
Citation: Song, W.; Zhou, X.; Zhang,

S.; Wu, Y.; Zhang, P. GLF-Net: A

Semantic Segmentation Model

Fusing Global and Local Features for

High-Resolution Remote Sensing

Images. Remote Sens. 2023, 15, 4649.

https://doi.org/10.3390/

rs15194649

Academic Editors: Jiaojiao Li,

Qian Du, Jocelyn Chanussot, Wei Li,

Bobo Xi, Rui Song and Yunsong Li

Received: 8 August 2023

Revised: 18 September 2023

Accepted: 19 September 2023

Published: 22 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

GLF-Net: A Semantic Segmentation Model Fusing Global and
Local Features for High-Resolution Remote Sensing Images
Wanying Song 1,*, Xinwei Zhou 1, Shiru Zhang 1, Yan Wu 2 and Peng Zhang 2

1 Xi’an Key Laboratory of Network Convergence Communication, School of Communication and Information
Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
21207223090@stu.xust.edu.cn (X.Z.); zhangshiru@xust.edu.cn (S.Z.)

2 School of Electronics Engineering, Xidian University, Xi’an 710071, China; ywu@xidian.edu.cn (Y.W.);
pzhang@xidian.edu.cn (P.Z.)

* Correspondence: wysong@xust.edu.cn; Tel.: +86-187-9294-7332

Abstract: Semantic segmentation of high-resolution remote sensing images holds paramount impor-
tance in the field of remote sensing. To better excavate and fully fuse the features in high-resolution
remote sensing images, this paper introduces a novel Global and Local Feature Fusion Network,
abbreviated as GLF-Net, by incorporating the extensive contextual information and refined fine-
grained features. The proposed GLF-Net, devised as an encoder–decoder network, employs the
powerful ResNet50 as its baseline model. It incorporates two pivotal components within the encoder
phase: a Covariance Attention Module (CAM) and a Local Fine-Grained Extraction Module (LFM).
And an additional wavelet self-attention module (WST) is integrated into the decoder stage. The
CAM effectively extracts the features of different scales from various stages of the ResNet and then
encodes them with graph convolutions. In this way, the proposed GLF-Net model can well capture
the global contextual information with both universality and consistency. Additionally, the local
feature extraction module refines the feature map by encoding the semantic and spatial information,
thereby capturing the local fine-grained features in images. Furthermore, the WST maximizes the
synergy between the high-frequency and the low-frequency information, facilitating the fusion of
global and local features for better performance in semantic segmentation. The effectiveness of the
proposed GLF-Net model is validated through experiments conducted on the ISPRS Potsdam and
Vaihingen datasets. The results verify that it can greatly improve segmentation accuracy.

Keywords: high-resolution remote sensing; semantic segmentation; global context information;
fine-grained feature; feature fusion

1. Introduction

As image processing technology, sensors, and data storage capabilities continue to
advance, the acquisition of high-resolution (HR) remote sensing images has become more
common and feasible [1]. HR remote sensing images refer to image data with correspond-
ing spatial resolutions acquired by remote sensing platforms, such as satellites, aviation,
or unmanned aerial vehicles. These images can provide detailed surface information,
including buildings, roads, vegetation, etc. HR remote sensing images are widely used in
urban planning, environmental monitoring, and agricultural management [2,3].

Semantic segmentation of HR remote sensing images has always been a difficult
challenge in the field of computer vision (CV) [4]. In the early stages, semantic segmentation
methods for HR remote sensing images were mainly based on hand-designed features.
Researchers scrutinized remote sensing images, dissecting their color, texture, shape, and
other distinctive attributes. They harnessed conventional machine learning techniques, like
support vector machines and random forests, to execute classification tasks. Davis’s method
was based on threshold-extracted texture features of images for semantic segmentation [5].
Adams et al. proposed a region-based method to divide an image into regions to realize
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image segmentation [6]. Kundu et al. proposed an algorithm that could automatically
select important edges for human perception [7]. Achanta et al. [8] introduced a novel
super-pixel algorithm known as Simple Linear Iterative Clustering, which serves to enhance
the performance of semantic segmentation. However, these methods often perform poorly
for complex terrain classes and changing environmental conditions.

Compared with traditional methods, CNN possesses the inherent capability to au-
tonomously glean feature representations from raw data, obviating the need for manual
design of feature extractors through an end-to-end learning process. And CNN has a more
powerful learning ability for image features. The ResNet [9] model was proposed to solve
the gradient explosion problem and improve the performance of the model. It is used as
the baseline model for many CV tasks and is also suitable for semantic segmentation tasks.
The proposal of the fully convolutional network (FCN) [10] extends the traditional convolu-
tional neural network to pixel-level classification and realizes fine semantic segmentation.
It used an encoder–decoder structure that produces a layer-hop connection structure to
integrate high- and low-dimensional feature maps. To obtain higher segmentation accuracy,
researchers have proposed many improved model architectures to further improve the
performance of semantic segmentation of HR remote sensing images. Building upon the
foundation of FCN, U-Net [11] introduces a streamlined skip connection architecture and
optimizes and fuses different feature maps to improve accuracy. Meanwhile, SegNet [12]
innovatively captures and utilizes the pooling index during the encoding phase, effectively
guiding and standardizing the subsequent decoding procedure. In a similar vein, PSP-
Net [13] leverages parallel pooling across various scales to extract pivotal features from
diverse ground object categories, thereby enhancing the overall segmentation performance
of the model. Meanwhile, RS remote sensing images also have the problems of complex
labeling and high time consumption, so unsupervised algorithms have also been a hot
issue in the semantic segmentation of RS remote sensing images. A method to reduce the
prediction uncertainty of target domain data was proposed by Prabhu, S. et al. [14]. Liu, Y.
et al. [15] proposed a source-free domain adaptation framework for semantic segmentation,
SFDA, in which only well-trained source models and unlabeled target domain datasets
are available for adaptation. Chen, J. et al. [16] proposed an unsupervised domain adap-
tive framework for HRSI semantic segmentation based on adversarial learning. Guan,
D. et al. [17] proposed a Scale Variance Minimization (SVMin) technique that uses scale
invariance constraints to perform inter-domain alignment while preserving the semantic
structure of images in the target domain. Stan, S. et al.’s [18] approach is based on en-
coding source domain information into the interior for use in guiding the distribution of
adaptations in the absence of source samples.

