
Citation: Yan, J.; Xing, X.; Li, X.; Zhu,

C.; Han, X.; Zhao, Y.; Chen, J.

RETRACTED: Forecasting the

Landslide Blocking River Process and

Cascading Dam Breach Flood

Propagation by an Integrated

Numerical Approach: A Reservoir

Area Case Study. Remote Sens. 2023,

15, 4669. https://

doi.org/10.3390/rs15194669

Academic Editor: Andrea Ciampalini

Received: 3 September 2023

Revised: 21 September 2023

Accepted: 21 September 2023

Published: 23 September 2023

Retracted: 7 March 2024

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

RETRACTED: Forecasting the Landslide Blocking River Process
and Cascading Dam Breach Flood Propagation by an Integrated
Numerical Approach: A Reservoir Area Case Study
Jianhua Yan 1,2, Xiansen Xing 2, Xiaoshuang Li 1,3,*, Chun Zhu 2, Xudong Han 4, Yong Zhao 5 and Jianping Chen 4

1 School of Urban Construction, Changzhou University, Changzhou 213164, China; yanjh@hhu.edu.cn
2 School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China;

xingxs@hhu.edu.cn (X.X.); zhu.chun@hhu.edu.cn (C.Z.)
3 College of Civil Engineering, Qilu Institute of Technology, Jinan 250200, China
4 College of Construction Engineering, Jilin University, Changchun 130026, China;

hanxudong@mail.cgs.gov.cn (X.H.); chenjp@jlu.edu.cn (J.C.)
5 Center for Rock Instability and Seismicity Research, School of Resources and Civil Engineering,

Northeastern University, Shenyang 110819, China; zhaoyong0724@mail.neu.edu.cn
* Correspondence: xsli2011@cczu.edu.cn

Abstract: This paper aims to introduce a numerical technique for forecasting the hazard caused by
the disaster chain of landslide blocking river-dam breach floods through an integration of the distinct
element method (DEM) and a well-balanced finite volume type shallow water model (SFLOW). A
toppling slope in a reservoir area, the southeastern Tibetan Plateau, was chosen for the study. Creep
has been observed in the potential instability area, and a possible sliding surface was identified based
on the data collected from adits and boreholes. Catastrophic rock avalanches may be triggered after
reservoir impoundment, and the associated landslide disaster chain needed to be predicted. First, the
landslide blocking river process was modeled by the DEM using the three-dimensional particle flow
code (PFC 3D). The landslide duration, runout distance, and kinematic characteristics were obtained.
In addition, the landslide dam and barrier lake were constructed. Then, the cascading dam breach
flood propagation was simulated using the self-developed SFLOW. The flow velocity, inundation
depth, and area were obtained. The hazard maps derived from the combined numerical technique
provided a quantitative reference for risk mitigation. The influences of two involved parameters on
the final hazard-affected area are discussed herein. It is expected that the presented model will be
applied in more prediction cases.

Keywords: landslide blocking river; dam breach flood; hazard prediction; numerical simulation;
distinct element method; shallow water model

1. Introduction

Many great rivers flow through the southeastern margin of the Tibetan Plateau, and
their rapid downward incision caused by sustained bedrock uplift shapes the current deep
valley landscape [1,2]. This region is, therefore, the most promising area for hydropower
development in China. Meanwhile, numerous catastrophic, high-speed landslides have
occurred in this alpine canyon region, such as the Yigong long runout rock slide-debris
avalanche, the Tangjiashan short runout landslide, and the Baige rock slide avalanche.
They blocked narrow rivers and caused a series of cascading hazards, including landslide-
generated impulse waves, backwater flooding, and dam breach flooding [3–5]. As a result,
forecasting the hazard caused by the disaster chain of a landslide-blocking river-cascading
dam breach flood in the reservoir area is required for risk mitigation.

Research methods used in landslide runout analysis mainly include empirical methods,
experimental methods, and physically-based numerical methods [6,7]. Historical case-
based empirical methods that rely on statistical geometric correlations can be used in
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runout prediction on a regional scale [8]. However, these methods can hardly be applied to
local scale hazard mapping because the comprehensive information regarding the dynamic
process of moving mass and on the final deposit morphology of landslide dams cannot
be accurately evaluated [9]. Physical modeling experiments use chute, flume, or actual
rugged basal to investigate the transport mechanism, dynamic process, and deposition
area of landslides [10–12]. These phenomenological studies can provide insights on runout
prediction by analyzing the relevant physical parameters. However, the size effect is
always the main limitation of laboratory-scale tests [7,13,14]. To overcome these limitations,
physically-based numerical methods have become the most attractive technique with which
to investigate landslide-blocking rivers in the past decade [15–18]. Of these, two types of
approaches were well-established, namely, continuum-based methods and discontinuum-
based methods. Previous studies have reported that discontinuum models can more
effectively simulate mass fragmentation and large displaced fractures, which are crucial
factors in an actual event [13,14,19–23]. For this reason, the distinct element method (DEM),
as one of the most representative discontinuum-based methods, is used in this study to
forecast the dynamic process of landslide-blocking rivers.

