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Abstract: In recent years, there has been a growing interest in remote sensing image–text cross-modal
retrieval due to the rapid development of space information technology and the significant increase
in the volume of remote sensing image data. Remote sensing images have unique characteristics
that make the cross-modal retrieval task challenging. Firstly, the semantics of remote sensing images
are fine-grained, meaning they can be divided into multiple basic units of semantic expression.
Different combinations of basic units of semantic expression can generate diverse text descriptions.
Additionally, these images exhibit variations in resolution, color, and perspective. To address these
challenges, this paper proposes a multi-task guided fusion encoder (MTGFE) based on the multimodal
fusion encoding method, the progressiveness of which has been proved in the cross-modal retrieval
of natural images. By jointly training the model with three tasks: image–text matching (ITM), masked
language modeling (MLM), and the newly introduced multi-view joint representations contrast
(MVJRC), we enhance its capability to capture fine-grained correlations between remote sensing
images and texts. Specifically, the MVJRC task is designed to improve the model’s consistency in
joint representation expression and fine-grained correlation, particularly for remote sensing images
with significant differences in resolution, color, and angle. Furthermore, to address the computational
complexity associated with large-scale fusion models and improve retrieval efficiency, this paper
proposes a retrieval filtering method, which achieves higher retrieval efficiency while minimizing
accuracy loss. Extensive experiments were conducted on four public datasets to evaluate the proposed
method, and the results validate its effectiveness.

Keywords: cross-modal retrieval; remote sensing images; fusion encoding method; joint representation;
contrastive learning

1. Introduction

The rapid advancement of space information technology and the exponential ex-
pansion of remote sensing image data have created a pressing need for the efficient and
convenient extraction of valuable information from vast amounts of remote sensing images.
In response to this demand, cross-modal retrieval between remote sensing images and text
descriptions has emerged as a valuable approach. This retrieval process involves finding
text descriptions that match given remote sensing images or identifying remote sensing
images that contain relevant content based on text descriptions. The growing attention
towards this field highlights its potential in addressing the aforementioned demand.

Recent studies on the cross-modal retrieval of remote sensing images and texts have
predominantly followed a two-step approach, involving unimodal feature extraction
(Figure 1a) and multimodal interaction (Figure 1b). During the unimodal feature extraction
stage, remote sensing images and text data are transformed into numerical representations
that capture their semantic content for further statistical modeling. Deep learning tech-
niques, such as convolutional neural networks (CNNs) (e.g., VGGNet [1], ResNet [2]) and

Remote Sens. 2023, 15, 4637. https://doi.org/10.3390/rs15184637 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15184637
https://doi.org/10.3390/rs15184637
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9337-0996
https://doi.org/10.3390/rs15184637
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15184637?type=check_update&version=1


Remote Sens. 2023, 15, 4637 2 of 22

vision Transformer networks [3], are commonly employed for extracting image features.
Similarly, recurrent neural networks (RNNs) (e.g., LSTM [4], GRU [5]) and Transformer
models (e.g., BERT [6] ) are utilized for extracting textual features. In the subsequent
multimodal interaction stage, the semantic consistencies between image and text features
are leveraged to generate comprehensive feature representations that effectively summarize
the multimodal data. Baltrusaitis et al. [7] classified multimodal feature representations into
joint representations and coordinated representations. Joint representations merge multiple
unimodal signals and map them into a unified representation, while coordinated represen-
tations process information independently for each modality while incorporating similarity
constraints between different modalities. Following this framework, recent methods for
multimodal interaction between remote sensing images and texts can be categorized into
two groups: multimodal semantic alignment and multimodal fusion encoding.
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Figure 1. General framework for remote sensing image and text retrieval. (a) Unimodal feature
extraction stage. (b) Multimodal interaction stage. The methods can be categorized into two groups
based on the generation of a unified multimodal representation: multimodal semantic alignment and
multimodal fusion encoding.

The upper part of Figure 1b illustrates multimodal semantic alignment methods [8–18].
These approaches aim to align image and text data in a public embedding space based
on their semantic information. By doing so, images and texts with similar semantics are
positioned closer to each other in this space. During cross-modal retrieval, the similarity
between image and text features is determined by measuring their distance in the public
embedding space, followed by sorting. In the context of multimodal interaction, the simple
dot product or shallow attention mechanisms are commonly employed to calculate the
similarity between images and texts. Triplet loss [19] and InfoNCE loss [20] are utilized
either directly or through intermediate variables to impose constraints on the position and
distance of image and text features within the public embedding space. The bottom half
of Figure 1b depicts the method of multimodal data fusion encoding [21]. This approach
involves feeding remote sensing images and text features into a unified fusion encoder to
obtain joint representations of the image–text pairs. Subsequently, a binary classification
task known as the image–text matching (ITM) task is performed to determine the degree of
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compatibility between the image and text. During retrieval, the ITM score is employed as a
measure of similarity between the image and text.

Significant advancements have been achieved in the cross-modal retrieval of natural
images and texts, resulting in impressive average R@1 accuracies of 75.8% and 95.3% on the
MS COCO and Flickr30k datasets, respectively [22]. However, when compared to natural
images, remote sensing images possess three distinct characteristics. Firstly, they serve as
objective representations of ground objects, leading to intricate and diverse semantic details
within the images. This implies that remote sensing images can be dissected into multiple
basic units for semantic expression. Secondly, unlike natural images, remote sensing images
lack specific themes and focal points [23], which contributes to their pronounced multi-
perspective nature. Consequently, the same remote sensing image can generate various
descriptions from different perspectives, encompassing different combinations and permu-
tations of the underlying fine-grained semantic units. Thirdly, remote sensing images of the
same geographical area may exhibit variations in colors, brightness, resolution, and shoot-
ing angles due to factors such as weather conditions, photography equipment, and aircraft
positions. These inherent characteristics pose substantial challenges in achieving effective
cross-modal retrieval for remote sensing images.

The global similarity of image and text commonly arises from a complex aggregation of
local similarities between image–sentence instances [24]. Due to the fine-grained semantic
composition and multi-perspective nature of remote sensing images, it is essential to
capture the intricate correlation clues between the image and text at a granular level.
This includes establishing connections between specific image regions and corresponding
textual words. Therefore, in order to accomplish this, researchers have explored the use of
fine-grained unimodal features. For instance, region features [25] and patch features [21]
have been utilized for images, while word features have been employed for texts [14,21,25].
These fine-grained correlations between images and texts are then established through
cross-attention mechanisms between the modalities. However, despite utilizing high-
performance unimodal encoders, simplistic interaction calculations between the features
may still fall short when dealing with complex visual-and-language tasks [26]. To address
this limitation, Li et al. [21] introduced a large-scale Transformer network as a multimodal
fusion encoder. By leveraging multiple multi-head cross-attention modules, this approach
enabled complex interaction calculations to be performed on the fine-grained features
across modalities, thereby further exploring potential fine-grained correlations between
the modalities.

