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Abstract: It is crucial to evaluate the expansion of urban entities to implement sustainable urban
planning strategies in China. Thus, this study attempted to extract and evaluate the growth of
urban entities 270 prefecture cities in mainland China (2000–2020) using a novel approach based on
consistent night light images. After the urban entities were extracted, a rationality assessment was
carried out to compare the derived urban entities with the LandScan population product, Landsat, and
road network results. Additionally, the results were compared with other physical extent products,
such as the Moderate Resolution Imaging Spectrometer (MODIS) and urban built-up area products
(HE) products. According to the findings, the urban entities were basically consistent with the
LandScan, road network, and HE and MODIS products. However, the urban entities more accurately
reflected the concentration of human activities than did the impervious extents of the MODIS and HE
products. At the prefecture levels, the area of urban entities increased from 8082 km2 to 74,417 km2

between 2000 and 2020, showing an average growth rate of 10.8% over those twenty years. As a
reliable supplementary resource and guide for urban mapping, this research will inform new research
on the K-means algorithm and on variations in NTL data brightness threshold dynamics at regional
and global scales.

Keywords: impervious extents; nighttime light data; prefecture cities; SNPP-VIIRS-like data; urban
entities

1. Introduction

In recent years, urbanization has expanded and become a significant spatial phe-
nomenon on a global scale. In 1950, 25% of the world’s population lived in cities [1], and
currently, urban areas are home to 50% of the world’s population [2]. Especially in less
developed countries, the urban population will increase to 56.4% by 2030 [3]. Urbanization
and its evolution have been studied at a range of spatiotemporal scales, with remote sensing
techniques as the primary sources of consistent and continuous data [4–6]. Urban expansion
needs to be continuously monitored due to worsening overcrowding conditions, housing
shortages, inadequate infrastructure, and growing ecological issues [2]. Multi-temporal
and multi-spectral data are especially well suited for projecting urban expansion.

Major cities in China have been rapidly urbanizing during the last two decades. Thus,
sustainable urban development requires the maintenance of a balance between human
activities, the environment, the population, and urbanization [7]. Major changes brought
about by urbanization in China include population shifts and an economic transition from
the countryside to urban areas. In 2010, the population census in China showed that
approximately 50% of the country’s population was categorized as urban. The turning
point came after 2011 when, for the first time in its history, the majority of the country’s
settlements were classified as urban. Now, the second stage of China’s urbanization, the
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stage of steady expansion, has been reached, according to the theory of urbanization
development [8].

An urban entity is a predefined area based on a particular demographic and/or socioe-
conomic characteristic such as the population or the percentage of urban dwellers employed
in secondary and tertiary sectors. An urban area is a continuously built-up and densely
settled area. Urban impermeability refers to the high coverage of built-up/impermeable
surfaces. Urban areas are frequently thought of as impervious areas that are covered by
roads, buildings, and other constructed structures [4,9]. Typically, the qualities of man-
made structures are used to demarcate urban entities [10]. However, it is ineffective to use
those structures alone in evaluating how human activities are concentrated together [11].
Additionally, it is essential to illustrate the other socioeconomic functions of urban dwellers
using various urban structures [12]. Applying economic-based variables to characterize
urban entities will increase the accuracy of their definition. Thus, several researchers [13,14]
have advocated using an integrated definition for urban entities including socioeconomic
factors and physical structures. The two most popular datasets utilized for the identification
of urban entities are the LandScan, and WorldPop datasets [15]. Currently, Landsat, Sen-
tinel, and Moderate Resolution Imaging Spectrometer (MODIS) data are typically used to
produce urban entity maps. However, prevailing urban laws, suggest that urban expansion
is a complicated process and that urban entities should not be primarily identified based on
their impervious surfaces [16]. Although daylight satellite imagery could be used to track
land use changes, their spectrally varied nature makes them difficult to use in studying
urbanization dynamics [17,18]. However, the nighttime light (NTL) images of the De-
fense Meteorological Satellite Program’s Operational Line-scan System (DMSP/OLS) and
the Suomi National Polar Partnership Visible Infrared Imaging Radiometer Suite (SNPP-
VIIRS) onboard instrument offer a unique proxy for measuring urban growth and other
dynamics [17–20]. The SNPP-VIIRS has a significantly enhanced spatial resolution and
calibration [21]. There are two advantages to using NTL images to detect urban entities: the
capability to map urban areas on large spatial-temporal scales, and the ability to precisely
pinpoint where human activities are concentrated with a low spatial resolution [22].