In recent years, attention mechanisms have been widely adopted in the field of com-
puter vision. There are two ways of modeling attention mechanisms: (1) One is to use
global information to obtain attentional weights to enhance key local areas or channels
without considering the dependencies between global information. SE-Block [19] repre-
sents a classical approach to attention, aiming to explicitly establish interdependencies
between feature channels. This involves dynamically assigning weights to each channel
through model learning, thus boosting relevant features while suppressing irrelevant ones.
PSANet [20] proposes the point-wise spatial attention network (PSANet) to relax the local
neighborhood constraint. Each position on the feature map is connected to all the other
ones through a self-adaptively learned attention mask. (2) The other is to model the depen-
dencies between global as well as local information and enhance the subject information
by obtaining the correlation matrix between channels or spatial features. DANet [21]
introduces the dual attention (DA) module into the field of semantic segmentation and
improves the performance of the model by modeling global information dependencies.
Meanwhile, another noteworthy contribution is CBAM-Block [22], an attention module
that seamlessly fuses spatial and channel information. In contrast to the singular focus on
channel attention exhibited by SE-Block, CBAM combines channel attention and spatial
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attention, thus enabling the model to focus on both global and local information and to
better model global information dependencies when processing images.

However, for the semantic segmentation problem, there are still deficiencies in the
existing methods, which can be summarized as follows: (1) Global context information
is crucial for the semantic segmentation task. When computing global dependencies, the
correlation matrix from a large number of feature maps usually results in high complexity
and strong training difficulties. Although some models try to introduce a multi-scale input–
output mechanism, how to effectively utilize the information of different scales and how to
adequately capture the remote dependency and global context in an image are still difficult
problems. (2) RS remotely sensed images contain intricate topographic landscapes that
exhibit a wide variety of textures, resulting in both high intra-class diversity and inter-class
similarity. As a result, the boundaries in these images can be easily confused with small
object features, while some small objects and some regions with unclear boundaries can
also be misclassified. This motivates us to mine more distinguishable local fine-grained
features for accurate classification. To address the above problems, we propose a covariance
attention module (CAM) and a local fine-grained extraction module (LFM) to extract multi-
scale global and local fine-grained information, respectively, and a wavelet self-attention
module (WST) to fuse global and local features. The main contributions and innovations of
this paper include:

1. We designed a CAM that uses the covariance matrix to model the dependencies
between the feature map channels, capturing the main contextual information. These
features are subsequently encoded by graph convolution, which helps to capture
universally applicable and consistent global context information. The covariance
matrix can adaptively capture not only the linear relationship between the local
context information of the feature map but also the non-local context information
of the feature map [23,24]. We model the feature maps of the last three layers of
ResNet using covariance matrices to obtain their main context information and fuse
them using feature addition. This non-local context information can help GLF-Net
understand the relationship between different regions in the image.

2. Building upon the ResNet features, we have introduced a novel approach by inte-
grating the local feature extraction module. This innovative step refines the feature
map and yields finely detailed, local-level features. Through a process that involves
encoding both spatial and semantic information from the feature map, followed by
a comparative analysis against information from global pooling, we successfully
capture intricate features that tend to be challenging to discern amidst the complex
background of HR remote sensing images. This enhancement improves accuracy
when identifying small targets and delineating boundaries, thereby bolstering our
model’s capacity for feature capture and recognition.

3. We consider the differences and interactions between global features and local features,
and simply pursuing maximization or merging class probability maps cannot ensure
comprehensive semantic description. Recognizing the intrinsic value of intricate
details and texture information residing within an image’s high-frequency compo-
nents, we devised a wavelet self-attention mechanism. This innovation facilitates
the fusion of global and local features, harnessing the synergistic interplay between
high-frequency and low-frequency information. Importantly, this approach ensures
information fusion across varying scales, thereby optimizing the comprehensive
utilization of image content.

The subsequent sections of this paper are organized as follows: Section 2 delves into the
relevant literature concerning local and global feature extraction. In Section 3, we provide
an overview of the materials and methodologies utilized in our study. Moving forward to
Section 4, we delve into the presentation of the results stemming from our experimental
pursuits. Ultimately, Section 5 encapsulates a concise summary of our concluding insights.
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2. Related Work

This section briefly reviews the semantic segmentation methods relevant to this paper,
namely, the global feature extraction-based semantic segmentation method and the local
feature extraction-based semantic segmentation method.