However, existing multimodal fusion encoding models for remote sensing image–text
primarily rely on the ITM task as the sole training objective, lacking precise supervision
signals for capturing fine-grained correlations between images and texts. This limitation
makes it challenging to provide efficient supervision for the correlation between specific
words in the text and corresponding regions in the image. To address this issue, we have
incorporated the masked language modeling (MLM) task from the recent vision-language
pre-training (VLP) model [27–29]. In the MLM task, certain words in the text are masked,
and the model is trained to predict these masked words using context information from the
masked text and patch-level information from the image. This approach facilitates a more
effective capture of fine-grained image–text correlations.

In addition, the variations in remote sensing image acquisition, including weather
conditions, sensor configurations, and viewing angles, present challenges for models to
establish fine-grained correlations between remote sensing images and textual data, as well
as accurately determine their similarity. To overcome these challenges, we propose the
multi-view joint representations contrast (MVJRC) task, which incorporates automatic
contrast, histogram equalization, brightness adjustment, definition adjustment, flipping,
rotation, and offset operations to simulate imaging differences. Additionally, a weight-
sharing Siamese network is designed to maximize the similarity between augmented views
of the same remote sensing image and the joint representations of the corresponding text
during training. By leveraging the update gradient alternation, the model effectively utilizes
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the mutual information contained in the joint representations of the same remote sensing
image under different views as supervision signals. The MVJRC task successfully filters out
the noise interference caused by imaging differences in remote sensing images. It achieves
strong consistency in the joint representations of different views for texts and remote
sensing images, facilitating the easier discrimination of paired samples. Furthermore,
MVJRC enhances the complex cross-attention module between modalities by providing
additional complementary signals, thereby enabling consistent fine-grained correlations.

The increasing computational complexity associated with large-scale networks can
lead to reduced efficiency in measuring the similarity of multimodal data during cross-
modal retrieval. While identifying negative samples with low similarity (easy negatives) is
straightforward, identifying negative samples with high similarity (hard negatives) often
requires a more intricate model. To address this challenge, we propose the retrieval filtering
(RF) method. This method employs a small-scale network as a filter and utilizes knowledge
distillation [30] to transfer the "knowledge" of similarity measurements from the complex
fusion network to the filter. During retrieval, the small-scale filter is initially used to screen
out easy negatives, and the top k samples with high similarity are then fed into the complex
fusion encoder for similarity calculation and re-ranking. By adopting the RF method,
retrieval efficiency can be significantly improved while ensuring minimal accuracy loss,
even with a large sample size.

In this research, we introduced a multi-task guided fusion encoder (MTGFE) for cross-
modal retrieval of remote sensing images and texts. The key contributions of this paper
can be summarized as follows:

(1) The model was trained using a combination of the ITM, MLM, and MVJRC tasks,
enhancing its ability to capture fine-grained correlations between remote sensing
images and texts.

(2) The introduction of the MVJRC task improved the consistency of feature expression
and fine-grained correlation, particularly when dealing with variations in colors,
resolutions, and shooting angles of remote sensing images.

(3) To address the computational complexity and retrieval efficiency limitations of large-
scale fusion coding networks, we proposed the RF method. This method filters
out easy negative samples, ensuring both high retrieval accuracy and efficient re-
trieval performance.

The remaining part of this paper is organized as follows. In Section 2, related work
on the remote sensing image–text cross-modal retrieval, text and image encoders based
on Transformer, vision-language pre-training (VLP) models, and contrastive learning is
summarized and analyzed. In Section 3, the system architecture of our model is described
in detail, with a focus on the design of the training task. In Section 4, comparative and
ablation experiments are conducted to demonstrate the superiority and effectiveness of
our method. Meanwhile, the reason for the underperformance of the method is analyzed.
In Section 5, the discussions and conclusions are presented.

2. Related Work

This section provides an overview of the relevant literature on remote sensing image–
text cross-modal retrieval, focusing on the following topics: text and image encoders built
upon the Transformer architecture, Vision-language pre-training (VLP) models, and con-
trastive learning methods.

2.1. Remote Sensing Image–Text Cross-Modal Retrieval

Remote sensing image–text cross-modal retrieval can be divided into two stages: im-
age caption-based retrieval and direct measurement of image–text similarity. Shi et al. [31]
proposed an automatic caption generation framework for remote sensing images, demon-
strating the technical feasibility of this approach. Qu et al. [32] and Lu et al. [23] contributed
a publicly available remote sensing image–text dataset and proposed automatic remote
sensing image caption generation and image–text cross-modal retrieval based on captions.
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However, these two-stage methods often suffer from information loss at each stage, lead-
ing to reduced retrieval accuracy. To address this issue, Rahhal et al. [12] employed the
InfoNCE loss to map the global feature vectors of images and texts to a public embedding
space, directly calculating the similarity between remote sensing images and texts. Abdul-
lah et al. [13] utilized the average fused representation of five text sentences corresponding
to each remote sensing image as the text feature. This approach effectively aligned the
text and image features and enhanced the semantic richness of the images in the public
embedding space. Cheng et al. [14] introduced a shallow attention mechanism to combine
the fine-grained features of image regions and text words as intermediate features. This
constrained the projection of images and texts in the public embedding space, thereby im-
proving the quality of semantic alignment between images and texts. Lv et al. [15] divided
the image-text information into complementary information and consistency information.
They employed the Fully connected (FC) network to fuse the image and text information,
obtaining joint features. These joint features were then used as intermediate features to
independently align the image and text features with them. Yuan et al. [8] enhanced the
fine-grained semantic expression ability of image features by fusing multi-scale information.
The image features were used to guide the generation of text features during their interac-
tion, followed by alignment in the public embedding space using triplet-loss. Yuan et al. [16]
proposed the multi-level information dynamic fusion (MIDF) to fuse the local and global
features of remote sensing images, enhancing the semantic expression capability of the
images. Additionally, they introduced the multivariate re-rank (MR) algorithm to improve
retrieval accuracy. Cheng et al. [17] employed a combination of channel attention, spatial
attention, and position attention mechanisms to fuse multi-scale information from remote
sensing images. The interaction between modalities was calculated through fine-grained
alignment between image regions and text words to express their similarity. Yuan et al. [18]
utilized knowledge distillation to transfer the “dark knowledge” learned by the asym-
metric multimodal feature matching network (AMFMN) model [8], resulting in improved
cross-modal retrieval efficiency. Mikriukov et al. [33,34] focused on using hash feature
vectors instead of real value feature vectors in the public embedding space, significantly
enhancing the efficiency of cross-modal retrieval. Li et al. [21] designed a remote sensing
image–text cross-modal retrieval model that initially performed alignment and then fusion.
They utilized vision Transformer and BERT to extract fine-grained unimodal features of
image regions and text words, respectively. Through contrastive learning [35], the uni-
modal features were made semantically consistent. A multi-layer Transformer encoder
was employed to model the correlation of more complex fine-grained features between
images and texts and extract their joint features. The similarity between images and texts
was modeled using the ITM task, yielding competitive results on multiple datasets.

The comparison of the studies mentioned above highlights the significance of fine-
grained semantic expression in remote sensing images (e.g., through fused multi-scale
features and fine-grained regional features) and the importance of modeling fine-grained
interactions between modalities (such as generating intermediate features using attention
mechanisms, utilizing visual features to guide text feature generation, and employing
large-scale cross-attention fusion encoders) to enhance the accuracy of remote sensing
image–text cross-modal retrieval. Therefore, in our approach, we specifically focused on
capturing the fine-grained semantic features of the unimodal representations and selected
a large-scale Transformer as the fusion encoding module between modalities.