Given that China is a rapidly urbanizing country, numerous studies have been con-
ducted to extract urban entities from NTL data in that country. A few researchers have
tried to introduce correcting techniques for multisatellite, stable NTL data to identify urban
expansion in China, and other researchers [21,22] have quantified the dynamics of urban
entities. However, most researchers have used new methods and new-generation NTL
data for urban entity extraction and compared their findings with DMSP-OLS data and
other high spatial resolution orbital data products from international space stations (ISSs)
and Luojia 1-01 satellite data [7,17,23,24]. Urban extraction using DMSP/OLS data and
NTL intensity were also key areas of focus in previous research [25,26]. Other researchers
have also used neighborhood statistics, the normalized difference vegetation index (NDVI),
and local-optimized threshold analysis using nighttime stable light data and VIIRS data to
trace urban growth in China [27–30]. A few researchers have explored the characteristics
and trends of urban development in urban agglomerations using DMSP/OLS data [31].
Predicting and quantifying urban growth in coastal cities using DMSP-OLS was another
focus of previous research [32–35]. A few researchers have used the K-means algorithm [35]
in more recent studies to pinpoint suburbanization patterns using SNPP-VIIRS data com-
paring the findings with LandScan population, road network, and impervious extent data
products [36–38]. Although DMSP-OLS and SNPP-VIIRS are valuable resources for urban
growth monitoring, those sources do not consider prefecture-level cities in China. Addi-
tionally, urban mapping in China uses NTL solely on short temporal scales based on DMSP
and SNPP-VIIRS data, except for in a few studies [39–41].

Thus, our study aimed to extract and evaluate urban entities in prefecture cities during
2000–2020 from an urban entity perspective using SNPP-VIIRS data from the Harvard
Dataverse while comparing the extracted urban entities with data from the Moderate
Resolution Imaging Spectrometer (MODIS) and the urban area products (HE) data proposed
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by He et al. (2019) [39] This research was organized into five sections as listed below.
Section 1 explains the research background and literature search, and Section 2 describes
the study area, materials, and methods. The results and findings are thoroughly explained
in Section 3, where a comparison is made between NTL data and other data products such
as LandScan and HE. In the discussion section, the similarities and differences in the key
findings are compared with those of similar studies. Section 5 provides the conclusion and
emphasizes the study limitations and future research directions.

2. Materials and Methods
2.1. Study Area

There are 336 prefecture-level divisions (Figure 1) in China, including 7 prefectures,
299 prefecture-level cities (including four major municipalities), and 30 autonomous prefec-
tures [42,43]. However, only 270 prefecture cities (Figure 1c) were selected based on the
availability of urban entity records derived from the NTL data and urban GDP statistics
for 2000 (the base year) [44]. Thus, the prefectures in the western and northeastern areas
were omitted from the survey. For analysis purposes, the selected prefecture cities were
categorized into seven groups based on their coverage: north, northeast, northwest, east,
central, south, and southwest.
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2.2. Materials

Newly generated SNPP-VIIRS-like data from 2000 to 2020 were primarily used as
the major data source to extract urban entities in the prefecture cities; these open-source
data are available from the Harvard Dataverse [45]. This dataset was derived by using the
SNPP-VIIRS and DMSP-OLS data that could provide temporally consistent and extended
data compared with the previous versions of DMSP-OLS or DMSP-OLS-like data [38].
These data are also corrected for saturation and overflow effects. The ground footprints of
the two data products, DMSP-OLS (5 km× 5 km) and SNPP (742 m× 742 m), differed even
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though the DMSP and SNPP have similar orbits (850 km) and swaths (3000 km). However,
a review of the VIIRS DNB data showed that even at midnight, there was still a lot of
brightness present. Additionally, while cloud and high-albedo terrain features could not be
detected in the OLS data, weaker lighting could be detected using VIIRS [46]. However,
newer VIIRS-DNB satellite data also had the issue of scattered light. Those data contained
the glow near cities, which is a direct effect of real light. Sanchez de Miguel et al. (2020)
demonstrated how scattered light can be attributed to an incorrect location [47].