2.1. Global Context Feature Extraction for Semantic Segmentation

Global context information is crucial in the context of semantic segmentation of HR
remote sensing images. It not only helps identify a wide range of objects and distinguish
objects and backgrounds, but also captures spatial correlations and enhances the model’s
ability to understand the overall image semantics. This information holds great importance
in enhancing the accuracy and overall effectiveness of semantic segmentation. The Deeplab
series [25,26] of networks have established atrous convolution, global average pooling,
and atrous spatial pyramid pooling. By employing these techniques, the Deeplab series of
networks effectively harness the global context information within images. This enables
them to capture semantic details across various scales and facilitates a more profound com-
prehension of the semantic structure inherent in the images. At the same time, DeeplabV3+
uses the skip connection mechanism to fuse the features in the encoder and the features
in the decoder. This allows the decoder to directly access the low-level information from
the encoder so that it can better utilize the detailed information of low-level features for
segmentation. Zhang, H. et al. [27] introduced a context encoding module based on FCN,
which effectively captured and leveraged contextual information, resulting in notable en-
hancements to the model’s segmentation accuracy. Li, R. et al. [28] implemented a feature
pyramid network to seamlessly integrate the spatial and contextual features that were ex-
tracted. Building upon this foundation, they further refined multi-scale feature acquisition
by utilizing attention-guided feature aggregation. Liu, H. et al. [29] introduced additional
correspondences between foreground and background, along with incorporating multi-
scale contextual semantic features. This strategic augmentation notably aids the encoder in
capturing dependable matching patterns.

2.2. Local Fine-Grained Feature Extraction for Semantic Segmentation

In order to handle the classification of small targets and boundaries caused by com-
plex scenes in HR remote sensing images, models usually need to further enhance local
information to obtain more subtle fine-grained features. Fine-grained features usually
focus on capturing the detailed information in the image, increasing the diversity and
discrimination ability of the features. Yang, M. et al. [30] proposed densely connected
atrous spatial pyramid pooling, and the features generated by this network can cover the
local area in a very dense way to obtain fine-grained local features. Li, R. et al. [31] proposed
ABCNet, which uses a bilateral attention network to capture rich spatial details in HR
remote sensing images, obtains fine-grained spatial information, and improves the accuracy
of the model. Wang, L. et al. [32] proposed the category feature compact module, which
solves the problem of feature dispersion in the target domain achieved by cross-domain
networks, facilitates the fine-grained alignment of categories, and improves segmentation
performance.

3. Materials and Methods

As mentioned above, multi-scale contextual features are crucial for obtaining images in
complex scenes. During the down-sampling process, the model inevitably loses important
information. Encoding each stage of down-sampling aids in acquiring a broader spectrum
of multi-scale contextual and semantic insights. Due to the complexity of HR remote sensing
images, some small targets and boundaries are usually confused by global information.
Refining the feature map to obtain fine-grained features will help the model recognize these
small targets and boundaries. Based on these, we designed GLF-Net.

This section introduces the primary architecture of GLF-Net. As depicted in Figure 1a,
an encoder–decoder architecture is employed. The encoder is comprised of a backbone
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network, alongside a global feature extraction module and a local feature extraction mod-
ule. We use ResNet50 as the backbone network for feature extraction and down-sample;
Figure 1b is a schematic of the ResNet50 residual block. Our CAM is applied to the final
three layers of ResNet50, enabling the extraction of comprehensive global context features.
The correlation between features is crucial for correctly distinguishing the semantic cate-
gories of features. By calculating the covariance matrix of features, we can understand the
linear correlation between features, which helps us select the most discriminative combina-
tion of features. The extracted multi-scale contextual features can help GLF-Net obtain a
wider range of contextual information, including the object’s global structure, background
information, and contextual relationships, and also enable GLF-Net to better adapt to
changes in different images and objects. This contextual information plays a pivotal role in
achieving precise object segmentation, comprehending their semantics, and enhancing the
overall generalization capability of GLF-Net. The regional fine-grained feature extraction
module is used to extract local features, and the fine-grained module can refine the output
of ResNet50. Fine-grained features can provide internal details of the object, which helps to
distinguish different semantic categories and accurately classify internal regions. It can also
capture small changes and edge details of the object to improve the accuracy of boundary
recognition and segmentation. This gives better recognition results for small objects in the
dataset.
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module.

In the decoder part, we built a WST module that employs the wavelet transform and
self-attention to fuse the multi-scale features from the CAM and LFM modules. Then, a
sequence of up-convolutions gradually expands the fused output to the original size. The
wavelet transform has good sensitivity to edge and texture features. It helps to detect edge
and texture information in an image and extract clear boundaries. In semantic segmentation,
boundary information helps the model to obtain higher segmentation results. By applying
the wavelet transform, the boundary information can be enhanced to improve the ability
of GLF-Net to perceive object boundaries. The self-attention mechanism can model the
global correlation of different positions in the input features instead of being limited to
local regions. By calculating the attentional weights between each location in the input
features, the self-attention mechanism can capture the long-range dependencies between
different locations. This enables the self-attention mechanism to effectively model global
contextual information in feature fusion. In the up-sampling process, as shown in Figure 1c,
we designed the up-sampling part based on the ResNet residual block and use the jump
connection strategy.
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3.1. Global Feature Extraction

In convolutional neural networks, with the transformation of the sensory field and
the gradual stacking of features, the semantic information contained in the deeper features
of each layer is not exactly the same. Gradually, along with the change of the receptive
field and characteristics of the stacked, each layer of ResNet deep features contained in
the semantic information is not the same. In this regard, the fusion of multi-scale context
information is crucial for the model. By this kind of information fusion, GLF-Net can adapt
to different target dimensions effectively and handle the target boundary and complexity
so as to improve the flexibility and generalization ability in semantic segmentation tasks.