The dam breach flood analysis methods can be grouped into two broad categories:
empirical methods and numerical methods [24]. Based on a database of documented dam
failure cases, the empirical methods predict breaching parameters using statistically derived
regression equations [25–29]. Because the dam breach process and the flood propagation
cannot both be obtained from empirical models, the physically based numerical models
have been favored by most researchers in the past decade [30]. They can be further classified
into simplified and detailed models according to the degree of generalization of the physical
process [24]. Of these, the simplified, physically based numerical models can simulate
the entire dam breach process and produce the associated flow discharge hydrograph by
incorporating breach morphology, sediment transport, and side slope stability [30–33].
Multidimensional, physically based models can simulate the breach flood characteristics
and predict flood propagation along the downstream river valley in more detail [4,34,35].
Among these, two-dimensional (2D) shallow water equations (SWEs) have been developed
to describe the flow process resulting from dam breaches [36–38]. They were derived by
simplifying the Navier–Stokes equations with depth integration based on the boundary
conditions of bottom and surface water. To solve them numerically, the finite volume
method (FVM) was used, as it has advantages in an irregular computational domain such
as easy implementation, mass and momentum conservation, and high efficiency [39–42].
For this reason, a self-developed, well-balanced finite-volume-type shallow water model
(SFLOW) was used in this study to predict the cascading dam breach flood propagation.

Through simulating a disaster chain, the landslide-affected area, barrier lake storage
capacity, and breach flood inundation can be quantitatively assessed. These parameters
are crucial targets for landslide hazard mapping and risk mitigation. Previous studies
have mainly focused on back analysis of past catastrophic events [9], and several works
have been related to single hazard predictions [20,43,44]. However, few attempts have
been made to forecast a disaster chain by combining different numerical models [5]. The
difficulties include the identification of potential sliding surfaces and the construction of
landslide dams.

With the aforementioned motivation, this study aims to present a numerical approach
for landslide hazard chain prediction by integrating DEM-based landslide runout simu-
lation and SFLOW-based flood propagation simulation. A toppling slope in a reservoir
area, southeastern Tibetan Plateau, was chosen as the study area. Its potential area of insta-
bility has been identified and may slide along an existing fracture surface after reservoir
impoundment. The landslide motion process and deposition morphology were simulated
by the DEM using the three-dimensional particle flow code (PFC 3D). Also, the landslide
dam topography and associated dammed lake were constructed. Following this, the cas-
cading dam breach flood propagation in the reservoir area was modeled using SFLOW,
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and flood inundation maps were obtained. Finally, the influences of two parameters from
the combined model on the hazard prediction results were investigated.

2. Methodologies
2.1. Distinct Element Method

The original version of the distinct element method (DEM) was first proposed by
Cundall (1971) [45] for the analysis of rock mechanic problems. It was later applied to
granular material by Cundall and Strack (1979) [46]. The three-dimensional particle flow
code (PFC 3D) developed by Itasca Consulting Group, Inc. is a simplified implementation
of the DEM. It treats the sliding mass as an assembly of solid elements and describes the
motion process from the perspective of particle interactions. Its dynamic behavior is repre-
sented numerically using a time-stepping algorithm, and the solution scheme is based on
the explicit finite-difference method. The calculation cycles performed in the PFC alternate
between the application of Newton’s second law to the particles and a force–displacement
law at the contacts (Figure 1). From this, the velocity and displacement of each particle
can be obtained in real time at a time step scale. Because PFC 3D performed well when
simulating past events [13,20,21,37,47], it was used for forecasting the landslide blocking
river process. Following this, the landside runout behavior and deposit morphology could
be obtained.
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Figure 1. Iterative calculations in PFC.

Ball and wall are the two basic contact objects in the PFC. They are defined as non-
deformable rigid elements, but allow for interpenetration. Using different elements,
both ball–wall and ball–ball models are available for constructing a landslide numeri-
cal model [48]. Regarding the ball–wall model (also called the smooth bottom model), the
sliding mass and slip surface are modeled as ball assembly and walls, respectively. This
model is appropriate for a landslide scenario in which a slip surface is known and mass
erosion or entrainment is not considered [13,19,21,47–49]. Otherwise, the ball–ball model is
preferable, although its computation is expensive.

A well-recognized contact model is the preferred option for forecasting the landslide
motion process. Therefore, the parallel bond contact model proposed by Potyondy and
Cundall (2004) [50] was adopted, as it has many successful applications in landslide runout
simulations [14,20,47]. It is a linear-based bonded particle model and contains three groups.
Of these, the linear group can be reactivated when the surface gap is less than or equal to
zero. It can simulate the mechanical behavior of recontact among multiple separated blocks.
The dashpot group, as a kind of viscous damping, uses a spring–dashpot system and adds
normal and shear dashpots at each contact. It can illustrate the energy dissipation caused
by particle collisions. The parallel bond group is removed when the bond is broken, and
broken parallel bonds cannot be activated again. This group can mimic mass separation
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and unfragmented blocks. The properties of each group can be described using multiple
micro-parameters: 

〈
kn, k*, µb

〉
, linear group

⟨βn, βs⟩, dashpot group

⟨λ, kn, k
*
, σc, τc ⟩, parallel bond group

(1)

where kn and kn are the normal stiffness of the ball element and bond, respectively; k* and

k
*

are the normal-to-shear stiffness ratios of the ball element and bond, respectively; µb
is the ball friction coefficient; βn and βs are the normal and shear critical damping ratios,
respectively; λ is the radius multiplier used to set the parallel-bond radii; and σc and τc
are the normal and shear strengths of the bonds, respectively. Notably, the kn and kn are
radius-dependent micro-parameters which can be expressed as:{

kn = 4RE∗, linear group
kn = E∗/(R1 + R2), parallel bond group

(2)

where E∗ and E∗ are the effective moduli of the ball element and bond, respectively, and R
is the ball radius.

