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Abstract: Forests are essential for sustaining ecosystems, regulating the climate, and providing
economic benefits to human society. However, activities such as commercial practices, fuelwood
collection, and land use changes have resulted in severe forest degradation and deforestation. Timor-
Leste, a small island nation, faces environmental sustainability challenges due to land use changes,
limited infrastructure, and agricultural practices. This study proposes a simplified and highly
accessible approach to assess deforestation (SHAD) nationally using limited human and non-human
resources such as experts, software, and hardware facilities. To assess deforestation in developing
countries, we utilize open-source software (Dryad), employ the U-Net deep learning algorithm, and
utilize open-source data generated from the Google Earth Engine platform to construct a time-series
land cover classification model for Timor-Leste. In addition, we utilize the open-source land cover
map as label data and satellite imagery as model training inputs, and our model demonstrates
satisfactory performance in classifying time-series land cover. Next, we classify the land cover in
Timor-Leste for 2016 and 2021, and verified that the forest classification achieved high accuracy
ranging from 0.79 to 0.89. Thereafter, we produced a deforestation map by comparing the two land
cover maps. The estimated deforestation rate was 1.9% annually with a primary concentration in the
northwestern municipalities of Timor-Leste with dense population and human activities. This study
demonstrates the potential of the SHAD approach to assess deforestation nationwide, particularly in
countries with limited scientific experts and infrastructure. We anticipate that our study will support
the development of management strategies for ecosystem sustainability, climate adaptation, and the
conservation of economic benefits in various fields.

Keywords: deforestation; land cover classification; U-NET; developing countries; feasibility study;
Timor-Leste

1. Introduction

Forests play a crucial role in sustaining wildlife habitat, regulating the climate, con-
serving biodiversity, and providing economic benefits to human society [1–3]. In particular,
tropical forests are widely recognized as biodiversity hotspots [4,5] and offer significant
social benefits to local communities and the global society [6,7]. However, human ac-
tivities, such as commercial practices, fuelwood collection, and land use changes, have
resulted in severe forest degradation and deforestation (FDD), leading to a reduction in the
functionality and diversity of terrestrial ecosystems [8–13].

Assessing FDD is essential for developing effective forest conservation strategies. Ad-
ditionally, monitoring and understanding the extent of FDD is critical to assess the impact
of human activities on forest ecosystems and identify areas where conservation efforts
are needed [14,15]. The assessment of FDD can aid the evaluation of the effectiveness of
conservation interventions, such as protected areas, reforestation programs, and sustainable
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forest management practices [16,17]. Furthermore, quantifying the socio-economic impacts
of FDD and identifying strategies to mitigate them is crucial for achieving sustainable forest
management and protecting the global environment [18–20].

Timor-Leste, a small island nation located in Southeast Asia, gained independence
from Indonesia in 2002 and has since made significant progress in development and stability.
However, despite the country’s considerable advancements, it faces challenges regarding
environmental sustainability, particularly in relation to its predominantly agriculture-based
economy, which includes coffee, rice, and corn production. The lack of infrastructure
and sustainable agricultural practices in Timor-Leste has led to land use changes and the
use of firewood as an alternative source of energy [21–23]. Consequently, these factors
have contributed to an estimated deforestation rate of approximately 1.4% annually in
Timor-Leste [24].

Although there are some challenges associated with the national-level assessment
of FDD, various methods can be employed to quantify its extent [25,26]. Deep learning
techniques based on remote sensing data, such as land cover classification modeling, have
gained significant attention [27–30]. Among various deep learning techniques, convolu-
tional neural networks, recurrent neural networks, and generative adversarial networks
are widely used. Additionally, U-Net algorithms, particularly a fully convolutional neural
network comprising an encoder and decoder, have attracted attention for image segmen-
tation and land cover classification using remote sensing data [31–34]. Giang et al. [35]
successfully classified land cover types from multispectral images using U-Net algorithms,
and achieved high overall accuracies. John and Zhang [36] employed modified versions of
U-Net algorithms to classify forest cover changes and detect forest degradation in specific
areas using time-series imagery.