In the CAM module, we use a covariance matrix (CM) to model the relationship
between channels [23], highlight the main channel information while providing a global
summary, and then use graph convolution to encode the extracted features to capture the
main context information in the last three layers of ResNet50. Figure 2 shows a visualization
of the effect of the CM projection, with a1 and b1 showing the original image and a2 and b2
showing the effect of the image covariance projection matrix. It can be seen that the CM
has a strong and prominent effect on the main information in the image. Based on this,
as shown in Figure 3, we use the covariance matrix to extract the main information of the
second-, third-, and fourth-layer features of ResNet50 in an attention mechanism. The first
step is to perform the L2 normalization operation on the obtained features and then find
the covariance matrix.

cov =
1

H ×W

H×W

∑
t=1

(
Ft − Ft

)T(
Ft − Ft

)
(1)

where C, H, and W are the number of channels, height, and width; t ∈ (1, 2, . . . , H ×W);
Ft ∈ R(H×W)×C; and Ft is the mean of F

t
. In the dot product process, subject to the effect

of the broadcast mechanism, the covariance matrix cov ∈ RC×C. Then, we obtain the
corresponding covariance attention matrix by the so f tmax function:

S(i) =
exp(cov(i))

C
∑

i=1
exp(cov(i))

(2)

X(i) = Fm(i)× S(i) (3)

where cov(i) represents the middle element of the covariance matrix. The result, X(i), of
the covariate attention is obtained by multiplying the original feature, F, with the covariate
attention matrix, S. Then, we use covariance attention to extract the main information in
this layer. In order to effectively fuse the features of the three layers, we use the dilated
convolution strategy to down-sample the features of the second and third layers so that the
three-layer features obtain feature maps of the same size. The expanded convolution enables
GLF-Net to obtain a larger receptive field, thereby obtaining wider context information.
Finally, the three layers of features are added to obtain the fusion feature.

After obtaining the fused multi-scale context features, we use graph convolution [33]
to model the global context information of the features. First, our approach involves the
projection of the input feature map from the coordinate space onto a graph composed of
latent nodes or regions within the interaction space. These latent nodes adeptly aggregate
local descriptors using convolutional layers, strategically diminishing the impact of super-
fluous attributes within the coordinate space. Subsequently, the interrelationships among
these nodes are comprehensively deduced through a duo of one-dimensional convolutions.

Z = GXwg (4)

where G denotes the adjacency matrix that propagates information across nodes and the
adjacency matrix learns edge weights reflecting the relationship between the underlying
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global pooled features at each node. wg represents the graph convolution parameters. G
and wg are learned autonomously with gradient descent as the model is continuously
trained. During training, the graph’s affinity matrix learns the edge weights, thus capturing
the nuanced connections between nodes within a fully interconnected graph. This design
ensures that each node assimilates information from all the other nodes, constantly updat-
ing its state. Upon inference, the output features undergo a transformation back into the
original space, yielding the derivation of our global features.
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3.2. Local Fine-Grained Feature Extraction

HR remote sensing images have the characteristics of high within-class variance and
low within-class variance. In HR remote sensing images, as shown in Figure 4, some small
objects present in complex environments are usually misclassified. Therefore, diverging
from global features, local features place greater emphasis on recognizing and classifying
intricate fine-grained attributes within images. After down-sampling by ResNet, the model
eventually extracts a feature map of dimensions 8 × 8; each feature value represents a
region of the original image [34]. Through the inference screening of this module, the
features of small objects are obtained and highlighted by up-sampling.
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Figure 4. Example of a small object in a complex scene of an HR remote sensing image. The red box
selected is the small object that is easy to be ignored. Vegetation in (a). Cars in (b). Vegetation in (c).
Cars in (d).
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Our local feature extraction module is shown in Figure 5. First, we evenly divide our
feature map, V∈ R(H×W), into t local areas.

Vhw = ∑D
t=1 Fthw (5)

where Vhw represents the information in the dimension (h, w) of V and Fthw represents the
information in the dimension (t, h, w) of F. We obtain fine-grained local features through
semantic and spatial relationships between feature points in each local area. The individual
feature points in our local region, Vhw, are set to Pj. Specifically, we take the peak point
within each local region as the salient point, Pn, and use it as a benchmark to compute
semantic and spatial relationships with each point within the local region.
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Figure 5. Schematic of local feature extraction.