PFC derives macro-scale material properties from the interactions of micro-scale
properties [20,50]. However, the universal analytical solution between the macro- and
micro-parameters has not been established. The most frequently used method to determine
the values of micro-parameters is the trial and error method [19,21]. It utilizes a series
of numerical tests to calibrate micro-parameters based on the macroscopic responses of
samples, which results in low efficiency. Alternatively, some recently proposed parameter
calibration methods use machine learning algorithms, such as support vector machines [47]
and deep neural networks [51]. However, these approaches require a large amount of
sample data from laboratory tests for training sets, which also requires time and effort.

2.2. SFLOW Model

The self-developed SFLOW model, introduced by Han et al. (2017) [41], was used
for simulating the cascading dam breach flood propagation. It was constructed on the
2D shallow water equations (SWEs) which are a type of simplified implementation which
depth-integrate the 3D Navier–Stokes equations [52]. In the SFLOW, the governing equa-
tions for free-surface shallow flow were corrected by setting the basal flow frictional
resistance coefficients with the quadratic rheologic friction model (Equation (3)) [36]. Using
this friction model, the frictional, viscous, and turbulent effects on the shallow water flow
could be incorporated [53].

S f = S1 + S2 + S3 =
τ

ρm
+

kηU
8ρmhw

+
gn2

tdU2

hw
1/3 (3)

where S f is the flow frictional resistance coefficient; S1, S2, and S3 are the fluid yield
factor, fluid viscous factor, and fluid turbulent factor, respectively; τ is the yield stress;
ρm is the sediment density; k is the resistance coefficient; η is the viscosity of the flood; U
is the flow velocity; hw is the water depth; g is the gravitational acceleration; and ntd is
the equivalent Manning resistance coefficient that incorporates both turbulent boundary
friction and internal collisional stresses, which is expressed as [53]:

ntd = 0.0538nexp(6.0896Cv) (4)

where n is the Manning resistance coefficient and Cv is the sediment concentration by volume.
In the SFLOW, the governing equations were solved by a well-balanced numerical

scheme based on non-staggered rectangular grids. First, a Godunov-type finite volume
method (FVM) was applied to update the flow variables to guarantee first-order accuracy in
time. Then, a linear slope-limited reconstruction method was used to obtain second-order
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accuracy in space [54]. Finally, the bed slope and friction terms were approximated by
a central differentiation approach and a full implicit scheme, respectively, to ensure the
stability of the numerical scheme [55]. Notably, the performance of such a well-balanced
numerical scheme has been verified in some existing studies [37,39,40,42].

To quantitatively validate whether the SFLOW model can adapt to complex topog-
raphy, three types of irregular terrain were used to perform simulation tests of flood
propagation. In the first scenario, the flood flowed through the riverbed without obstruc-
tion (Figure 2a). In the second scenario, the front flood bypassed the bulge terrain and
was divided into two currents (Figure 2b). In the third scenario, the flood flowed into
the marsh terrain and filled it (Figure 2c). Consequently, the simulation results indicated
that the SFLOW model is capable of modeling dam breach flood propagation on irreg-
ular topography. Following this, the flow velocity, inundation depth, and area could
be obtained.
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The authors developed software with a graphics user interface (GUI) based on the
SFLOW model (Figure 3). It includes two menu bars for uploading elevation and parameter
files and outputting and visualizing simulation results; a dark blue rectangular window for
recording flow depth and velocity along with elapsed time; a chart for displaying critical
parameters; and a circular window for updating the calculation progress in real time.
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In a simulation, the computational domain is a user-defined complex terrain consisting
of discrete elevation points with a fixed spacing (Figure 4a). Benefiting from this, the breach
geometry (i.e., breach width and depth) can be constructed by modifying the present
terrain. The inflow boundary conditions were set by a flood hydrograph at breach (e.g.,
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a generalized flood hydrograph in Figure 4b), while the outflow and control boundaries
were adapted to the actual terrain.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 24 
 

 

(e.g., a generalized flood hydrograph in Figure 4b), while the outflow and control boundaries 
were adapted to the actual terrain. 

 
Figure 4. (a) Schematic of the computational domain and boundary conditions. (b) Generalized 
flood hydrograph at breach. Note: 𝑄 is the discharge at time 𝑇, 𝑄  is the peak discharge, and 𝑇  
is the flood duration. 