Despite the development of various algorithms and techniques for assessing FDD,
many developing countries with limited resources for scientific research face significant
challenges in monitoring and managing FDD [37,38]. However, these countries have made
some progress in recent years in developing their capacity for environmental monitoring
and management [39,40]. For example, many countries have established national systems
for monitoring land use, forest cover change, and human activities using field survey data
and satellite imagery [41–44]. However, despite this progress, there are still significant
challenges associated with providing effective conservation strategies based on high-quality
FDD assessment. For example, limited human resources capable of accurately labeling
land cover classes and FDD areas for use in deep learning algorithms, combined with the
limited scientific capabilities of applying advanced techniques and approaches, make it
difficult to develop effective conservation strategies.

In the developing world, data often tend to be incomplete, noisy, or biased [45,46]. Data
collection initiatives are typically led by citizens, journalists, and non-profit organizations
with good intentions, but limited technical expertise, for the construction of high-quality
datasets. Moreover, the utilization of deep learning algorithms for FDD assessment require
the application of advanced techniques with clean datasets, which demands substantial
education, particularly in computer and environmental science [47]. The challenges faced
in the developing world make the rapid assessment of FDD difficult and hinder a timely
response to the climate crisis and natural hazards. To overcome these challenges, simplified
deep learning algorithms embedded in open-source software and open-source datasets can
be utilized. However, while open-source datasets and simplified algorithms are generally
suitable for global-scale assessments, their applicability at the national or local scales may
be uncertain.

Therefore, this study aimed to propose a simplified and high accessibility deforestation
(or forest degradation) (SHAD) assessment approach for countries with limited scientific
resources and facilities, while minimizing the cost of constructing a deforestation detecting
model, using the U-Net algorithm. To achieve this, open-source software suitable for
the U-Net algorithm was utilized and open-source data were employed to simplify the
labeling process, which is the most expensive aspect of U-Net-based image segmentation
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modeling. Ultimately, through the evaluation of land cover and forest degradation using
the model developed in this study, we aim to overcome the limitations of scientific and
human resources and propose an approach that enables highly accurate and fast assessment
of deforestation. We anticipate our study will support the rapid detection of deforestation
areas and enhance sustainability in countries with limited scientific resources.

2. Materials and Methods
2.1. Study Area

Timor-Leste, located at 8◦33′24.68′′S, 125◦33′37.12′′E (Dili; capital city of Timor-Leste),
falls within a tropical monsoon climate zone, characterized by distinct wet and dry seasons
(Figure 1). The northwest monsoon winds from December to March bring the primary
wet season to most parts of the country, while the southeast trade winds prevail from May
to October, except for the south coast and southern slopes, where the wet season persists
until July. The variations in topographic conditions and precipitation patterns significantly
affect temperature distinctions and the livelihoods of people, including the availability
of drinking water, agricultural practices, and land use, and the land cover change that
follows these patterns. These patterns pose natural barriers to development efforts owing to
frequent natural disasters, such as landslides, erosion, flooding during the wet season, and
drought during the dry season. Furthermore, there is an urgent need for forest conservation
in Timor-Leste given the widespread deforestation in this country. According to FAO [48],
the forest area in Timor-Leste was 966,000 ha in 1990 but reduced to 686,000 ha in 2015. The
estimated annual forest change in Timor-Leste is −1.4 to −1.7%, and less effort is devoted
to forest plantation in Timor-Leste [24,49].
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Figure 1. Location of Timor-Leste.