2.2. Text and Image Encoders Based on Transformer

The Transformer architecture, originally proposed by Vaswani et al. [36], has emerged
as a prominent framework in natural language processing (NLP) for tasks like machine
translation. Unlike traditional RNN text encoders, Transformer utilizes bidirectional global
attention and mask attention mechanisms, which are advantageous for modeling long-
term dependencies in text and enabling efficient parallel computation. Building upon this
architecture, Devlin et al. introduced the BERT model [6]. BERT employs MLM and next
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sentence prediction (NSP) tasks for self-supervised training on large-scale text datasets,
enhancing its ability to represent bidirectional text information. When utilizing BERT for
text encoding, the text sentence is first decomposed into tokens using the WordPiece [37]
method. The output consists of feature vectors corresponding to the tokens, along with
classification labels denoted as [cls]. The token features represent the fine-grained features
of individual text words, while the classification label features are often employed as
features for the entire text sentence.

Dosovitskiy et al. [3] introduced the ViT model as an image encoder based on the
Transformer architecture. In this model, images are divided into multiple 16 × 16 pixel
patches, which are then sequentially input into the Transformer. Through self-attention
calculations among these image patches, the ViT model encodes the image into fine-grained
patch features, along with classification label [cls] features that can serve as global features.

The Transformer-based ViT and BERT models exhibit strong capabilities in expressing
fine-grained features within each modality, and their feature structures are similar. These
characteristics make them suitable choices for conducting interactive calculations. As a
result, we utilized these encoders as unimodal data encoders in this study.

2.3. Vision-Language Pre-Training (VLP) Models

Vision-language pre-training (VLP) focuses on acquiring multimodal representations
from large-scale image–text pairs, aiming to enhance performance in various visual and
language tasks, such as image–text cross-modal retrieval, natural language for visual
reasoning (NLVR), and visual question answering (VQA) [27]. In recent studies, the fusion
and encoding of visual and language data have been primarily accomplished using multi-
layer Transformers [38]. The training tasks include ITM [27,39,40] and MLM [27–29].
The ITM task is a binary task that determines whether an image–text pair is a match based
on joint representations. On the other hand, the MLM task involves masking certain words
in the text and predicting them using context and image information, which facilitates
the fine-grained fusion of words and image patches. Existing methods for remote sensing
image–text retrieval based on fusion encoding often solely rely on the ITM task, which may
not be sufficient for capturing fine-grained correlations between modalities. To address this
limitation, we introduce the MLM task from VLP-related models in this study to enable
joint model training and enhance the exploration of fine-grained correlations between
remote sensing images and texts.

2.4. Contrastive Learning

Contrastive learning [35] is an advanced technique for representation learning that
aims to bring similar samples (positive samples) closer together in the public embedding
space while increasing the distance between dissimilar samples (negative samples). In uni-
modal contrastive learning, a Siamese network is employed to extract features from data
samples that have undergone different data augmentations, such as modifying image color
and shape or introducing noise to the text. The learning objective is achieved by comparing
these features with a large number of negative samples [41–43]. Chen et al. [44] proposed
SimSiam, a contrastive learning method that does not require negative examples. SimSiam
incorporates two modules, namely the project head and predict head, into the Siamese
network with shared weights, and representation learning is performed through alternat-
ing gradient updates. For multimodal contrastive learning, methods like CLIP [45] and
ALIGN [46] use matched image-text pairs as positive samples and unmatched image–text
pairs as negative samples. These approaches undergo pre-training on large-scale image–
text datasets and achieve competitive results in downstream tasks such as cross-modal
retrieval through fine-tuning.

In contrast to previous task-oriented learning approaches, contrastive learning focuses
on maximizing the mutual information [41] between pairs of instances to enhance feature
consistency and expression. In the context of remote sensing images, which often exhibit
significant differences in resolution, color, and angle, maintaining feature consistency and
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fine-grained correlations between modalities can be challenging. To address this issue, we
adopted the MVJRC method inspired by SimSiam and constructed a fusion encoding model
with shared weights. The presented approach aimed to maximize the similarity of joint
representations across different views and ensure consistency in fine-grained correlations
between modalities.

3. Method

To achieve a fine-grained association between remote sensing images and texts, we
first utilize ViT and BERT (using the first 6 layers and parameters) models to extract patches
and tokens features from images and texts, respectively. Afterwards, to represent the
complex interaction of fine-grained semantic units for images and texts, we employ a
large-scale Transformer (initialized with the last 6 layers and parameters of the BERT) as the
fusion encoder to model the fine-grained association between images and texts. To better
utilize the image–text association information in the annotated data, we utilize MLM task
to mine the ground truth label (real words in the manually annotated dataset) of randomly
masked tokens as the supervision signal, guiding the model to learn the fine-grained
association between images and texts. Meanwhile, a MVJRC task is employed to mine the
joint representation of text and different imaging remote sensing images as the supervision
signal, ensuring consistency between the joint representation and fine-grained association.
Additionally, we use the ITM task to align the remote sensing images and texts by using the
supervision signal of whether the image and text match, facilitating cross-modal retrieval
between remote sensing images and texts.

Figure 2 illustrates the overall structure of the model. Initially, the visual and language
features of the image–text pair are generated separately by their respective unimodal
encoders. These features are then paired and passed into the fusion encoder. The model
is trained jointly through the ITM, MLM, and MVJRC tasks. During cross-modal image–
text retrieval, the results are ranked based on the ITM score and provided to the user.
After training the fusion encoder, a small-scale multilayer perceptron (MLP) network is
trained using knowledge distillation. This MLP network functions as a retrieval filter to
filter out easily identifiable negative samples. Subsequently, the results are re-ranked by
the fusion encoder.
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Figure 2. Overview of the MTGFE model. It comprises two components: (a) a unimodal encoder
that utilizes the ViT and BERT (first 6 layers) models to extract features from images and texts,
and (b) a multimodal fusion encoder (initialized using the parameters of the last 6 layers of the BERT)
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that generates joint image–text representations through ITM, MLM, and MVJRC tasks. Additionally,
(c) a retrieval filter is trained via knowledge distillation. During retrieval, the filter eliminates easy
negatives, and the teacher network performs re-ranking.

3.1. Unimodal Encoder

We select the ViT and BERT models, which leverage self-attention mechanisms, as the
unimodal encoders for remote sensing images and texts. These models facilitate the fine-
grained semantic representation of unimodal data.

3.1.1. Image Encoder

The image encoder, which is denoted by fimg(·), adopts the ViT-B/16 model struc-
ture and is initialized using the pre-training weights on ImageNet-1k [47]. According to
reference [3], a given image is segmented into multiple 16 × 16 pixel patches. After linear
projection, the learnable classification labels are embedded into the special token [cls].
The encoding output is S = f (I) = {vcls, v1, v2, ..., vm}, where vcls is the classification label
feature, vi denotes the feature of the i-th patch, and m is the number of patches.