3. Application to a Reservoir Area Case 
3.1. Overview of the Mogu Toppling Slope 
3.1.1. Geographical Setting and Engineering Background 

The hydropower station is geographically located in the confluence of the YL River, 
XS River, and QD River, southeastern margin of the Tibetan Plateau, China (Figure 5a). 
The Mogu toppling slope is on the left bank of the XS River, 3 km upstream of the dam 
site. The elevation of this deformation body varies from 2960 to 3200 m, and the surface 
area is 1.35 × 106 m2 with an average gradient of 32.5°. The slope area susceptible to failure 
should first be determined, and the disaster chain of the landslide-blocking river-dam 
breach flood also needs to be predicted for risk mitigation purposes. 

  

Figure 4. (a) Schematic of the computational domain and boundary conditions. (b) Generalized flood
hydrograph at breach. Note: Q is the discharge at time T, Qp is the peak discharge, and Tmax is the
flood duration.

3. Application to a Reservoir Area Case
3.1. Overview of the Mogu Toppling Slope
3.1.1. Geographical Setting and Engineering Background

The hydropower station is geographically located in the confluence of the YL River,
XS River, and QD River, southeastern margin of the Tibetan Plateau, China (Figure 5a). The
Mogu toppling slope is on the left bank of the XS River, 3 km upstream of the dam site.
The elevation of this deformation body varies from 2960 to 3200 m, and the surface area
is 1.35 × 106 m2 with an average gradient of 32.5◦. The slope area susceptible to failure
should first be determined, and the disaster chain of the landslide-blocking river-dam
breach flood also needs to be predicted for risk mitigation purposes.

3.1.2. Geological Setting and Slope Deformation Mechanism

The reservoir area is tectonically located in the northeast of the Yajiang–Daocheng
block (Figure 6a). In this region, large-scale faults have not developed, except for some
early Pleistocene minor active faults. The geologic strata exposed at the Mogu slope are
mainly composed of Triassic silty slate (Figure 6b). Under such a geological setting, the
slope failure mode is mainly associated with the angular relationship between the slope
surface and minor structures such as slaty cleavage.

The attitude of the slaty cleavage in the fresh rock is 60◦N~70◦W/NE∠60◦~80◦. The
strike of the strata is subparallel to the slope face. Thus, the Mogu slope is a bedded anti-dip
rock slope, and it satisfies the basic kinematic conditions of toppling failure mode. For this
slope structure, the surficial steep-inclined rock slabs are prone to bending towards the
deep valley under self-gravity [56,57]. Accordingly, the closer the distance from the slope
surface, the stronger the degree of toppling deformation and the smaller the dip angle of
slaty cleavage.

3.1.3. Toppling Zonation and Potential Instability Area

Two deep gullies divide the entire slope into three zones along the river flow direction:
I, II and III (Figure 5b). Geophysical methods, including adits prospecting and borehole
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drilling, were conducted to investigate the internal deformation characteristics of each
slope zone (Figure 7a).
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For slope zones I and III, explorations demonstrated that the maximum horizontal
and vertical toppling depths were 97 and 42 m, respectively. The surficial rock mass was
strongly toppled, but not fractured or broken. Failure precursors such as large-scale tension
cracks, slip zones, and creep were not observed either on the slope surface or in the internal
rock mass. This indicates that the two toppling zones were stable as a whole; thus, they
were not investigated further.
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For slope zone II, significant differences in the deformation characteristics were ob-
served compared with the aforementioned two zones. Two exploration adits revealed
that the rock mass in zone II could be separated into four sections according to the degree
of toppling deformation (Figure 7b,c), namely, a fracture zone, strongly toppled zone,
slightly toppled zone, or un-toppled zone. Of these, the average horizontal depth of the
first section was approximately 20 m, and the vertical depth increased with the elevation.
The rock mass within it was broken with tension cracks, which were filled by debris and
angular gravels (Figure 7(b-1)). The structure of the rock mass was catalastic. A slip zone
located between the fracture zone and the strongly toppled zone was observed in PD02
(Figure 7(b-2)). It had a thickness varying from 40 to 60 cm and was mainly composed of
off-white debris mingled with fine gravel and mud. In addition, a toppling fracture surface
at the boundary of the first two sections was formed in PD04 (Figure 7(c-1)). Outer rock
creep along the fracture surface was observed in both adits, and rock collapse occurred at
the toe of the slope (Figure 5c). For the other sections, no failure precursors were founded
(Figure 7(b-3,b-4,c-2,c-3)).

Xu et al. (2022) [58] reported that the toppling fracture surface in slope zone II was a
possible sliding surface, and the upper fracture zone was the most likely potential instability
area (Figure 8). The sliding surface may currently be developing and extending to the entire
slope after reservoir impoundment. A retrogressive rock avalanche (hereafter referred to as
a Mogu landslide) may be triggered by the decrease in the friction coefficient at the sliding
surface [59]. For this reason, only the identified potential instability area was studied.

