentuates high-frequency information while mitigating low-frequency elements, thereby
yielding a high-contrast image. The final step involves the fusion of the contrast-amplified
grayscale image and the color-corrected counterpart within the CIE L*a*b* color space,
culminating in an enhanced underwater image characterized by improved contrast and
color fidelity.

Our proposed method is systematically compared against alternative image restora-
tion/enhancement techniques. Qualitative assessments highlight the method’s ability to
render images with a closer approximation to real colors. Quantitative analyses underscore
our method’s superior performance across all four objective evaluations. To empirically
validate the practical effectiveness of our underwater image processing approach, an ex-
perimental setup was constructed. Multiple distance-based experiments were conducted
to ascertain the method’s efficacy. It is important to acknowledge that while our method
excels at enhancing contrast and correcting color in underwater images, it encounters chal-
lenges when dealing with deep, severely turbid underwater environments characterized
by low light conditions. Future research will be dedicated to addressing this particularly
demanding scenario.
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