3.1.2. Text Encoder

The first 6 layers and weights of the pre-trained BERTbase model [6] are used as the
text encoder, denoted as ftxt(·) . It has 6 Transformer blocks. Given a text description T,
WordPiece [37] is used at first to obtain the embedded representation of the tokens in
the sentence, and a classification label token ( [cls] ) is added at the start, as denoted by
T = {tcls, t1, t2, · · · , tn}. During the execution of the MLM task (as outlined in
Section 3.3), approximately 15% of the tokens are randomly masked and substituted
with the special token [mask], as indicated by Tmask = {tcls, t1, tmask, · · · , tn}; here, n is the
length of text tokens and tcls indicates the embedding representing the classification label
[cls]. The encoded text features are represented as W = ftxt(T) = {wcls, w1, w2, · · · , wn}
and Wmask = ftxt(Tmask) = {wcls, w1, wmask, · · · , wn}, respectively; here, wcls represents the
text classification label feature, and it is often used as a global vector for the text in some
downstream tasks; wi is the feature vector of the i-th token; and wmask represents the feature
vector of the special token [mask].

3.2. Multimodal Fusion Encoder

The multimodal fusion encoder comprises six layers of Transformer blocks, utilizing
fine-grained features such as image patches and text tokens. To enable greater gradient flow
for the image encoder, the image features are independently fed into each multi-head cross-
attention layer, where they serve as the key and value for attention calculations. Conversely,
the text tokens are treated as the query and fed into the multi-head cross-attention layer
after the computation of the multi-head self-attention layer. The multiple stacked self-
attention and cross-attention layers facilitate the calculation of fine-grained correlations
between text tokens and image patches, and improve image encoder parameters and
enhance visual representations.

The fusion encoder is initialized with the weights of the last 6 layers of BERTbase [6],
denoted as f f usion(·). Each block in the architecture consists of three sub-layers: a multi-
head self-attention layer, a multi-head cross-attention layer, and a feed-forward network
(FFN) layer. Within each attention sub-layer, a residual connection is employed, where
the input and output are added together prior to layer normalization [48]. Here, the input
of the self-attention layer is the embedded feature of the text W; when executing the
MLM task, the input is Wmask. The self-attention layer maintains three learnable parameter
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matrices,WQ, WK, and WV , for each input token embedding. The calculation approach for
each attention head is provided in Equation (1).

Attention(Q, K, V) = softmax(
(QWQ) · (KWK)T

√
dK

)VWV (1)

where dK is the dim of the input key. In the fusion of multi-head attention, we need to
concatenate the output of each attention head headi on the dimension of dim = 1 and
multiply it with a learnable parameter matrix WO , as shown in Equation (2).

MultiHead(Q, K, V) = Concat(head1, head2, · · · , headh)WO (2)

Here, h is the number of attention heads.
The calculation of the multi-head cross-attention layer is similar to that of the multi-

head self-attention layer, except for that the output of text embedding W through the
self-attention layer is used as Q, whereas the visual embedding S is used as K and V.

The FFN sub-layer is a FC network that utilizes the Gelu [49] activation function. This
activation function applies a nonlinear transformation to the output of the cross-attention
network. The hidden vector of the last layer is taken as the feature output of the fusion
encoder, represented by U = f(S, W) = {ucts, u1, u2, · · · , un}, where ucls is the classification
label feature of the image–text joint feature, ui is the joint feature corresponding to the i-th
text token, and n is the number of input text elements.

3.3. Training Task of the Multimodal Fusion Encoder

During the training process, we incorporate three tasks, namely MLM, MVJRC,
and ITM, to collectively guide the training of the multimodal fusion encoder.

3.3.1. Masked Language Modeling (MLM)

The MLM task (shown in Figure 3), derived from the BERT [6] model, involves ran-
domly masking 15% of the tokens in a given text sentence. By incorporating the MLM
task into the fusion module, the training process is transformed into a self-supervised
denoising procedure. This requires the masked tokens to utilize both the unmasked contex-
tual information (through the self-attention mechanism) and additional image information
(through the cross-attention mechanism) for reconstruction. This approach strengthens the
fine-grained correlations between text tokens and image patches, enhancing their alignment
and coherence.
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Figure 3. The diagram of the MLM task, where [mask] represents the masked token, and the purple
text on the right side represents the actual values for the [mask] tokens. The goal of the task is to
correctly predict these masked tokens.
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A fully connected network MLM head is added after the output of the fusion encoder,
and its input is the image–text joint representation, given by U. The network output
employs the SoftMax function for multiple classification tasks and is then mapped to a
sequence of dim = len(vocabulary). Here, vocabulary is the word dictionary introduced
from BERTbase, with a length of 30,522. The MLM task involves minimizing the cross-
entropy loss between the predicted value and the ground truth label, which is provided in
Equation (3).

Lmlm = H(ymask, pmask(I, Tmask)) (3)

where ymask refers to the ground truth label of the predicted vocabulary, (I, Tmask) refers
to the image–text pair after the masking operation, pmask(I, Tmask) refers to the model
prediction for the masked vocabulary, and H(·) refers to the cross-entropy loss function.

3.3.2. Multi-View Joint Representations Contrast (MVJRC)

To enhance the coherence of joint features and capture fine-grained correlations be-
tween a specific target and its corresponding text under varying imaging conditions, such
as resolution, color, and shooting angle, we propose a weight-sharing MTGFE Siamese net-
work (Figure 4). Various image augment operations are employed to simulate the imaging
discrepancies in remote sensing images. The joint representation undergoes self-supervised
training, where the objective is to maximize the similarity of the joint representations be-
tween remote sensing images captured from different perspectives and their corresponding
paired text. Specifically, a project head and prediction head are added after MTGFE, which
are, respectively, expressed as fproj and fpred. A project head ( fproj) has three FC layers,
and each FC layer has a batch normalization (BN) layer [50]. Apart from the output layer,
the activation function utilized in each BN layer is the rectified linear unit (ReLU) [51]. A
prediction head ( fpred ) is a two-layer FC layer connected by the BN layer and the ReLU
activation function.

A factory with white and blue roofs

Projection 

Head 

MTGFEMTGFE

MTGFEMTGFE

A factory with white and blue roofs

Projection 

Head 

Prediction 

Head 

Cosine 

Similarity
Share 

Parameters

Stop grad

Figure 4. The MVJRC task involves setting up a Siamese network with shared parameters from
MTGFE. The cosine similarity of the joint representations ucls is calculated after the projection head
and prediction head, and the gradient is updated alternately.

For a given image–text pair (I, T), Randaugment [52] is used for random image aug-
ment to obtain (I1, T) and (I2, T), whose fusion representations are denoted as U1 and U2,
respectively, and their classification label features u1 and u2 are used in subsequent oper-
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ations. Let z1 = fproj(u1) , z2 = fproj(u2), and p1 = fpred(z1) , p2 = fpred(z2) , and define
S(·) as the cosine similarity of two vectors, then

S(p1, z2) =
p1

||p1||2
· z2

||z2||2
(4)

here, || · || represents l2− norm. The objective of the MVJRC task is to optimize the similarity
between joint representations of various augments image-text pairs. The loss function for
this task can be defined as follows:

Lmvjrc = −
1
2
(S(p1, z2) + S(p2, z1)) (5)

The loss for each individual sample is computed, and then the mean loss is calculated
within each minibatch. According to reference [44], to prevent the model from collapsing,
a stop gradient operation (stopgrad) is introduced when updating the gradient. That is,
when calculating the gradient from S(p, z) , only accept the gradient from p each time.
The mathematical expression for the MVJRC loss is as follows:

Lmvjrc = −
1
2
(S(p1, stopgrad(z2)) + S(p2, stopgrad(z1))) (6)

When updating the encoder parameters of the image–text pair (I, T) , the first item
does not receive the gradient from z2 , and the second item only accepts the gradient from
p2 . See Algorithm 1 for the pseudocode of MVJRC.