3.2. Landslide Blocking River Process Modeling
3.2.1. Construction of the Landslide Numerical Model

For the Mogu landslide, the potential instability area was identified; erosion was not
considered due to the short runout distance. Therefore, the ball–wall model was adopted
to construct a landslide numerical model. The modeling procedures were carried out
using Rhino 6 software and can be described as follows. First, the present topography
was constructed based on a 12.5 m digital elevation model (Figure 9a). It was divided into
three independent parts (left bank, river, and right bank) to facilitate the assignment of
different parameters. Second, the landslide boundary was determined by importing the
boundary of the identified potential instability area in Section 3.1.3. Third, the depth of the
sliding surface was extrapolated based on the records from exploration adits and drilling
boreholes; the derived profile AA’ is shown in Figure 8. From this, the basal slip plane was
approximated by projecting and interpolating the records along the profile AA’ (Figure 9b).
The topography, including the sliding surface, was then represented by 67,265 triangle
meshes used for DEM simulation (Figure 9c). Finally, the sliding mass area was generated
by converting the enclosed space bounded by the present topography and the sliding
surface into a geometric entity. Its volume was 9.1 × 106 m3 (volume is obtained using
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the Rhino 6 software), and it was filled by 76,143 balls with radii between 2.0 and 3.32 m
(Figure 9c).
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Figure 9. Illustrations of the landslide modeling process. (a) The present topography consists of
three parts. (b) The proposed sliding surface approximated by projecting and interpolating the depth
records of the fracture zone in exploration adits and drilling boreholes. (c) The ball–wall model used
for DEM simulation.

3.2.2. Macro-Parameters and Micro-Parameters

The macro-parameters of physical samples, including peak shear strength (τp), co-
hesion (c), and internal friction angle (φ), were first obtained from a direct shear test of
laboratory rock (Figure 10). Next, a same-scale numerical shear box filled with 8572 balls
with radii between 0.002 and 0.00332 m was constructed (Figure 11a). Then, direct nu-
merical shear tests were repeated by adjusting the micro-parameters until the recorded
shear stress–shear–displacement curves were close to the laboratory curves (Figure 11b).
Specifically, trial and error was adopted due to the limited laboratory data. Figure 11c
presents the contact distribution of a numerical sample after 20 mm displacement under
constant normal stress of 800 kPa. The figure shows that almost all bonds in the middle
of the sample were broken. These broken parallel bonds cannot be reactivated, thus can
simulate rock mass fragmentation as described above. Finally, a comparison of the results
obtained from numerical and laboratory tests is plotted in Figure 12. As indicated in
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the figure, the simulation curve and the derived macro-parameters were close to those
of laboratory tests. Therefore, the calibration procedure was finished, and the obtained
micro-parameters are listed in Table 1.
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Figure 11. (a) A bonded particle model used for the numerical direct shear test. (b) Flow chart
of micro-parameter calibration, modified after Tai et al. (2023) [60]. (c) Contact distribution of a
numerical sample after 20 mm shear displacement under a constant normal stress of 800 kPa.

Table 1. Micro-parameters of the numerical direct shear test and numerical landslide model.

Micro-Parameter Symbol Numerical Direct Shear Test Numerical Landslide Model

Linear group
Number of ball elements nb 8572 76,143
Minimum ball radius (m) Rmin 0.002 2

Ball radius ratio Rmax/Rmin 1.66 1.66
Ball density (kg/m3) ρb 2400 2400

Ball friction coefficient µb 0.3 0.3
Normal stiffness (N/m) kn 8 × 105~1.33 × 106 8 × 108~1.33 × 109

Normal-to-shear stiffness ratio k∗ 3 3
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Table 1. Cont.

Micro-Parameter Symbol Numerical Direct Shear Test Numerical Landslide Model

Parallel bond group
Bond normal stiffness (N/m3) kn 1.51 × 1010~2.5 × 1010 1.51 × 107~2.5 × 107

Bond normal-to-shear stiffness ratio k
∗ 3 3

Normal strength (Pa) σc 2.1 × 107 2.1 × 107

Shear strength (Pa) τc 2.2 × 107 2.2 × 107

Dashpot group
Normal critical damping ratio βn 0.1 0.1
Shear critical damping ratio βs 0.1 0.1
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Studies have shown that when the index RES (Equation (5)) is larger than 10, the
number and radii of particles have a weak effect on the macro-parameters [61]. In this
study, the RES was equal to 18.8, much larger than the threshold value. Therefore, the
number and radii of the particles were adapted to the size of the numerical model.

RES =

(
Lmin
Rmin

)
×

(
1

1 + Rmax/Rmin

)
(5)

where RES is the number of ball elements in the minimum side length of the numerical
model, and Lmin is the side length of the shear box in this study.

The ball radius range used for landslide simulation was enlarged by 1000 times due to
the limitations of computing efficiency and different scales between the laboratory test and
the actual event. Due to this, some radius-dependent micro-parameters, such as kn and kn,
were readjusted according to Equation (2) [50]. The final micro-parameters of each group
used for landslide simulation are listed in Table 1.

For rock avalanches, low residual friction was found between sliding mass and slip
surface [14,62–64]. Assuming the self-lubrication mechanism, a low friction coefficient
(0.05) was assigned for the sliding surface [20–22,49]. In contrast, a slightly higher friction
coefficient (0.2) was assigned for the riverbed and the topography across the river valley.
The increase in the friction coefficient was attributed to the resistance of the river bed and
the opposite slope to the landslide debris.