The rationality assessment of the extracted urban entities was performed using the
LandScan population data available from the Oak Ridge National Laboratory, which were
developed using multisource data. The justification for using those data for the study was
that LandScan provides a more accurate assessment of daytime and nighttime populations
as well as the population distribution on different impervious surfaces [48]. LandScan has
also been extensively used for urban area verification at various spatial scales [36,38].

To compare the urban entities with artificial impervious extents, the MODIS Land
Cover Type version 6 (MODIS) data products were used as a primary reference. Since
MODIS is a frequently used dataset for urban mapping that was developed from supervised
classifications and postprocessing [49], the data were used as one of the references for
verifying the urban areas that had been produced from the SNPP-VIIRS-like data [38].

As a second reference, the urban built-up area (HE) data products proposed by He
et al. [39] were used. These data have a 90.9% overall accuracy and a 0.47% kappa value (this
is an accuracy indicator with values ranging from 0–1 that measures how the classification
results compare to values assigned by chance). These data are freely available from the
National Tibetan Plateau Data Center, and the datasets have been developed through a fully
convolutional network by using multisource remote sensing data and effectively represent
built-up areas with their long time series.

Additional remote sensing data from Landsat and Globeland were downloaded from
the USGS earth explorer and Globeland data servers. The open street map (OSM) platform
was used to extract the road networks. Spatial data on national, provincial, and prefecture
administrative boundaries were obtained from the National Geomatics Center of China.
Details on the spatial data sources of the study are presented in Table 1. The China City
Statistical Yearbook was used to collect statistical data on urban GDP values in prefecture
cities for several years (2000, 2005, 2010, 2015, and 2020) [44].

Table 1. Spatial data sources of the study.

Data Year Format Resolution/Scale Source

SNPP-VIIRS-like 2000–2020 Raster 742 × 742 m
ground footprint

https://dataverse.harvard.edu/dataset.xhtml
(accessed on 12 February 2022)

LandScan 2015 Raster 1000 m
https://www.un-spider.org/links-and-
resources/data-sources/landscan (accessed on 24
March 2023)

HE 2015 Raster 1000 m
http://data.tpdc.ac.cn/zh-hans/data/3100de5c-
ac8d-4091-9bbf-6a02de100c88/ (accessed on 28
March 2023)

MODIS 2015 Raster 500 m
https://ladsweb.modaps.eosdis.nasa.gov/
search/order/1/MCD12Q1{-}{-}6 (accessed on 3
April 2023)

GlobeLand30 2020 Raster 30 m http://www.globallandcover.com/defaults_en.
html?(accessed on 6 April 2023)

OSM 2015 Vector 1:5000 https://www.openstreetmap.org (accessed on 12
April 2023)

LandSat8 2015 Raster 30 m https://earthexplorer.usgs.gov/(accessed on 28
April 2023)

Prefecture
boundaries 2019 Vector 1:50,000,000 http://ngcc.sbsm.gov.cn/article/en/(accessed

on 3 May 2023)

https://dataverse.harvard.edu/dataset.xhtml
https://www.un-spider.org/links-and-resources/data-sources/landscan
https://www.un-spider.org/links-and-resources/data-sources/landscan
http://data.tpdc.ac.cn/zh-hans/data/3100de5c-ac8d-4091-9bbf-6a02de100c88/
http://data.tpdc.ac.cn/zh-hans/data/3100de5c-ac8d-4091-9bbf-6a02de100c88/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD12Q1{-}{-}6
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD12Q1{-}{-}6
http://www.globallandcover.com/defaults_en.html?
http://www.globallandcover.com/defaults_en.html?
https://www.openstreetmap.org
https://earthexplorer.usgs.gov/
http://ngcc.sbsm.gov.cn/article/en/
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2.3. Methods