Algorithm 1 MVJRC Task Pseudocode
# f : MTGFE Net, our fusion encoding model
# fproj: Projection head
# fpred : Prediction head

for (I, T) in dataloader: do
I1, I2 = aug(I), aug(I) # Image augmentation
u1, u2 = f (I1, T)[cls], f (I2, T)[cls]
z1, z2 = fproj(u1), fproj(u2)
p1, p2 = fpred(z1), fpred(z2)
L = −0.5 ∗ (S(p1, z2) + S(p2, z1)) # loss
l.backward() # Gradient return
update( f , fproj, fpred) # Parameters update

end for
function S(p, z)( ) # Calculation of cosine similarity

z= z.detach() # Stop gradient
p = normalize(p, dim = 1) # l2-normalize
z = normalize(z, dim = 1) # l2-normalize
s = (p ∗ z). sum(dim = 1). mean()
return s

end function

3.3.3. Image–Text Matching (ITM)

In order to assess the similarity between images and text and determine their compati-
bility, we employ the ITM head to perform a linear mapping of the joint representation onto
the [0,1] interval. A higher value approaching 1 indicates a greater image–text similarity.
During the cross-modal retrieval process for remote sensing images and text, the ITM score
serves as the ranking criterion and is presented to the user. The ITM head is a FC layer
that outputs dim = 2. Linear mapping is utilized to project the jointly represented classi-
fication label feature ucls into a 2D prediction pitm . The ITM loss quantifies the disparity
between the minimized prediction and the ground truth label (whether the images and
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texts match in the manually annotated dataset) in terms of probability distribution, which
can be defined as Equation (7).

Litm = H(yitm, pitm) (7)

where yitm is the true matching value of the given image–text pair and H(·) denotes the
cross-entropy loss function. In training, the probability of yitm for the input image–text pair
(I, T) is set to 1; the negative examples are randomly selected for each image and text in
the minibatch and denoted as (I, T̂) and ( Î, T) , respectively, which is set to 0.

The overall loss of the MTGFE training is as follows:

L = Lmlm + Lmvjrc + Litm (8)

3.4. Retrieval Filtering (RF)

Knowledge distillation, a machine learning technique, trains a compact model to
mimic a larger, complex one. It involves transferring knowledge from the larger “teacher”
model to the smaller “student” model. In order to improve the efficiency of MTGFE cross-
modal retrieval, after model training, a simple FC network is designed as a retrieval filter
(Figure 5). Knowledge distillation transfers knowledge from the MTGFE (teacher model) to
the retrieval filter (student model). The input of the retrieval filter is the concatenation of
image and text classification label features, which includes three FC layers. Following the
initial two FC layers, BN and the ReLU activation function are applied, which are consistent
with the ITM head architecture. The final linear layer then transforms the output of the
hidden layer into a two-dimensional vector.

Cross Entropy 

Loss

MTGFEMTGFE

cat

ITM Score

ITM Score

1 0 1 0 1 1 0 0 1 1 1 0 
Ground Truth

Image

Text

1. A football field with several surrouding buildings.
2. A rectangular playground and many tall surrouding 
buildings.
3. Many buildings and green trees are around a playground.
4. Many buildings are in different blocks with many green 
trees and a playground.
5. A playground is surrounded by many trees and buildings.

1. A football field with several surrouding buildings.
2. A rectangular playground and many tall surrouding 
buildings.
3. Many buildings and green trees are around a playground.
4. Many buildings are in different blocks with many green 
trees and a playground.
5. A playground is surrounded by many trees and buildings.
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Knowledge 
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ReRank

Knowledge 

Distillation

ReRank

Retrieval
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Figure 5. Retrieval Filtering architecture. Knowledge distillation is utilized to transfer the knowledge
from MTGFE to the retrieval filter. During the retrieval process, the retrieval filter is employed to
exclude easily distinguishable negatives, while samples with higher similarity are forwarded to
MTGFE for recalibration and ranking.

The MTGFE’s ITM output and the manually annotated ground truth label (whether
the images and texts match in the manually annotated dataset) are utilized as the soft
target and hard target supervision signals, respectively, for the student model, considering
the same set of image–text samples. The distribution biases between these signals are
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calculated using the Kullback–Leibler (KL) loss and cross-entropy loss. The calculation
methods are as follows:

Lso f t = KL(pitm
tea , pitm

stu ) (9)

Lhard = H(yitm, pitm
stu ) (10)

where KL(·) represents the KL divergence loss, pitm
tea represents the ITM output of the teacher

model, pitm
stu represents the predicted ITM value of the student model, and yitm represents

the ground truth label. Finally, the distillation loss of the model can be obtained as follows:

Ldistll = Lso f t + αLhard (11)

Here, α denotes a constant hyperparameter. The student and teacher models use the same
unimodal encoder to extract features. The difference between the two scenarios is that the
student model only inputs the image and text classification label features, vcls and wcls.

4. Experimental Results and Analysis

To substantiate the efficacy of the proposed method in remote sensing image–text cross-
modal retrieval tasks, we performed comprehensive experiments on four publicly available
datasets. Furthermore, we conducted ablation tests to provide additional validation for
the presented approach. It is important to mention that, in Section 4.5, we exclusively
employed the retrieval filtering method to evaluate its effectiveness, whereas the remaining
experimental results were computed using MTGFE.

4.1. Datasets and Evaluation Indicators

In the experiments, we used four publicly available remote sensing image–text datasets:
UCM-captions [32], Sydney-captions [32], RSICD [23], and RSITMD [8]. The basic informa-
tion of each dataset is given in Table 1.

Table 1. Basic information of datasets.

Dataset Images Captions Captions per Image No. of Classes Image Size

UCM-captions 2100 10,500 5 21 256 × 256
Sydney-captions 613 3065 5 7 500 × 500

RSICD 10,921 54,605 5 31 224 × 224
RSITMD 4743 23,715 5 32 256 × 256

In the evaluation, we employed recall at K (R@K), where K represents the rank
position (1, 5, and 10), as the performance metric. R@K measures the percentage of correct
samples within the top K ranked results for a given query. Additionally, we introduced
the mR indicator, which represents the arithmetic mean of R@K values, to evaluate the
performance of the proposed method.