3.2.3. Runout Behavior and Landslide Dam Predictions

The Mogu landslide was initiated by reducing the friction coefficient of the slip sur-
face [21,22] to model the triggering mechanism mentioned in Section 3.1.3. The calculation
cycles were terminated when the average velocity of all particles was less than 0.1 m/s.
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According to the history curves of average velocity and displacement (Figure 13), the whole
sliding process lasted 45 s and could be partitioned into three stages, namely, the accelera-
tion stage (0~10 s), the extremely high-speed motion stage (10~20 s), and the accumulation
stage (20~45 s).
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Figure 13. History curves of the average velocity and displacement of particles. (a) Velocity versus
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extremely high-speed motion stage, and accumulation stage, respectively. They are separated by two
black dashed lines.

In the initial stage, the lower particles lost stability first (Figure 14a). Next, the middle
and upper particles were initiated in sequence due to the absence of bottom support
(Figure 14b). Then, the sliding mass maintained an extremely high speed for 10 s in
the second stage (Figure 14c,d). Its average velocity reached its maximum (29.4 m/s) at
approximately 15 s (Figure 13a). In this stage, the front particles reached the river valley
and their velocity began to decrease due to an increase in the wall friction coefficient and
flat terrain. In the third stage, the front particles across the river valley hit the opposite
bank. They were deposited at the bottom of the valley, while the rear particles continued to
move, but were obstructed by the stopped particles in the front (Figure 14e). Therefore, the
average velocity began to gradually decrease during this stage. Nearly all of the particles
stopped moving after 45 s (Figure 14f). The elevation of the sliding mass dropped by 213 m,
and the released energy was 3 × 1013 J. The final horizontal runout distance was only
462.5 m, because the sliding process was severely restrained by the deep and narrow valley.
Generally, the Mogu landslide is a high-speed, short-runout rock avalanche, according to
the classification scheme updated by Hungr et al. (2014) [65].

To investigate the variation characteristics of the landslide velocity and displacement
fields, 6 groups consisting of 22 ball were monitored (Figure 15a). Their runout paths are
plotted in Figure 15b. The velocity field of each path showed three stages, which were
identical to the aforementioned descriptions. The velocity and displacement profiles of
all monitoring groups indicated that the main sliding process lasted 30 s (Figure 15c,d).
Regarding velocity profiles, three points can be summarized. First, the monitoring ball
velocities fluctuated (the velocities were partially regained). This can probably be attributed
to particle collisions on the rugged terrain during sliding process [20]. Second, the peak
velocities of the lower groups were smaller than the upper groups (Figure 15c). This is
because the lower particles were first obstructed by the opposite slope and, therefore,
experienced a shorter acceleration stage. Third, the lower monitoring groups reached
their peak velocity earlier than the upper groups did. In other words, the rear particles
showed hysteresis during the whole sliding process which was also observed in other rock
avalanches [22,47]. Regarding displacement profiles, particle runout distance is positively
correlated with elevation (Figure 15d). The maximum and minimum displacements were
691 and 216 m, respectively.
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The Mogu landslide blocked the river and formed a dam 1240 m long, 390 m wide,
and 56 m high (Figures 14f and 16a). The associated barrier lake was constructed using
the ArcGIS software (Figure 16b). Its maximum storage capacity was 1.34 × 107 m3, with
a surface area of 0.55 km2. The average discharge of the Yalong River was 1860 m3/s,
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and the net flux of the landslide damming area was assumed to be fifty percent of the
average discharge [66]. In this scenario, the water storage of the barrier lake would reach its
maximum after four hours. Because most landslide dams are short-lived in the southeastern
Tibetan Plateau [67,68], the next section focuses on forecasting the cascading dam breach
flood hazard.
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3.3. Dam Breach Flood Propagation Modelling
3.3.1. Parameters and Data Preprocessing

Based on the descriptions in Section 2.2, the necessary input data of the SFLOW
includes rheological parameters, a raster map and a flood hydrograph.

The rheological parameters used for simulating flood propagation are listed in Table 2.
Of these, the parameter Cv is set to 0.1, as suggested by O’Brien (2006) [69], because of the
low content of solid materials in the floodwater. The parameter τ controls the inundation
area and η affects the flow velocity [41]. The physical and mechanical properties of a
dam breach flood should fall in between diluted debris flow and clean water. Therefore,
the parameters τ and η of the flood take the middle value of that used in diluted debris
flow [70] and clean water. They are defined as 500 Pa and 0.0325 Pa·s, respectively. The
parameter k is related to the surface material, and is defined as 100, as recommended by
O’Brien (2006) [69]. The parameter n is dependent on surface roughness, which refers to
the value (0.025) in the Tangjiashan and Baige outburst flood cases [33].

A reservoir area (13.5 km2), including the landslide damming area and dam site, is
defined as the computational domain (Figure 16b). Then, a 5 m resolution raster map of the
simulation domain is converted to a ASCII file, which can be recognized by the developed
software. The worst scenario in flood inundation assessment, namely, instantaneous
complete dam-break, occurred after the barrier lake reached its storage capacity [38]. The
breach depth and top width in this scenario are 56 and 168 m, respectively, based on the
cross-section of the landslide dam revealed by the DEM simulation (Figure 16a). For the
failure mode of instantaneous complete dam-break, the flood hydrograph at breach is
usually generalized using a quartic parabola model (Figure 4b) [71,72]. In this model, the
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peak discharge occurred at the initial moment, and then the discharge dropped rapidly
with the constant decrease in water level in the barrier lake. The area under the flood
hydrograph was equal to the volume of water released (Vw), namely, the storage capacity
of the landslide-dammed lake in this scenario.