2.2. Datasets

In this study, we prepared the datasets for the development of the land cover classifica-
tion model and for the land cover classification. In this study, we used a 4-band dataset in
2020 and ESA WorldCover 10m v100, which represents the near-real-time global land cover
in 2020 based on Sentinel images, for model training. In addition, 4-band datasets in 2016
and 2021 were used for land cover classification (Table 1). The 4-band dataset consists of
red, green, blue, and near-infra red (NIR) bands, based on natural (forest, other vegetation,
open water, etc.) and anthropogenic (Built-up, Cropland, etc.) reflectance characteristics
from imagery produced from the Sentinel-2 surface reflectance images [50–53]. All the
datasets were collected from the GEE platform, and the datasets represent the median value
during January to December, with filtering of 10% cloud cover to preserve the data quality.
The datasets have a 10 m resolution and covered the entire Timor-Leste area.

2.3. SHAD Approach

Nationwide FDD assessment, while securing outstanding accuracy, requires sufficient
resources to classify the land cover change [37,38,41–44]. However, the survey data, scien-
tific experts, and the budget of research of many countries are limited. In this study, we
propose a SHAD approach, which can perform the rapid assessment of nationwide FDD
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using open-source software and spatial data (Figure 2). To implement this approach, first, a
land cover classification model based on a deep learning algorithm was developed, and
the land cover map in the user-defined period was generated. This approach only requires
labels and inputs that can be obtained from open-source data, such as the European Space
Agency (ESA) WorldCover 10m v100 and downloaded from Google Earth Engine (GEE)
platform. The FDD assessment was performed using the developed model and the land
cover map was classified. Thereafter, the nationwide FDD was estimated by comparing the
land cover maps generated in the user-defined time periods.

Table 1. Components of the input datasets applied for land cover classification and model training.

Dataset Reference

Model training

Label data ESA 1 WorldCover 10m v100 (2020)
Red band Sentinel-2 B4 band (2020)

Green band Sentinel-2 B3 band (2020)
Blue band Sentinel-2 B2 band (2020)

NIR 2 band Sentinel-2 B8 band (2020)

Land cover
classification

Red band Sentinel-2 B4 band (2016, 2021)
Green band Sentinel-2 B3 band (2016, 2021)
Blue band Sentinel-2 B2 band (2016, 2021)
NIR band Sentinel-2 B8 band (2016, 2021)

1 European Space Agency. 2 Near-infra red.
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approach for deforestation (SHAD) assessment.

The accuracy of the open-source label data used in the SHAD approach was approxi-
mately 75%, which is reasonable but not satisfactory to use as ground truth data. Therefore,
we verified the SHAD approach in the three steps: evaluation of the classified model using
training and validation accuracy, assessment of land cover classification results for each
time period using user’s, producer’s, and overall accuracy for each class, and assessment
of the estimation of deforestation using precision, recall, and the kappa coefficient.

2.3.1. Dryad U-Net Process: Land Cover Classification and Deforestation Assessment

The Dryad platform (Deep-learning and Remote Sensing analysis for Agroforestry and
Drought; https://www.platform-dryad.com/, accessed on 23 August 2022) was developed
for the analysis of remote sensing data by both experts and non-experts. This platform
provides powerful tools for analyzing Earth observation data in a raster format, and
incorporates the U-Net algorithm for semantic segmentation. The embedded algorithm is
useful for classifying land cover and developing time-series land cover maps [27–31,36].

https://www.platform-dryad.com/
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As it is based on fully convolutional network architectures, the U-Net algorithm is
widely applied for semantic segmentation, particularly in medical and environmental
sciences [31]. Similar to autoencoders, this algorithm is divided into two sequential stages,
consisting of an encoder, which can successively down-sample the feature maps generated
through convolutional filters, and a decoder, which can up-sample the down-sampled
map back to the original input shape for inference. This process is similar to the letter U,
with a contracting path on the left and expansive path on the right. This process can be
further enhanced using connections bridging the down-sampling and up-sampling steps
to propagate information.