4.2. Implementation Details

The experiments were performed on four NVIDIA GeForce RTX 3090 GPUs. All
images were standardized to a size of 224 × 224 pixels and augmented using Randaug-
ment [52]. To simulate variations in remote sensing images, nine augment methods (“Iden-
tity”, “AutoContrast”, “Equalize”, “Brightness”, “Sharpness”, “ShearY”, “TranslateX”,
“TranslateY”, and “Rotate”) were selected. However, since strong image augment transfor-
mations can disrupt the matching relationship between remote sensing images and texts,
we applied relatively mild Randaugment function parameters, specifically (2,7). Here,
‘2’ indicates that two methods were randomly chosen from the aforementioned sequence
of image augment methods, while “7” represents the amplitude of the image augment.
For image, text, and fused representations, the dimensions of the token and patch features
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were set to 768. We utilized PyTorch’s DistributedDataParallel tool for distributed training
and incorporated distributed BN. During the training of the multimodal fusion encoder,
a batch size of 32 was employed, and the training process spanned 60 epochs. The AdamW
optimizer [53] with a weight decay of 0.02 was employed, and a cosine schedule was ap-
plied to decay the learning rate from 0.0001 during the first 1000 iterations. When training
the student network, the distillation hyperparameter α was set to 0.2, the batch size was
adjusted to 128, and the optimizer parameters remained unchanged.

4.3. Experimental Results and Analysis

During the experiments, we conducted a comparative analysis of the proposed
method against the most up-to-date models, including VSE++ [9], SCAN [10], MTFN [11],
AMFMN [8], SAM [14], LW-MCR [18], MAFA-Net [17], FBCLM [21], and GaLR [16]. Table 2
provides an overview of the performance of the proposed method as well as the baseline
models on four datasets: UCM-captions, Sydney-captions, RSICD, and RSITMD. The su-
perior results are highlighted in bold. In this context, “text retrieval” refers to the task
of matching relevant textual descriptions with images based on specific criteria, while
“image retrieval” denotes the task of matching relevant remote sensing images with textual
descriptions using specific criteria.

Table 2. Experimental results of remote sensing image–text cross-modal retrieval on UCM-captions,
Sydney-captions, RSICD, RSITMD datasets, and comparison with baseline models.

Approach
UCM-Captions Dataset Sydney-Captions Dataset

Text Retrieval Image Retrieval
mR

Text Retrieval Image Retrieval
mRR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VSE++ 12.38 44.76 65.71 10.1 31.8 56.85 36.93 24.14 53.45 67.24 6.21 33.56 51.03 39.27
SCAN 14.29 45.71 67.62 12.76 50.38 77.24 44.67 18.97 51.72 74.14 17.59 56.9 76.21 49.26
MTFN 10.47 47.62 64.29 14.19 52.38 78.95 44.65 20.69 51.72 68.97 13.79 55.51 77.59 48.05
SAM 11.9 47.1 76.2 10.5 47.6 93.8 47.85 9.6 34.6 53.8 7.7 28.8 59.6 32.35

AMFMN 16.67 45.71 68.57 12.86 53.24 79.43 46.08 29.31 58.62 67.24 13.45 60 81.72 51.72
LW-MCR 13.14 50.38 79.52 18.1 47.14 63.81 45.35 20.69 60.34 77.59 15.52 58.28 80.34 52.13

MAFA-Net 14.5 56.1 95.7 10.3 48.2 80.1 50.82 22.3 60.5 76.4 13.1 61.4 81.9 52.6
FBCLM 28.57 63.81 82.86 27.33 72.67 94.38 61.6 25.81 56.45 75.81 27.1 70.32 89.68 57.53

MTGFE 47.14 78.1 90.95 40.19 74.95 94.67 71 44.83 68.97 86.21 38.28 69.31 83.1 61.52

Approach
RSICD Dataset RSITMD Dataset

Text Retrieval Image Retrieval
mR

Text Retrieval Image Retrieval
mRR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VSE++ 3.38 9.51 17.46 2.82 11.32 18.1 10.43 10.38 27.65 39.6 7.79 24.87 38.67 24.83
SCAN 5.85 12.89 19.84 3.71 16.4 26.73 14.24 11.06 25.88 39.38 9.82 29.38 42.12 26.27
MTFN 5.02 12.52 19.74 4.9 17.17 29.49 14.81 10.4 27.65 36.28 9.96 31.37 45.84 26.92
SAM 12.8 31.6 47.3 11.5 35.7 53.4 32.05 - - - - - - -

AMFMN 5.39 15.08 23.4 4.9 18.28 31.44 16.42 10.63 24.78 41.81 11.51 34.69 54.87 29.72
LW-MCR 4.39 13.35 20.29 4.3 18.85 32.34 15.59 9.73 26.77 37.61 9.25 34.07 54.03 28.58

MAFA-Net 12.3 35.7 54.41 12.9 32.4 47.6 32.55 - - - - - - -
FBCLM 13.27 27.17 37.6 13.54 38.74 56.94 31.21 12.84 30.53 45.89 10.44 37.01 57.94 32.44
GaLR 6.59 19.9 31 4.69 19.5 32.1 18.96 14.82 31.64 42.48 11.15 36.68 51.68 31.41

MTGFE 15.28 37.05 51.6 8.67 27.56 43.92 30.68 17.92 40.93 53.32 16.59 48.5 67.43 40.78

In Table 2, the performance metrics for VSE++, SCAN, and MTFN are obtained
from reference [8], while the results of the other models are cited from their respective
original papers. For the UCM-captions, Sydney-captions, and RSICD datasets, we followed
the partitioning of the training set, validation set, and test set as defined by the dataset
contributors. During the training phase, the model parameters were adjusted solely using
the training set. The performance data presented in Table 2 are exclusively derived from
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the test set. However, for the RSITMD dataset, the contributors only provided a division of
the data into a training set and a test set. Thus, after training our model on the provided
training set, the model’s performance was measured on the test set.

Results on UCM-captions: The performance of the proposed approach on the UCM-
captions dataset is displayed in the upper left section of Table 2. The mR metric of the
method surpassed that of the best model by 9.4%. Except for the R@10 score in text retrieval,
the method outperformed the baseline models, showcasing its overall superior performance.
Notably, the R@1 scores for both text and image retrieval were 18.57% and 12.86% higher
than those of the other models, respectively, indicating that our method exhibited a higher
likelihood of returning accurate results at the top-1 position.

Results on Sydney-captions: The performance of the proposed method on the Sydney-
captions dataset is presented in the upper right section of Table 2. The results reveal that the
average R@K of our method surpassed that of the best baseline model by 3.99%. Specifically,
the R@1, R@5, and R@10 scores for text retrieval, as well as R@1 for image retrieval, outper-
formed those of the best baseline model by 15.52%, 8.47%, 8.62%, and 11.8%, respectively.
These findings align with the outcomes obtained from the UCM-captions dataset, which
also exhibited a substantial enhancement in terms of R@1 performance.

Results on RSICD: The performance of our model on the RSICD dataset is presented
in the lower left section of Table 2. It is evident that our model performed well, exhibiting
superior text retrieval R@1 performance compared to other models. However, there were
still some performance gaps observed in relation to other indicators when compared to the
optimal baseline model.

Results on RSITMD: The performance on the RSITMD dataset can be observed in
the lower right section of Table 2. For this dataset, our proposed model achieved higher
values for all R@K indicators and mR compared to the other baseline models. This suggests
that our model was more effective in capturing the image–text similarity relationships in
datasets with richer text semantics and lower text repeatability.