The study was conducted using the various methods depicted in Figure 2. To extract
urban entities between 2000 and 2020, K-means unsupervised classification was used after
downloading the SNPP-VIIRS-like data. Second, image post-processing was performed
to increase the accuracy of the retrieved urban entity products. After the accuracy assess-
ments were conducted by verifying the level of overall accuracy (OA), a kappa coefficient
rationality assessment was conducted to compare urban entities with other urban prod-
ucts and socioeconomic data. Further details on the K-means classification and image
post-processing methods are described below.
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2.3.1. Extracting Urban Entities Using the K-means Classification

There are various techniques for clustering spatial data, including threshold, mutation
detection, ordering points to identify the clustering structure (OPTICS), Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)), and K-means. OPTICS permits
a fluctuating cluster density, while DBSCAN assumes a constant cluster density. DBSCAN
cannot cluster datasets with significant differences in densities, although it handles clusters
of various sizes and structures and is not strongly influenced by outliers. Additionally, it is
sensitive to the parameter selection. OPTICS is sensitive to parameters and also fails if there
are no density declines between clusters. The mutation detection method also has several
requirements to extract different urban areas and boundaries [49]. Due to the different
brightness values for various urban structures, the threshold method effectively extracts
the boundaries of urban entities. However, K-means clustering is one of the most widely
used clustering approaches when working with large datasets due to its simplicity, ease
of implementation, and computationally efficient and quick procedure compared to those
of other algorithms. Further, K-means can be applied to high-dimensional, sparse data.
Compared to other methods, the extracted results using the K-means algorithm have less
uncertainty. The K-means method has also been used by several researchers in previous
studies [38,50,51].
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The algorithm divided the datasets into two parts (n = 2) because we considered
only two classes (urban and non-urban areas) within the NTL value ranges. Thus, the
number of items was divided into k clusters based on the distance from the urban centers
to the rural peripheries. The method was developed to extract urban and non-urban pixels
automatically with reasonable accuracy. The calculation formulas are as follows [38].

µ
j+1
i =

1
|Ci|∑x∈Ci

x (1)

Ei = ∑k
i=1 ∑x∈Ci

∣∣∣xit − µ
j+1
i

∣∣∣2 (2)

where E is the minimum square error of Cluster C = {Cl, C2, C3, . . . Ck} for the Sample x
cluster from the SNPP-VIIRS-like data. The smaller the E value is, the higher the similarity
of the samples in the cluster is. −µ

j+1
i is the center of cluster Ci in the j + 1 iteration. The

sum of the error square criterion function is applied in the research for the clustering criteria
function [38].

JC = ∑k
i=1 ∑P∈Ci

‖P−Mi‖2 (3)

where P represents all pixels in cluster Ci, and Mi is the arithmetic mean of all pixels in
cluster Ci. JC is a mapping between data objects and cluster centers. Since JC can reflect the
error of clustering results of classification, it is essential to identify the clustering results
that can reduce the JC. The feature types of each pixel in an image were identified using
cluster analysis. After the K-means clustering iteration, built-up and non-built-up areas
were separated from the SNPP-VIIRS-like data based on color variations.

2.3.2. Post-Processing

We made an effort to maintain the logical consistency of the spatiotemporal dynamics
of urban entities extracted from long-term SNPP-VIIRS-like data using the K-means algo-
rithm during image post-processing. The post-processing procedure followed three main
steps. The first step was to perform iterative temporal filtering for urban entities that were
founded on the theory put forth by He et al. [44] that an urban region that emerges one
year will remain in the next year. Isolated noise pixels in the urban entities of consecutive
years were decreased by changing labels with a poor temporal consistency probability [38].
Although misclassification noise could be reduced using temporal filtering, the resulting
sequence which alternates between urban and nonurban segments might be illogical. Thus,
as the second step, logical reasoning was conducted to check the conversion between urban
and non-urban areas [52]. This was supported by the idea that the amount of human
activity aggregation does not vanish suddenly unless irreversible events such as war and
natural disasters occur [52]. Independent urban entities with an extent of less than 2 km2

were eliminated in the last step. The justification for deleting the urban entities that were
less than 2 km2 was because their small sizes did not satisfy the requirements of urban
area [15,44]. With the addition of spatial temporal data, the particular size threshold can be
a locally determined refining process that could vary in other areas [53]. Through these
steps, we tried to obtain more precise and reliable urban entity results over the past 20-year
period with high spatial and temporal consistency.