Many studies have employed the U-Net algorithm to classify land cover and monitor
FDD. John and Zhang [36] applied the attention U-Net algorithm, which can replicate the
human ability, to specific stimuli. It used three types of datasets to detect deforestation
within satellite imageries and to compare the performance of each dataset. De Bem et al. [54]
used three types of deep learning architectures, including U-Net algorithm, to detect
deforestation in the Brazilian amazon based on Landsat data.

2.3.2. Assessment

The SHAD approach only utilizes the open-source software and data whose quality is
uncertain. In this study, to verify the accuracy the model, we conducted a three-step assessment
process, consisting of the assessment of the model development, land cover classification, and
FDD evaluation. First, we verified the performance of the developed model by evaluating the
training and validation accuracy in the Dryad platform. The training and validation accuracy
are the performance metrics used to evaluate the effectiveness of the model during the model
development. These accuracies indicate how well the model can predict (estimate) the correct
labels for the training examples. The training accuracy was calculated by comparing the
estimated labels with the actual labels of the training dataset. The validation dataset is distinct
from the training dataset and was used to evaluate the performance of the model on unseen
data, and indicates the accurate estimations on new examples.

Second, we verified the land cover classification by evaluating the user’s, producer’s,
and overall accuracy (Equations (1)–(3)) [55]. For this verification, we compared the
estimated land cover map with the high-resolution reference images collected from Google
Earth Pro. Google Earth Pro utilizes various high-resolution satellite imagery sources to
provide detailed and up-to-date imagery. In particular, the WorldView series can provide
various high-resolution imagery, ranging from 30 to 50 cm per pixel.

User’s accuracyi =
nii
ni+

(1)

Producer accuracyi =
nii
n+i

(2)

Overall accuracy =
∑

q
i=0 nii

n
(3)

The user’s and producer’s accuracies illustrate the classification quality of each single
class i. The classification accuracy from the user perspective can be defined as the ratio of
classified pixels that correctly match the reference images. The accuracy of classification
from the producer perspective can be defined as the ratio of the pixels of the reference
images that correctly match those of the classified map. In the equations, n represents the
total number of considered pixels, and nii represents the pixels matching the classified map
and reference images in the specific land cover class. Additionally, ni+ and n+i represent
the marginal sum of the columns and rows, respectively, and q is the number of classes in
Equations (2) and (3).
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Third, we assessed the deforestation based on the precision, recall, overall accuracy,
F-score, and kappa coefficient (Equations (3)–(7)) [56,57]. The deforestation areas were
estimated by comparing forest change generated from the land cover map in the simulation
periods, and the deforestation reference images were collected from Google Earth Pro.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

where TP is the true positive and represents the deforestation area in the classification and
reference data; FP is the false positive and represents incorrectly classified deforestation;
TN is the true negative and represents the non-deforestation area in the classification and
reference data; and FN is the false negative and represents the incorrect classification of
non-deforestation.

F score =
2× TP

2× TP + FP + FN
(6)

F-score is measured based on the precision and recall of the classification results. It
is the harmonic mean of the precision and recall, and can symmetrically describe both
precision and recall in one metric.

Kappa coe f f icient =
po − pe

1− pe
(7)

where po is the rate of agreement between the reference data and classification, and pe is
the expected rate of agreement due to chance.

2.3.3. Assessment of FDD: Model Development and Land Cover Classification

We constructed the land cover classification model using the Dryad platform. The
ESA WorldCover 10m v100 dataset represents the land cover status in Timor-Leste in 2020
and was utilized as the label data to train the land cover classification model. The ESA
WorldCover land cover map in Timor-Leste consists of eight land cover classes (Forest
(with Mangroves), Shrubland, Grassland, Cropland, Built-up, Barren, and Open water). In
addition, we used the 4-band dataset in 2020 (Table 1). For the model training, we used a
patch size of 256 to generate training and validation images. Additionally, 60% of the gener-
ated images were used for training and 40% for model validation, and 343,625 parameters
were adapted in this study.