As mentioned above, the context relationship is particularly important in the task of
semantic segmentation, and the simple region division can easily cause the loss of context
information in the feature map. To this end, we first calculate the spatial relationship
between salient points, Pn, and each feature point, Pj, in each local area based on Euclidean
distance, as CRnj:

CRnj =
√
(Pn(x)− Pj(x))2 + (Pn(y)− Pj(y))

2 (6)

where j = 1, · · ·, H ×W.The smaller the value of CRnj, Pn and Pj get closer. We then use
the cosine similarity to calculate the semantic dependency between the salient point, Pn,
and the rest of the feature points, Pj:

SRnj =
Qn

T
Qj∣∣∣∣Qn

∣∣∣∣∣∣∣∣Qj
∣∣∣∣ (7)

where Qn∈ RD and Qj∈ RD are the channel features of point Pn and point Pj in each local
area. Considering both spatial relationship and semantic similarity, we define the spatial
semantic relationship, Rnj, as follows:

Rnj =
SRnj

CRnj + 1
(8)

The correlation between point Pn and point Pj is proportional to the value of R. Then,
we can obtain the local features, Fl

n, of salient points, Pn, by aggregating spatial semantic
context information, which is formulated as follows:

Fl
n = ∑H∗W

j=1

exp(Rnj)

∑H∗W
j=1 exp(Rnj)

(9)
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After obtaining all the local features, to filter the features of the small target we need
from these local features, we first obtain the global features of the original feature, which is
denoted as FG:

FG = GAP(F) (10)

where GAP is the global average pooling. The semantic similarity between each local
feature and the global pooling result is then calculated using the cosine similarity and by
screening the k groups of local features that are most dissimilar to the global feature, which
are the local small target features we need to extract.

3.3. Fusion Module

In CNNs, both convolution and pooling operations inherently entail a certain degree of
information loss across different frequencies. However, by incorporating the wavelet trans-
form, the model enables the fusion of various frequency characteristics and the preservation
of multi-scale information fusion. This approach optimally exploits the complementarity
between high- and low-frequency data.

The deeper convolutional neural network architectures show greater ability to improve
the segmentation accuracy of complex image edge contours and details while retaining
the multi-frequency attributes. Wavelet transform, employing an array of diverse scale
wavelets, decomposes the original function. This process yields coefficients representing
the original function under distinct scale wavelets through translation and scale transfor-
mations. The translation affords insight into the temporal attributes of the original function,
while scale transformation elucidates its frequency characteristics.

Having extracted the global and local features, the subsequent phase revolves around
their effective fusion. As depicted in Figure 6, our fusion module harnesses a combination
of wavelet transform and self-attention mechanisms to accomplish this fusion task:

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 

After obtaining all the local features, to filter the features of the small target we need 
from these local features, we first obtain the global features of the original feature, which 
is denoted as GF : 

G GAP(F)F =  (10)

where GAP  is the global average pooling. The semantic similarity between each local fea-
ture and the global pooling result is then calculated using the cosine similarity and by 
screening the k groups of local features that are most dissimilar to the global feature, 
which are the local small target features we need to extract. 

3.3. Fusion Module 
In CNNs, both convolution and pooling operations inherently entail a certain degree 

of information loss across different frequencies. However, by incorporating the wavelet 
transform, the model enables the fusion of various frequency characteristics and the 
preservation of multi-scale information fusion. This approach optimally exploits the com-
plementarity between high- and low-frequency data. 

The deeper convolutional neural network architectures show greater ability to im-
prove the segmentation accuracy of complex image edge contours and details while re-
taining the multi-frequency attributes. Wavelet transform, employing an array of diverse 
scale wavelets, decomposes the original function. This process yields coefficients repre-
senting the original function under distinct scale wavelets through translation and scale 
transformations. The translation affords insight into the temporal attributes of the original 
function, while scale transformation elucidates its frequency characteristics. 

Having extracted the global and local features, the subsequent phase revolves around 
their effective fusion. As depicted in Figure 6, our fusion module harnesses a combination 
of wavelet transform and self-attention mechanisms to accomplish this fusion task: 

 
Figure 6. Illustration of the fusion module. 

We first use the 2D Haar transform on the global and local features to obtain the low-
frequency component, LLx , and three high-frequency components, LHx , HLx , and HHx . The 
four frequency band components are obtained by Equation (11): 

, , , , ,
, , , , ,
, , , , ,
, , , ,

x x x x x
x x x x x
x x x x x
x x x x

LL

LH

HL

HH

i j i j i j i j i j
i j i j i j i j i j
i j i j i j i j i j
i j i j i j i j

( ) ( 1 )+ ( )+ ( )+ ( )

( ) ( 1 ) ( )+ ( )+ ( )

( ) ( 1 2 )+ ( ) ( )+ ( )

( ) ( 1 ) ( ) (

= - - - -

=- - - - - -

=- - - - - -

= - - - - - -

2 2 1 2 1 2 2 2 1 2 2
2 2 1 2 1 2 2 2 1 2 2
2 1 2 1 2 2 2 1 2 2

2 2 1 2 1 2 2 2 1 ,x i j)+ ( )2 2

 (11)

Global 
feature

Local 
feature

WT

WT

LL

LH
HL
HH

LL

Conv

Conv

Conv

Conv

V1

K

Q

V2

×

Reshape

Softmax

×

×

C Conv
Transpose

Figure 6. Illustration of the fusion module.