Table 2. The parameters used in the simulation of dam breach flood propagation.

Reheological Parameter Symbal Value

Sediment density (kg/m3) ρm 1500
Sediment concentration by volume Cv 0.1

Yield stress (Pa) τ 500
Viscosity of flood ( Pa·s) η 0.0325

Resistance coefficient k 100
Manning resistance coefficient (s/m1/3) n 0.025

The peak discharge (Qp) and duration (Tmax) in the flood hydrograph are two im-
portant parameters associated with flood inundation. However, neither of them can be
obtained from field measurements for a future event. Alternatively, the parameter Qp
was estimated using five well-recognized empirical models, as shown in Table 3. It was
determined by taking the average value of the middle three predicted values, and was
equal to 3601 m3/s. Following this, the Tmax was derived by Equation (6), and it was equal
to 4.65 h. Finally, the flood hydrograph used for this scenario was obtained by magnifying
the generalized flood hydrograph according to Qp and Tmax.

Vw =
∫ Tmax

0
QpQ(T)dT (6)

where Q(T) is the function of the flood hydrograph.

Table 3. Dam breach peak discharge, predicted by different empirical models.

Equation Investigator Predicted Value (m3/s)

Qp = 0.981(hdVl)
0.42 Costa (1985) [25] 5239

Qp = 0.72(Vw)
0.53 Evans (1986) [26] 4311

Qp = 0.0158(ρwghdVl)
0.41 Costa and Schuster (1988) [27] 2979

Qp = 0.99(dVw)
0.40 Walder and O’Connor (1997) [28] 3513

Qp =
√

ghd
5
(

hd
hr

)−1.371(Vl
1/3

hd

)1.536
eα Peng and Zhang (2012) [29] 1837

Note: Qp is the peak discharge (m3/s); hd is the dam height (m); Vl is the lake volume (m3); Vw is the volume of
water released (m3); ρw is the water density (kg/m3); g is the gravitational acceleration (m/s2); d is the drop in
water level (m), hr is referential dam height (1 m); and α equals 1.276, −0.336, and −1.532 for high, medium, and
low dam erodibility.

3.3.2. Flood Propagation Predictions

The simulation results of dam breach flood propagation are presented in Figure 17.
After the collapse of the landslide dam, the outburst flood first flowed downstream along
the river bed of the XS River (to facilitate reading, the locations of the XS River, YL River,
and QD river are shown in the top right corner of Figure 17a). At 0.25 h, the front flood
reached the confluence of the XS River and the YL River (Figure 17a). Subsequently, the
flood diverged at the confluence (Figure 17b). A small portion flowed into the YL River,
while the rest of the water continued forward. At 1 h, the front flood hit the dam site
(Figure 17c) and began to flow into the QD River. Backwater flooding caused by the
obstruction of the dam site can be observed in Figure 17d–f, and therefore, the front water
level of the dam site continued to increase in this stage. Finally, the maximum inundation
depth and area were 48 m and 0.79 km2, respectively. On the one hand, the inundation
depth was significantly smaller than the dam height (294 m). On the other hand, the
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inhabitants in the potential inundation area were evacuated. Therefore, the risk caused by
the possible Mogu landslide blocking river event can be controlled. Even so, monitoring
the deformation of the Mogu slope is also necessary.
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Figure 17. Inundation propagation predictions for the dam breach flood.

The maximum inundation depth and flow velocity in the flood propagation were
monitored, and the results are shown in Figure 18. Regarding the maximum inundation
depth, it increased rapidly in the first 0.25 h, and then experienced a short deceleration
process as the flood flowed forward. After the front flood hit the dam site (Figure 17c),
it gradually increased due to the obstruction of the dam site (Figure 18a). Regarding
the maximum flow velocity, it reached its peak (15.6 m/s) within one minute. Then, it
decreased rapidly because the energy dissipated due to basal flow friction. Subsequently,
the flow velocity was regained, in part, after two strong impacts between the water and
the slope/dam site (Figure 18b). Especially for the first impact, the flow direction changed
significantly (Figure 18a,b), and the flow velocity returned to 15.4 m/s. Finally, the velocity
gradually decreased along with the time elapsed in the stage of backwater flooding.
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4. Discussion
4.1. Effect of the Friction Coefficient of the Sliding Surface

The PFC 3D model fails to consider all mechanisms in a rock avalanche. This study
focuses on a possible triggering mechanism of the Mogu landslide, namely, the decrease
in the friction coefficient at the sliding surface (µs) caused by reservoir impoundment.
To investigate the influence of this mechanism on the final deposit shape, a sensitivity
analysis of µs, varying from 0.05 to 0.4 with an increment of 0.05, was conducted (Figure 19).
With increasing µs (≤0.3), the peak velocity decreased to 14.4 m/s, and more sliding
masses were deposited on the left bank slope. As a result, the landslide damming area
became smaller. When the µs was larger than 0.3, the final landslide dam shape was not
sensitive to µs (Figure 19b). It was suggested that 0.3 was the threshold of this landslide
numerical model. Of course, the universality of the threshold value needs to be further
discussed by examining additional cases. The scenario with a µs of 0.05 was adopted for
predictions mainly due to self-lubrication between the sliding mass and the slip surface
during runout [20–22,49].