3. Results
3.1. Evaluating the Expansion of Urban Entities from 2000 to 2020

According to the results, the total urban entities in China’s prefectures increased
from 8082 km2 to 74,417 km2, showing a 10.8% growth rate over the 20 years. However,
urban entity (UE) expansion rates and patterns showed noticeable variations over seven
regions that were undergoing different socioeconomic and urban development phases
(Figure 3). As seen in the figure, the urban area sizes of the three urban products varied
and were inconsistent with one another, exhibiting different numbers and patterns. The
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urban area size of the MODIS dataset was the highest, followed by the products of the
HE and urban entities datasets. The area difference maintained a comparatively stable
trend with HE and UE. The highest UE growth was observed in eastern and southern
prefectures at 27,640 km2 and 9340 km2, respectively. The lowest growth could be observed
in northeastern (2897 km2) and northwestern (5207 km2) prefectures. In eastern prefectures,
Shanghai reported the highest growth from 660 km2 in 2000 to 2852 km2 in 2020 (Figure
S1y). Guangzhou is a rapidly growing prefecture in the south (Figure S1v). According to
the results, it expanded from 375 km2 to 1635 km2 during the period 2000–2020. In northern
prefectures, rapid urban entity expansion was observed in Beijing, as it grew from 783 km2

to 2150 km2 during the examined period (Figure S1q). From a temporal perspective, some
of the capitals such as Chongqing and Chengdu (Figure S1m,n) showed a rapid upwards
expansion starting in 2015. In contrast, small provincial capitals such as Xining, Lhasa,
Haikou, and Hohhot (Figure S1h,l,x,u) exhibited slow urban entity expansion during the
entire time period.
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3.2. Comparing Results with the LandScan Population and Road Network Products

The majority of research findings relating to urban area identification differ in terms
of urban definitions [53,54]. Thus, quantitative and visual evaluations were carried out to
validate the results derived from the SNPP-VIIRS data. Because urban entities reflect the
concentration of human activities in cities, the findings were contrasted with the LandScan
population and road network products. The extracted results of urban entities with existing
built-up areas were compared to find parallels and discrepancies. This essentially helps
the reader comprehend how various urban definitions of the urban entity in China were
depicted. By using all these approaches, we tried to verify the rationality of the extracted
urban entity results of the prefecture cities.

A rationality assessment was conducted using the 2015 LandScan data product of
Shanghai, Beijing, Shenzhen, and Guangzhou, which were used as case studies. It was
presumed that by that year, the majority of prefecture cities were notably more developed
than they were in 2000. Although certain variations were noted, spatial consistency was
revealed between extracted urban entities with areas having a population density of at
least >500 person/km2 from the LandScan population product within these cities. Urban
entities effectively reflect the human activity concentration in urban areas. Additionally,
as shown in (Figure S2i,k), the built-up areas in the Landsat product basically overlay
the urban entities and LandScan population density. Even though the population density
was less than 500 person/km2 and there were non-built-up areas in the Landsat images,
those areas were classified as urban entities in Beijing (Figure S2b,f,j). In Guangzhou,
some detected areas of urban entities with population density >1500 person/km2 were
non-built-up areas in Landsat (Figure S2h,l). Even though there were no built up areas in
some places, they were nonetheless regarded as urban entities based on their population
size, density, and concentration of human activity. These results showed that both urban
entities and population density were consistent with human activities as a whole.