We first use the 2D Haar transform on the global and local features to obtain the
low-frequency component, xLL, and three high-frequency components, xLH , xHL, and xHH .
The four frequency band components are obtained by Equation (11):

xLL(i, j) = x(2i− 1, 2j− 1) + x(2i− 1, 2j) + x(2i, 2j− 1) + x(2i, 2j)
xLH(i, j) = −x(2i− 1, 2j− 1)− x(2i− 1, 2j) + x(2i, 2j− 1) + x(2i, 2j)
xHL(i, j) = −x(2i− 1, 2j− 1) + x(2i− 1, 2j)− x(2i, 2j− 1) + x(2i, 2j)
xHH(i, j) = x(2i− 1, 2j− 1)− x(2i− 1, 2j)− x(2i, 2j− 1) + x(2i, 2j)

(11)

where i = 1, 2, . . . , H/2, j = 1, 2, . . . , W/2 and H and W are the height and width of the
original feature map, respectively. That is, the width and height of the output component
of each level of the DWT will be 1/2 that of the input image.
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V1 and V2 of the self-attention module are obtained by performing a convolution
operation on the low-frequency components of the two features. Subsequently, the high-
frequency components undergo convolution to yield the Q and K elements of the self-
attention module, where Q, K ∈ Rck×Hl×Wl and CK is the number of channels in the
low-dimensional mapping space. Then, we reshape them into the shape of CK × N, where
N = Hl ×Wl is the number of pixels. Diverging from traditional self-attention mechanisms,
our Q and K features establish a mutual interplay to facilitate cross-image information
exchange. In light of this, we introduce the concept of two distinct branches tailored
to amplify the representation of support and query features. Following this, a matrix
multiplication is executed, utilizing the transposed forms of Q and K. This operation
culminates in the creation of a novel feature map, which is subsequently transposed once
more to derive the feature map for the alternate branch. Lastly, a so f tmax module is applied
to each of these derived maps, individually generating spatial attention maps for the Q and
K branches, thereby completing this process [35].

Aji =
exp(Qi × Kj)

∑N
i=1 exp(Qi × Kj)

(12)

where Aji measures the impact of querying the ith position on supporting the jth position.
The enhanced similarity in feature representations between two locations corresponds to a
heightened correlation between them. Then, the final fused features, Aji, are obtained by
concatenating them with V1 and V2, respectively.

4. Experimental Results and Analysis
4.1. Data Sets

We validated the performance of GLF-Net using two state-of-the-art airborne image
datasets from the City Classification and 3D Building Reconstruction Test projects provided
by ISPRS, which are available from the URL Semantic Annotation Benchmark (https:
//www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx, accessed on 26
May 2022). The dataset utilizes a Digital Terrain Model (DSM) produced through HR
orthogonal photographs and complementary dense image-matching methodologies. Both
datasets encompass urban landscapes, capturing diverse urban scenes. Vaihingen portrays
a quaint village characterized by numerous individual buildings and multi-story edifices.
On the other hand, Potsdam stands as a quintessential historical city replete with expansive
building complexes, narrow alleyways, and densely clustered settlement formations. In a
meticulous effort, each dataset has been subject to manual classification, resulting in the
categorization of land cover into the six most prevalent classes.

(1) Vaihingen dataset: Comprising 33 distinct remote sensing images of varying
dimensions, each image is meticulously extracted from a larger-scale orthophoto picture
at the top level. A careful image selection process ensures the avoidance of data gaps.
The remote sensing images adhere to an 8-bit TIFF file format, encompassing three bands:
near-infrared, red, and green. Meanwhile, the DSM is represented as a single-band TIFF file,
with its grayscale values (indicative of DSM height) encoded in 32-bit floating point format.
The HR remote sensing images and the DSM both share a ground sampling distance of
9 cm. The DSM data are ingeniously derived through dense image matching utilizing
the Trimble INPHO 5.3 software. Presented in various channel combinations, HR remote
sensing images adopt the form of TIF files, with each channel sporting an 8-bit spectral
resolution. Both the HR remote sensing images and label maps take on the form of three-
channel images, while DSM data maps are presented as single-channel images. The HR
remote sensing images are stored as 8-bit TIF files, each equipped with three frequency
bands. These RGB bands correspond to the near-infrared, red, and green bands captured by
the camera. Notably, a DSM is encapsulated within a TIFF file, featuring a single frequency
band, and its gray levels are encoded as 32-bit floating point values. It is worth mentioning

https://www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx
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that HR remote sensing images are spatially defined within the same grid as the DSM,
thereby eliminating the necessity to factor in geocoding information during processing.

(2) Potsdam Dataset: Comprising 28 images, all uniformly sized, the spatial resolution
of the top image is an impressive 5 cm. Parallel to the Vaihingen dataset, this collection is
constructed from remote sensing TIF files characterized by three bands, alongside DSM
data, which remain as a single band. It is noteworthy that each remote sensing image
within this dataset boasts identical area coverage dimensions.

4.2. Parameter Setting and Evaluation Index

We trained our model within the PyTorch framework, conducting experiments on HR
remote sensing image datasets. These experiments were executed on a personal computer
featuring an 11th-generation Intel(R) Core(TM) i9-11900F CPU clocked at 2.50GHz(Intel
Productions), an NVIDIA GeForce RTX 3090 GPU, and 32 GB of memory (Asus Produc-
tions). An initial learning rate of 0.0001 was adopted, spanning a comprehensive training
regimen of thirty epochs. The learning rate underwent adjustments every ten epochs,
facilitating progressive optimization. For loss computation, the cross-entropy loss function
was employed, aiding in the convergence of training. To accommodate the input data
within GLF-Net, we meticulously partitioned the HR remote sensing image into smaller
256x256 patches. We introduced image flipping and rotation. These data augmentation
techniques effectively expanded the dataset and enhanced its diversity.