4.2. Effect of the Breach Depth

In Section 3.3, the worst scenario (complete dam-break) was adopted for flood hazard
predictions. However, a landslide dam may not be completed destroyed in an actual
event, since the dam length along the longitudinal river profile becomes longer as the
dam elevation decreases. To investigate the influence of breach depth (hb) on flood hazard
mapping, different scenarios were established by modifying it. Assuming that the breach
morphology was an inverted isosceles trapezoid (Figure 20a) [24,29–32], the breaching
parameters of each scenario are listed in Table 4. Then, the flood hydrographs of the inflow
points were recalculated according to Table 3 and Equation (6) (Figure 20b), and the breach
morphology of each scenario was modified in the digital elevation model.
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Figure 20. (a) Sketch of the assumed breach with an inverted trapezoid shape, modified after Peng
and Zhang (2012) [29]. Note: hb is the breach depth, Wt is the breach top width, and Wb is the
breach bottom width. (b) Flood hydrograph used for simulation. (c) Breach depth versus maximum
inundation depth and area.

Figure 20c reveals that the parameter hb was positively correlated with the maximum
inundation depth/area. However, with increasing hb, the curve slope became smaller.
This is because that the shape of a landslide-dammed lake is usually a wedge with an
inverted trapezoid cross-section in the alpine canyon region. As a result, the increment of
water released gradually reduced with the increase in breach depth, which decreased the
increment of inundation depth/area.
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Table 4. Breaching parameters of six scenarios used for simulation.

Scenario Dam Failure Mode
Breach Morphology (Cross-Section)

Depth/hb (m) Top Width/Wt (m) Bottom Width/Wb (m)

No. 1 Complete dam-break 56 186 ---

No. 2

Partial dam-break

42 157 73
No. 3 28 159 103
No. 4 21 165 123
No. 5 14 166 138
No. 6 7 165 151

Note: For partial dam-break failure mode, the breach morphology was assumed to be an isosceles inverted
trapezoid (the acute angle between leg and base was 45◦: Wt = Wb + 2hb).

The simulated results of scenarios No. 3~No. 6 are presented in Figure 21. After the
front flood hit the dam site, the front water level of the dam site did not keep rising in
scenario No. 5 or No. 6 (Figure 21a,b) due to a limited volume of water released, which was
different from the worst scenario (Figure 17). In contrast, the trends of flood propagation in
scenarios No. 3 and No. 4 were consistent with the worst scenario, except for the predicted
inundation depth and area (Figure 21c,d).
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4.3. Limitations of the PFC 3D Model and the SFLOW Model

In this paper, the combinations of PFC 3D and SFLOW models demonstrated enor-
mous potential in forecasting chain hazards. However, there are some limitations of
the integrated model. First, the geometry of the potential sliding surface can hardly be
accurately constructed. Nevertheless, on the basis of the available data collected from
geophysical methods, a potential instability area was determined, and the extrapolated
slip surface seems to be a reasonable approximation. Second, the PFC 3D model cannot
simulate all failure mechanisms in detail. For example, the loss of partial shear strength
along the slip surface may have occurred due to an increase in the porewater pressure after
reservoir impoundment. Alternatively, this mechanism was reflected by decreasing the
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friction coefficient between the sliding mass and the slip surface. Lastly, the SFLOW model
has limitations in terms of simulating the evolution of breach morphology. Therefore, an
instantaneous dam-break failure mode can be assumed, and different scenarios of breach
morphology were established.

5. Conclusions

This study mainly introduces an integrated numerical technique for landslide disaster
chain predictions by a reservoir area case in the southeastern Tibetan Plateau, China. Of
these, PFC 3D was used for modeling the blocking river process, and the cascading dam
breach flood propagation was simulated by the SFLOW. The major findings which were
derived are: (1) The toppling fracture surface in zone II of the Mogu slope may develop
into a sliding surface, and the upper creep zone is the potential sliding mass. A high-
speed, short-runout rock avalanche with a volume of 9.1 × 106 m3 may be triggered by the
reservoir impoundment. (2) DEM simulation revealed that a landslide with a peak velocity
of 29.4 m/s can block the river in 45 s, forming a landslide dam 1240 m long, 390 m wide,
and 56 m high. The water storage of the associated barrier lake is 1.34 × 107 m3, which
may be filled in four hours. (3) The SFLOW simulation revealed that the flood reached the
dam site in one hour, with a flow velocity of 15.4 m/s. The final inundation depth and area
were 48 m and 0.79 km2, respectively. (4) Sensitivity analyses demonstrated that the friction
coefficient at the sliding surface and breach depth are two critical parameters associated
with the hazard-affected area. (5) Finally, benefiting from hydraulic engineering, the risks
caused by outburst flood can be controlled. It is expected that the method of combined PFC
3D and SFLOW can be improved and applied in more prediction cases to mitigate risks in
the chain disaster of landslide blocking river-cascading dam breach floods.
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