Our experimental results across four datasets showcase the competitiveness of our
method against baseline models. In the retrieval task, R@1 is significantly more important
than R@5 and R@10, as users prefer the model to return the desired result as the first
result, rather than filtering through the results. Except for Image Retrieval on the RSICD
dataset, our method outperformed all other models in terms of R@1 on all four datasets,
providing strong evidence of its superior performance. However, it falls short in other
RSICD dataset metrics. To analyze the reasons, we conducted experiments on the validation
set of RSICD using the same model and parameters. The R@1, R@5, and R@10 scores for
Text Retrieval and Image Retrieval are 16.91, 44.24, and 57.86 and 20.20, 39.93, and 53.53,
respectively, with an mR of 38.78. These results significantly outshine baseline models,
suggesting potential dataset imbalances as the cause.

Furthermore, we scrutinized the RSICD dataset, which is similar to the UCM-captions
and Sydney-captions datasets. These datasets were specifically curated for the purpose of
generating captions for remote sensing images. The objective of the image caption is to
generate sentences that are similar to the annotated text. In these datasets, although each
image has five textual captions, these five sentences are often repetitive. Additionally,
there are instances where different remote sensing images have the same or similar textual
descriptions. In cross-modal retrieval, these text–image similarities may align semanti-
cally but are frequently deemed incorrect in evaluations, failing to contribute to metric.
Yuan et al. [8] also noted this limitation of the dataset and quantified the diversity of data
samples by using the ratio of inconsistent sentences to the number of images. The scores
for UCM-captions, Sydney-captions, and RSICD datasets stand at 0.97, 1.83, and 1.67,
respectively. However, cross-modal retrieval requires discerning the similarity between
different samples, and needs more diverse samples to improve the discriminative ability of
the model. To explore datasets that are more suitable for cross-modal retrieval between
remote sensing images and text, Yuan et al. [8] contributed a more diverse remote sensing
image–text dataset called RSITMD, with an increased ratio of inconsistent sentences to the
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number of images to 4.60. In this dataset, our proposed method demonstrates a significant
advantage over baseline models.

We further analyzed the performance of different models in Table 2. While baseline
models endeavor to address fine-grained associations between multimodal data through
multimodal semantic alignment and multimodal fusion coding, issues persist. Models
such as VSE++, SCAN, MTFN, AMFMN, SAM, LW-MCR, MAFA-Net, and GaLR grapple
with insufficiently complex interactions between modalities, limiting their performance.
The work on multimodal fusion encoding, exemplified by FBCLM, uses a large-scale fusion
encoder to mine complex associations between modalities, demonstrating optimal perfor-
mance across multiple datasets. However, it does not utilize different training tasks to
mine more supervised signals to further promote fine-grained correlation between modali-
ties, which limits the performance of the fusion coding model. Our approach combines
three supervised tasks—MLM, MVJRC, and ITM—to extract richer supervised signals and
attain superior multimodal fine-grained associations. By aggregating local similarities
between images and texts through a large-scale cross-attention network, the accuracy of
cross-modality retrieval is improved. We further analyze the contribution of these three
tasks in Section 4.4.

Although methods based on large-scale fusion encoders exhibit superior performance
in remote sensing image–text cross-modal retrieval, their computational overhead hampers
the retrieval speed. On the other hand, multi-modal semantic alignment methods can
extract remote sensing image and text features offline and obtain the similarity between
images and texts through simple calculations, thereby possessing superior retrieval speed.
To compensate for the low retrieval efficiency of large-scale fusion encoders, we attempt
to transfer the knowledge learned by the fusion encoder about the association between
images and text to a small-scale model to improve retrieval efficiency. The details and
arguments of this approach are presented in Section 4.5.

4.4. Ablation Studies

For the RSITMD dataset, we performed ablation tests to analyze the contributions
of the ITM, MLM, and MVJRC tasks proposed by the fusion encoder in terms of fine-
grained image–text correlation and cross-modal retrieval. We examined four different task
combinations: ITM, ITM + MLM, ITM + MVJRC, and ITM + MLM + MVJRC.

4.4.1. Visualization of Fine-Grained Correlations in Word–Patch

In order to assess the contributions of different tasks to fusion representation, we
extracted the attention values of each input word to the corresponding image region from
the fifth cross-attention layer of the multimodal fusion encoder. These values were then
used to generate a visual heat map illustrating the word–patch correlation. Darker colors
indicate a higher correlation between the query word and the image region. Figure 6
presents the word–patch correlation heat map for a selected image and the sentence “Six
water tanks and some pipes beside a pond” under various task combinations. It should
be noted that the words displayed in the map are the result of contextual self-attention
processing, thus encompassing contextual information.

The MLM task improved the fine-grained correlation between sentence words and
image regions. For example, the words “six” and “pond” accurately matched the six white
water tanks and the nearby pond, respectively, although some noise was present in the
attention. However, when combining the ITM and MVJRC tasks, the correct association
between words and image regions was not achieved. Only when all three tasks (ITM,
MLM, and MVJRC) were used together did the words exhibit a strong correlation with the
image regions. The global classification label [cls] was linked to a region that semantically
matched the entire sentence. Words like “six” (referring to 6 water storage tanks), “tanks”,
and “pond” (referring to the nearby pond) were correctly associated with their respective
image regions. Compared to scenario b, the correlation between words and the image was
more specific and accurate, demonstrating the effectiveness of the proposed MVJRC task



Remote Sens. 2023, 15, 4637 17 of 22

in filtering out irrelevant correlations. Regarding the word “pipes”, except for scenario
a, none of the other task combinations correctly associated it with an image region. This
could be attributed to the low resolution of the target, which made detection challenging,
and the lack of relevant samples in the training data.

Six water tanks and some 

pipes beside a pond

a

b

c

d

[CLS][CLS] sixsix tankstanks pipespipes pondpond

Figure 6. Attention heat maps of sentence words on the image area in the image–text fusion encoder.
(a) ITM task only, (b) ITM + MLM tasks, (c) ITM + MVJRC tasks, and (d) ITM + MLM + MVJRC
tasks simultaneously.

We conducted additional testing of the proposed method using image–text pairs that
had more diverse and detailed text semantics. Figure 7 illustrates an example where the
input text described a “viaduct” scene with multiple objects and included information
about its surroundings. The results demonstrated that our method effectively improved the
correlation between the text and the image. Even for non-target vocabulary such as “ring”,
“surrounded”, and “green”, our method successfully associated them with the appropriate
image regions.

Based on the visual analysis of the image–text correlation discussed above, it was
observed that the supervision signal provided by the ITM task for fine-grained image–text
correlation was not precise enough, leading to overlapping correlation effects. On the
other hand, the MLM task played a crucial role in enhancing the fine-grained correlation
between images and texts by providing more refined and accurate supervision signals.
When combining the ITM and MVJRC tasks, the correlation effects between images and
texts intersected, resulting in improved correlation effects compared to when only the ITM
and MLM tasks were combined. The addition of the MVJRC task enhanced the mutual in-
formation for fine-grained correlation between modalities and improved the consistency of
joint representation. By strengthening the consistency of fine-grained correlations between
remote sensing images from different perspectives and the associated text, the correlation
effects between remote sensing images and texts were significantly enhanced.
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The third ring viaduct 

surrounded by green trees is 
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Figure 7. Evaluation of correlation quality between text words and image regions for image–text
pairs with more complex semantics. (a) Results obtained using the ITM task, (b) results obtained
using ITM + MLM tasks, (c) results obtained using ITM + MVJRC tasks, and (d) Rresults obtained
using ITM + MLM + MVJRC tasks simultaneously.