We utilized the land cover classification model developed by the U-Net based Dryad
platform to classify land cover in 2016 and 2021 using the 4-band datasets from the matching
periods (Table 1). To verify the classification results, we dispersed 500 random points in
the study area and generated land cover reference images (Figure 3). To compare the land
cover classified map and reference images, we used a five-class reclassified land cover map
(Table 2).

Table 2. Reclassification of the land cover for accuracy assessment.

Reclassified Land Cover Class Original Land Cover Class

Forest Forest
Other vegetation Shrubland, Grassland

Non-forest Cropland, Built-up, Barren
Open-water Open-water
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2.3.4. Assessment of FDD: Estimation of the Deforestation Areas

The SHAD approach estimates deforestation by detecting the forest change in the land
cover maps of 2016 and 2021. Deforestation areas were defined as the transition areas from
forest areas to other land cover types in the target periods. To assess our estimation, we
dispersed 250 random points on the forest area in the 2016 land cover classification map
(Figure 4). Additionally, we utilized Google Earth Pro’s time-series map as the reference
images, and evaluated the forest transition by comparing land cover changes. Thus, we
used imagery from after January 2016 in Google Earth Pro as the reference images for the
past period of land cover, and imagery before December 2021 in Google Earth Pro as the
reference images for the future period.
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3. Results
3.1. SHAD Approach Assessment
3.1.1. Evaluation of Model Performance and Land Cover Classification

In this study, to develop the land cover classification model for Timor-Leste, we
utilized the ESA WorldCover 10m v100 as the label data and the 4-band dataset divided
into a patch size of 256 to generate the training and validation data. We used 60% of data
for training and 40% for validation (Figure 5). To verify the performance of the model,
we evaluated the training and validation accuracy. The accuracy of the model for the
training and validation datasets was 0.92 and 0.82, respectively, indicating the sufficient
performance of the mode and its potential for classifying the land cover in 2016 and 2021.
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validation accuracy are 0.92 and 0.82, respectively.

The overall accuracy for the evaluation of the land cover classification by comparing
the classified land cover map and reference images ranged from 0.68 to 0.79 (Table 3). The
highest overall accuracy (0.79) was obtained for the evaluation result for 2020, and it was
used as the comparative criteria for verifying the other land cover classification using the
model based on the SHAD approach. The overall accuracy for 2016 and 2021 was 0.68
and 0.74, respectively. During the specific land cover class level evaluation, the highest
producer’s accuracy (0.80 to 0.91) and user’s accuracy (0.79 to 0.89) values were observed
for the forest area. The accuracy of the verifying land cover maps in 2016 and 2021 was
similar to that for in 2020. These results indicate the sufficient performance of the land
cover map classified using the SHAD approach to estimate the forest areas in other time
periods. However, there was uncertainty in defining the land cover in the evaluation of
other classes. Non-forest land cover class (Cropland, Built-up, Barren) exhibited the highest
variation between the accuracy values with a producer’s accuracy of 0.21 to 0.42 and user’s
accuracy of 0.45 to 0.71. Although the SHAD approach exhibited large uncertainty for land
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cover classification in specific land cover types, it still exhibited a large potential for the
estimation of the deforestation areas.

Table 3. Evaluation of producer’s, user’s, and overall accuracy for each land cover class.

Land Cover
2016 2020 2021

p 1 U 2 p U p U

Forest 0.86 0.79 0.91 0.87 0.80 0.89
Other vegetation 0.49 0.44 0.71 0.62 0.77 0.53

Non-forest 0.21 0.45 0.39 0.71 0.42 0.67
Open water 0.37 0.70 0.53 1.00 0.68 0.57

OA 3 0.69 0.79 0.74
1 Producer’s accuracy. 2 User’s accuracy. 3 Overall accuracy.

3.1.2. FDD Assessment

To detect deforestation areas using the SHAD approach, we used 250 random points
to assess the forest change. This approach estimated 51 locations as forest change (defor-
estation) areas and 199 locations as sustained forest areas (Table 4). However, 36 locations
were assessed as deforestation areas, and 214 were assessed as sustained forest in the
reference data.