The evaluation of GLF-Net’s performance was accomplished using metrics such as
mean intersection over union (IoU), intersection over union (IoU), overall accuracy, and
mean F1-score. IoU is the proportion of the intersection to the union between the predicted
outcome and the ground truth value and is calculated for use case segmentation. mIoU is a
standard assessment, and it is the mean of all categories of IoU. F1 is a weighted average of
the precision and recall of GLF-Net. From the confusion matrix, we can calculate mIoU,
IoU, OA, and F1:

OA =
∑K

K=1 TPK

∑K
K=1 TPK + FPK + TNK + FNK

(13)

IoU =
∑K

K=1 TPK

∑K
K=1 TPK + FPK + FNK

(14)

mIoU =
1
K

∑K
K=1 TPK

∑K
K=1 TPK + FPK + FNK

(15)

mF1 =
1
K ∑K

K=1 2× precisionK × recallK
precisionK + recallK

(16)

where TP and TN represent the number of correct and incorrect positive samples, respectively;
FP and FN represent the number of negative samples that were correctly and incorrectly
judged, respectively; and precisionK =TPK/(TPK + FPK) and recallK =TPK/(TPK + FNK)
are the precision and recall of GLF-Net, respectively.

4.3. Semantic Results and Analysis

This section primarily presents the outcomes attained by GLF-Net. As depicted
in Figure 7, the confusion matrix provides a comprehensive overview of our model’s
performance across these two datasets. Figures 8 and 9 showcase the segmentation results
of HR remote sensing images: Figure 8 corresponds to the Potsdam dataset, and Figure 9
pertains to the Vaihingen dataset. Figures 8 and 9 have the same legend. Notably, GLF-Net
demonstrates commendable performance on both datasets, substantiating its efficacy in
semantic segmentation tasks.
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To further verify the performance of GLF-Net, we set up a quantitative compari-
son experiment. We compared GLF-Net with four models: Unet, deeplabV3+, A2-FPN,
and BSE-Net [36], and each model consistently uses ResNet50 as the baseline network.
DeeplabV3+ employs dilated convolutions to acquire features spanning multiple scales,
thereby facilitating the extraction of contextual information. A2-FPN also aggregates global
features for image semantic segmentation and derives discriminative features through the
accumulation and dissemination of multi-level global contextual attributes. The Bes-Net
model is based on boundary information, and incorporating multi-scale context information
enhances the precision of the semantic segmentation model.

Tables 1 and 2 present the comparative results from the experimentation conducted on
the Vaihingen and Potsdam datasets, respectively. We bold the optimal metrics. Addition-
ally, select outcomes from the test set are showcased in Figures 10 and 11. Notably, GLF-Net
demonstrated superior performance across these evaluations. In particular, it stands out for
its reduced incidence of misclassified segments and its improved proficiency in discerning
certain boundaries and smaller objects. For instance, in the Potsdam dataset, GLF-Net
excels at distinguishing the delineation between road and low vegetation. Moreover, the
Vaihingen dataset showcases a heightened aptitude for identifying diminutive elements,
like trees and cars.

Table 1. Comparative experiments on the Vaihingen dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Unet 0.795 0.866 0.632 0.744 0.504 0.682 0.804 0.863
DeeplabV3+ 0.755 0.826 0.622 0.737 0.513 0.658 0.784 0.846

A2-FPN 0.817 0.887 0.667 0.771 0.622 0.748 0.853 0.881
Bes-Net 0.830 0.899 0.698 0.789 0.658 0.774 0.871 0.892
OURS 0.833 0.902 0.692 0.781 0.668 0.780 0.869 0.894

Table 2. Comparison experiments on the Potsdam dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Unet 0.814 0.878 0.704 0.774 0.473 0.715 0.827 0.881
DeeplabV3+ 0.840 0.924 0.741 0.725 0.777 0.758 0.857 0.890

A2-FPN 0.869 0.943 0.782 0.759 0.808 0.800 0.886 0.911
Bes-Net 0.871 0.944 0.786 0.770 0.825 0.803 0.887 0.913
OURS 0.876 0.946 0.791 0.770 0.827 0.811 0.893 0.916

4.4. Ablation Experiments

GLF-Net makes full use of the global context information extracted by CAM, LFM
extracts fine-grained local features to make GLF-Net better improve the recognition and
classification of small targets, and WST effectively integrates the two. To verify that each
module can fully play its role, we set up two sets of ablation experiments to verify the
performance of our module. Firstly, the ablation strategies of the first group are the baseline
network, adding CAM, adding LFM, adding CAM and LFM, and adding three modules
(GLF-Net) to verify the performance of our three modules.
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Table 3 showcases the outcomes of ablation experiments conducted on the Vaihingen
dataset, while Table 4 presents the results of ablation experiments performed on the Pots-
dam dataset. We bold the optimal metrics. Moreover, Figures 12 and 13 visually illustrate
the findings from ablation experiments on the Vaihingen and Potsdam datasets, respectively.
A detailed analysis of the data in these two tables indicates that our modules significantly
elevated the performance of GLF-Net when contrasted with the baseline network. And it
can be seen from the results that the addition of three modules at the same time is superior
to the baseline module and the single use of modules in terms of overall classification and
the identification of boundaries and small targets.
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Table 3. Ablation experiments on the Vaihingen dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Baseline 0.715 0.823 0.584 0.678 0.531 0.592 0.714 0.821
CAM 0.829 0.898 0.687 0.777 0.659 0.764 0.864 0.887
LFM 0.826 0.899 0.685 0.774 0.660 0.761 0.862 0.886