4.4.2. Impact of Task Combinations on Retrieval Accuracy

We conducted experiments on the RSITMD dataset, evaluating the contributions of
four different task combinations: ITM, ITM + MLM, ITM + MVJRC, and ITM + MLM +
MVJRC. The results of these experiments are presented in Table 3.

Table 3. Retrieval accuracies of different task combinations on the RSITMD dataset.

Task
Text Retrieval Image Retrieval

mRR@1 R@5 R@10 R@1 R@5 R@10

ITM 15.71 35.62 50.44 13.41 44.78 65.66 37.6
ITM + MLM 16.37 38.05 52.88 16.46 47.92 67.43 39.85

ITM + MVJRC 12.39 33.19 49.56 10.66 40.35 61.64 34.63

ITM + MLM + MVJRC 17.92 31.19 53.32 16.59 48.5 67.43 40.78

The experimental results demonstrate that employing the ITM task alone yields a
remarkable mR of 38.89, surpassing the accuracy metrics of the current state-of-the-art
methods. It has validated the promoting effect of complex fine-grained interactions between
modalities on the accuracy of cross-modal retrieval. When combining the ITM and MLM
tasks, all retrieval accuracy metrics show significant improvement, with an increase of
2.25 in mR. This underscores the beneficial impact of complex fine-grained intermodal
interactions on cross-modal retrieval accuracy. However, when combining the ITM and
MVJRC tasks, the MVJRC task does not contribute to the retrieval performance, and there
is a noticeable decrease in all retrieval accuracy metrics compared to using only the ITM
task. When combining the ITM, MLM, and MVJRC tasks, the performance either slightly
improves or remains the same compared to the combination of ITM and MLM, with a
0.93 increase in mR. The MVJRC task does not provide a significant improvement in
retrieval accuracy. The impact of adding the MVJRC task to ITM and ITM + MLM on the
retrieval accuracy aligns with the visual analysis results in Section 4.4.1, indicating that the
MVJRC task does not provide a significant gain in image–text association on top of the ITM
task and may even introduce some noise. After adding the MVJRC task to the combination
of ITM + MLM, the visualization of fine-grained correlations between remote sensing image
regions and text words is significantly enhanced, but the contribution to retrieval accuracy
metrics is not as evident. In some subjective retrieval experiments, the combination of
ITM, MLM, and MVJRC tends to return samples that match retrieval conditions but are
not ground truth samples in the dataset. While this may enhance user experience, it does
not necessarily improve the retrieval accuracy metrics. We attribute this to the limitations
of the dataset in terms of sample diversity. The dataset exhibits high intra-class similarity,
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where remote sensing images of the same scene, such as deserts, airports, and parking lots,
have minimal differences, allowing many remote sensing images in the same scene to have
the same text description. Additionally, the dataset contains significant category ambiguity
in remote sensing images. For instance, the same remote sensing image can be classified as
airport, barren land, or airplane, which further complicates the measurement of image–text
matching in the dataset. Therefore, exploring datasets and metrics that are more suitable for
cross-modal retrieval between remote sensing images and text is necessary for future work.

4.5. Retrieval Filtering Experiments

In order to alleviate the problem of low retrieval efficiency for a large-scale fusion
encoder, as described in Section 3.3, we conducted a validation of our proposed retrieval
filtering method on the RSICD dataset. To accomplish this, the study utilized the MTGFE
model trained on the RSICD dataset as the teacher network. We then performed joint
training to train the student network filter by leveraging the ITM output of the teacher
network along with the ground truth labels. A total of 30 epochs were trained with a
parameter of 128. During the testing phase, the study implemented a process where the
first 128 samples of the filter’s evaluation results were forwarded to the teacher network.
The teacher network then recalculated the similarity ranking based on these samples and
returned the updated ranking. The combined retrieval indicators are shown in Table 4.
The RSICD test set comprised 1093 images and 5465 texts. The average search time for text
retrieval from images was reduced from 472.10 ms to 24.70 ms, while the average search
time for image retrieval from texts was reduced from 94.41 ms to 14.27 ms. Remarkably,
the average retrieval accuracy mR decreased by only 0.88, demonstrating that the retrieval
filtering method substantially enhanced the model’s retrieval speed while maintaining a
minimal loss in accuracy.

Table 4. Performance of model migration on the RSICD dataset.

Method
Text Retrieval Image Retrieval

mRR@1 R@5 R@10 Time (ms) R@1 R@5 R@10 Time (ms)

MTGFE 15.28 37.05 51.6 472.1 8.67 27.56 43.92 94.41 30.68
MTGFE + Filter 13.82 36.32 50.41 24.7 8.27 27.17 42.8 14.27 29.8

The retrieval filtering experiments in this study exclusively comprised simple knowl-
edge distillation experiments. Further investigations, including hyperparameter optimiza-
tion, parameter distillation, and the exploration of combination strategies between teacher
and student networks, have the potential to significantly enhance the performance of
retrieval filtering.

5. Conclusions

To address the challenges posed by the fine-grained and multi-perspective features,
as well as the significant imaging variations in remote sensing images, this study incor-
porates the MLM task into existing multimodal fusion coding models and introduces the
novel MVJRC task. By combining the ITM, MLM, and MVJRC tasks, the model’s ability to
capture fine-grained correlations between remote sensing images and texts is enhanced.
Furthermore, this paper proposes the retrieval filtering method to tackle the issue of low
retrieval efficiency in large-scale fusion encoders. Experimental evaluations on four public
datasets confirm the effectiveness of the proposed method in improving the accuracy and
speed of cross-modal retrieval, leading to overall enhanced performance.

The limitation of this study is that the current remote sensing image–text datasets
may not be suitable for high-performance cross-modal retrieval. The complex relationship
between remote sensing images and texts also requires better evaluation metrics to judge the
performance of cross-modal retrieval. This makes it difficult to effectively validate some of
the methods we proposed, such as the MVJRC task, in experimental metrics. Additionally,



Remote Sens. 2023, 15, 4637 20 of 22

conducting additional knowledge distillation experiments may enhance the efficiency of
cross-modal retrieval between remote sensing images and texts. Finally, exploring the
concept of good joint representation has yielded various downstream tasks in VLP model
studies, thereby opening up possibilities for the joint learning of remote sensing images
and texts in applications such as visual question answering, multi-temporal remote sensing
image comprehension, and remote sensing image object segmentation.

In future endeavors, we will focus on annotating more diverse remote-sensing image-
text datasets and specifying cross-modal retrieval evaluation metrics. Furthermore, our
research will extend to exploring joint learning techniques and cross-modal retrieval tasks,
leveraging high-performance fusion encoders for analyzing multi-temporal remote-sensing
images alongside textual data.
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