This indicates that there were 32 true positive and 20 false positive values in the
deforestation detection results, implying the overestimation of the deforestation detection
results. In contrast, there were just 5 false negative and 194 true negative values for the
detection of sustained forest, indicating the higher performance of the model for detecting
sustained forest than deforestation areas.

Although the FDD assessment from the SHAD approach has a problem in overes-
timation, it has high potential to rapidly assess FDD and for use in implementation of
management strategies for environmental conservation. The precision, recall, overall accu-
racy, F-score, and kappa coefficient of the quantifying evaluation result of deforestation (or
sustained forest) detection were 0.61, 0.86, 0.90, 0.71, and 0.65, respectively.

Table 4. Confusion matrix of the deforestation detection model. Values represent the number of
locations for detecting deforestation or sustained forest.

Reference Data

Deforestation
(Positive)

Sustained Forest
(Negative)

Classified
condition

Deforestation
(Positive) 31 20

Sustained forest
(Negative) 5 194

3.2. Land Cover Classification and Forest Change in Timor-Leste

Figure 6 shows the land cover classification by the U-Net-based model developed in
this study. The land cover in 2016 was dominated by forest (68.8%) and other vegetation
(26.8%) (Table 5), and the land cover in 2021 was also dominated by forest (59.2%) and
other vegetation (37.4%). However, the forest areas decreased by 9.6% in the 5-year period,
indicating that Timor-Leste experienced an annual forest loss of 1.92%. In contrast, the
other vegetation increased by 10.6% (2.1% annual increase) in the same period.
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Table 5. Composition of the land cover class in 2016 and 2021. (Unit: %).

Land Cover 2016 2021 Change Ratio

Forest 68.8% 59.2% −9.6%
Other vegetation 26.8% 37.4% +10.6%

Non-forest 3.4% 2.5% −0.9%
Open water 1.0% 0.9% −0.1%

3.3. Deforestation Detection in Timor-Leste

After the classification of the land cover in 2016 and 2021, the deforestation areas
detected in 2016 and 2021 were compared to determine the forest change (Figure 7A).
Deforestation was detected by comparing the changed forest area in 2016 to other types
of land cover in 2021. Deforestation in Timor-Leste is distributed nationwide [23]. In
particular, the deforestation ratio in the high-population municipalities is high. The results
of this study confirmed the nationwide distribution of the deforestation areas, and the
extensive deforestation in the northwestern side of the mainland in Timor-Leste (Dili,
Liquiçá, Baucau, Bobonaro, Ermera, Aileu) (Figure 7B).

Dili is a municipality which is the location of the capital city (Dili), and deforested areas
are confirmed by 10.5% in the entire Dili area during the period of 2016 to 2021 (Table 6).
Deforested areas are confirmed by 14.4% and 13.9% in Liquiçá and Baucau, respectively,
in the same period. Furthermore, deforested areas are confirmed by 14.4% and 20.6% in
the areas of Bobonaro and Aileu, respectively, during 2016 to 2021. Ermera has the highest
deforestation areas in the same period, of 23.4%.
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Table 6. The status of extent and deforestation areas by municipalities in Timor-Leste (Unit: ha; %).