CAM+LFM 0.828 0.900 0.685 0.774 0.652 0.766 0.865 0.888
OURS 0.833 0.902 0.692 0.781 0.668 0.780 0.869 0.894

Table 4. Ablation experiments on the Potsdam dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Baseline 0.788 0.922 0.720 0.728 0.569 0.680 0.795 0.873
CAM 0.869 0.938 0.774 0.769 0.818 0.803 0.887 0.912
LFM 0.865 0.941 0.776 0.763 0.824 0.793 0.880 0.908

CAM+LFM 0.872 0.945 0.787 0.765 0.827 0.806 0.889 0.913
OURS 0.876 0.946 0.791 0.770 0.827 0.811 0.893 0.916
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To verify which stage of context information of ResNet is most needed for GLF-Net,
we set up a second set of ablation experiments to compare the performance of CAM. Our
CAM module is used for ResNet stages 123, 124, 134, and 234. Finally, Tables 5 and 6
present the experimental results derived from the Vaihingen dataset and the Potsdam
dataset, respectively. The outcomes distinctly highlight the superiority of the CAM module,
showcasing its optimal performance when applied to the 234 stages. At the same time,
in order to verify the effect of the covariance matrix and graph convolution, we also
performed a comparison with two models without using the covariance matrix and without
using graph convolution. As shown in Figures 5 and 6, there is a large gap between the
performance of the two and CAM. We bold the optimal metrics. Finally, in order to verify
the superiority of the CAM module, we also made a comparison with the existing model
DANet. The CAM module shows better performance than DANet on both datasets.
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Table 5. CAM ablation experiment on the Vaihingen dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

CAM123 0.827 0.891 0.685 0.779 0.647 0.762 ± 0.01 0.862 0.886
CAM124 0.827 0.887 0.685 0.779 0.650 0.761 ± 0.01 0.862 0.886
CAM134 0.827 0.887 0.685 0.779 0.650 0.761 ± 0.01 0.862 0.886

CAM_nonCM 0.820 0.895 0.675 0.775 0.631 0.755 ± 0.02 0.857 ± 0.01 0.885 ± 0.01
CAM_nonGrapth 0.821 0.893 0.677 0.775 0.608 0.749 ± 0.02 0.853 ± 0.01 0.885 ± 0.01

DANet 0.826 0.885 0.686 0.776 0.643 0.761 ± 0.03 0.862 ± 0.01 0.886 ± 0.01
CAM234 0.829 0.898 0.687 0.777 0.659 0.764 ± 0.03 0.864 ± 0.01 0.887 ± 0.01

Table 6. CAM ablation experiment on the Potsdam dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

CAM123 0.870 0.943 0.783 0.768 0.818 0.801 ± 0.01 0.886 0.911
CAM124 0.869 0.938 0.784 0.767 0.819 0.800 ± 0.01 0.885 0.911
CAM134 0.869 0.938 0.784 0.767 0.819 0.800 ± 0.02 0.885 0.911

CAM_nonCM 0.868 0.935 0.776 0.754 0.815 0.798 ± 0.02 0.882 ± 0.02 0.909 ± 0.01
CAM_nonGrapth 0.868 0.936 0.779 0.762 0.812 0.798 ± 0.02 0.883 ± 0.02 0.909 ± 0.01

DANet 0.867 0.935 0.776 0.757 0.810 0.797 ± 0.03 0.882 ± 0.02 0.909 ± 0.01
CAM234 0.869 0.944 0.777 0.769 0.822 0.803 ± 0.02 0.887 ± 0.01 0.912 ± 0.01

In particular, to visualize the role of the CAM module in extracting and enhancing
contextual features, we visualized ResNet, the CAM module, and the intermediate features
of DANet, as shown in Figure 14. The red channel represents a higher degree of respon-
siveness, while the opposite is true for yellow. Compared to ResNet, DANet does not show
significant changes, while CAM extracts channels with primary information.

Finally, in order to verify the performance of the self-attention module in our WST
module, we performed ablation experiments on the WST module. Tables 7 and 8 give the
results of the ablation experiments. We bold the optimal metrics. It can be seen from the
results that the self-attention module has brought significant improvements.
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Table 7. WST ablation experiment on the Potsdam dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Non_self attention 0.870 0.945 0.779 0.758 0.820 0.806 0.890 0.912
GLF-Net 0.876 0.946 0.791 0.770 0.827 0.811 0.893 0.916

Table 8. WST ablation experiment on the Vaihingen dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Non_self attention 0.821 0.891 0.677 0.774 0.610 0.750 0.854 0.844
GLF-Net 0.833 0.902 0.692 0.781 0.668 0.780 0.869 0.894

5. Conclusions

This paper introduces the GLF-Net model for semantic segmentation of HR remote
sensing images. This model addresses the complex challenges posed by significant intra-
class differences and small inter-class differences in HR remote sensing images. The
proposed GLF-Net employs an encoder–decoder architecture with ResNet50 as the base
network. The model uses the CAM module to extract global contextual features, uses
the LFM module to extract complex local features, and uses WST to effectively integrate
these two features. Through the above modules, the proposed GLF-Net simultaneously
obtains broader global context information and fine-grained local texture and boundary
features, which significantly enhances the model’s ability to recognize smaller objects and
contributes to the overall enhancement of segmentation performance. The validation of our
model on ISPRS’s Vaihingen and Potsdam datasets confirms its superior achievement, with
GLF-Net outperforming other models when all three modules are effectively integrated.

Although the proposed GLF-Net has achieved good results, it still has a high com-
putational cost, and, next, we will research reducing the complexity of the model while
maintaining the existing performance.
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