Municipality Forest Area (ha)
(2016)

Forest Area (ha)
(2021)

Annual Deforestation
Rate (%)

Aileu 43,241.3 28,107.0 4.1
Ainaro 55,812.8 47,520.2 2.1
Baucau 94,332.2 73,513.2 2.8

Bobonaro 87,880.5 68,083.3 2.9
Covalima 89,811.7 82,603.3 1.2

Dili 17,950.0 14,112.1 2.1
Ermera 57,888.1 39,947.0 4.7
Lautém 144,587.2 135,015.8 1.1
Liquiçá 43,246.3 35,346.4 2.9

Manatuto 125,399.3 111,348.7 1.6
Manufahi 113,745.2 104,712.6 1.4
Oecussi 27,676.4 16,729.4 2.7

Viqueque 156,190.0 146,565.3 1.0

4. Discussion

In Timor-Leste, environmental sustainability is a significant concern owing to FDD [24].
Despite the country’s progress in terms of development and stability, there are challenges
associated with its agriculture-based economy, which includes coffee and rice produc-
tion [21–23]. For example, the limited infrastructure and agricultural practices have led to
land use changes and increased reliance on firewood as an energy source [22,23]. Conse-
quently, these factors have contributed to an estimated deforestation rate of approximately
1.4 to 1.7% per year [24]. Many countries facing FDD issues have implemented various
strategies for environmental sustainability. The accurate quantification of FDD is crucial for
developing effective conservation strategies; however, countries with FDD problems often
lack the necessary human and non-human resources for nationwide FDD assessments.

In this study, we propose the SHAD approach to support FDD evaluation in countries
with limited resources. We tested this approach in Timor-Leste by generating land cover
maps for 2016 and 2021 to assess the FDD. To ensure accuracy, we utilized a three-step
(model performance, land cover classification, and FDD verification) accuracy assessment
process. Our model demonstrated satisfactory performance (0.92 for training accuracy and
0.82 for validation accuracy) for classifying land cover time-series maps and estimating
FDD (Figures 6 and 7). In addition, the forest classification exhibited the highest producer’s
and user’s accuracy, similar to the accuracy of the open-source label data (Table 3). These
results highlight the potential of the SHAD approach for estimating forest change over time
and for the rapid assessment of FDD.

The forest area in Timor-Leste has steadily decreased from 2016 to 2021, with a reduc-
tion in the forest cover from 68.8 to 59.2% (Table 5). The deforestation rate based on the
change in forest cover during this period is estimated to be 1.9% annually. This result is
overestimated compared to previous reports from FAO and UDNP [24,48,49]. However,
these reports are based on literature reviews and historical trend analysis, which have
limitations in fully capturing the current status of FDD. The Global Forest Resource Assess-
ment also indicates a net annual change of −1.4% annually in the forest area every 10 years
from 1990 to 2020 due to a lack of surveying data and national reporting [24]. The accurate
quantification of the deforestation rate remains a challenge.

At a global level, reducing FDD is crucial for climate change adaptation and socio-
environmental conservation [5,11,24]. Under the Paris Agreement, countries have com-
mitted to nationally determined contributions (NDCs) to reduce carbon emissions and
enhance social and environmental sustainability [58]. Achieving these NDCs often involves
cooperation between countries facing FDD issues and the production of internationally
transferred mitigation outcomes (ITMOs). However, countries facing FDD problems, pri-
marily developing countries, often lack information about their forest status and field
survey data [24]. The SHAD approach offers a simplified and accessibility method for the
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rapid assessment of deforestation, providing a general estimate for countries with limited
resources. Additionally, it can guide the development of land cover classification models
and FDD evaluations in target countries and support the establishment of management
strategies for their environmental sustainability.

5. Conclusions

This study proposes the rapid assessment of deforestation using the SHAD approach,
which utilizes open-source software and data. Our approach was used to successfully
develop a time-series land cover classification model and assess FDD in Timor-Leste. The
results exhibited promising performance, with prominent accuracy in classifying forest
areas. The estimated deforestation rate in Timor-Leste was 1.9% annually, with a primary
concentration in the northwestern municipalities with high population density and human
activities. The results of this study demonstrated the potential of the SHAD approach
as a simplified and accessible method for evaluating FDD, particularly in countries with
limited resources. This approach offers the rapid assessment of FDD using deep learning
techniques and can inform the development of management strategies for ecosystem
sustainability, climate adaptation, and the conservation of economic benefits in local (or
nationwide) communities.
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