The concentration of human activities is associated with the travel patterns of the
community. For the rationality assessment, a visual comparison between the OSM road
network and the urban entities was made using six capital cities. In this context, the road
network of the six provincial capitals was overlaid with the boundaries of the extracted
urban entities. It was revealed that road networks were spatially consistent with the
extracted urban entities. This result showed that with increasing road network density, the
NTL intensity also increased (Figure 4a–c,g–i).

Motorways and primary roads are the interaction pathways among urban entities,
while secondary and living streets (the streets running through residential areas) are the
main interaction pathways within the urban entities. At the fringe as well as within urban
entities, there is a good spatial consistency among the entity boundaries and secondary
roads, especially in Chongqing, Shanghai, Beijing, and Hohhot (Figure 4d–f,j). However, as
small provincial capitals with smaller population sizes and fewer human activities, it was
difficult to identify similar spatial consistencies among urban boundaries and secondary
and other roads in Haikou and Lhasa (Figure 4k,l). However, on the whole, spatial consis-
tency was prevalent, since the SNPP-VIIRS-like data can reflect the development of road
networks in cities as commuting pathways.
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3.3. Comparison of Results with the HE and MODIS Products

As remote sensing products, MODIS and HE are commonly used global urban prod-
ucts for urban area evaluation and analysis, especially for post-evaluations. Extracted
urban entities (UE) were overlaid with two global urban products that reflected impervious
surfaces (MODIS) or urban built-up areas (HE) to verify the rationality of the extracted
results from the NTL data. As shown in Figure 5, the extracted outputs from urban entities
were basically consistent with the total areas of the HE and MODIS in prefecture cities.

The R2 value was not below 0.5145. Furthermore, it was found that root-mean-square
errors (RMSE) did not exceed 657. However, most prefecture cities were positioned at the
bottom right, showing that the total urban entities were generally lower than those in the
HE and MODIS. Furthermore, to verify the results, total urban areas from UE, HE, and
MODIS were calculated at regional and national levels (Figure S3).

Overall, it was observed that the total areas of urban entities were normally lower than
the total areas detected via MODIS and HE as urban areas. However, a relatively unstable
trend of urban areas was observed for all three products, UE, HE, and MODIS, within the
concerned time period. MODIS and HE appeared to be more consistent over the study
period compared to the UE. However, the UE seems to be changing faster than either the
MODIS or HE, especially after 2010. This inconsistency could occur as a result of excluding
some impervious or built-up areas within large patches and the urban periphery from
SNPP-VIIRS-like data, as urban entities were detected not only in built-up areas but also
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in the concentration of human activities. The situation is also consistent with the findings
of Zhao et al. [40], who indicated that urban entities are approximately 20–45% different
due to the impervious surfaces. Urban entities demonstrated relative agreement with the
LandScan population product with a population density of at least >500/person/km2 in
the selected prefecture cities of Shanghai, Guangzhou, Shenzhen, and Chengdu (Figure 6).
However, there are also some spatial differences that are shown as blue circles in the
figure. In the city of Tianjin, some areas with a population density <500 person/km2

were detected as urban areas in three urban products: HE, MODIS, and UE (Figure 6d–f).
However, HE and MODIS urban entities had a good spatial consistency with LandScan
population density.
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As evident in Guangzhou, HE did not identify some urban patches with population
densities > 500 person/km2 or even >1500 person/km2 as urban areas. However, SNPP-
VIIRS-like data also extracted those small patches as urban entities (Figure 6g,i)). HE and
MODIS also identified non-populated extents in urban areas as in the case of Chengdu
(Figure 6m–o). However, in urban entities, those unpopulated areas were excluded from
urban areas. The comparison proved that the impervious surfaces are normally greater than
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the urban entities due to the differences in urban object attributes that could be identified
by the SNPP-VIIRS-like data. The urban entities had higher spatial consistency than did
the HE and MODIS results, according to the comparisons. The overall accuracy (OA) and
Kappa of the urban entities were 74.29–99.34% and 0.22–0.75, respectively. The OA and
kappa of HE were 76.05–97.88% and 0.22–0.59, respectively. For MODIS, the OA and kappa
were 78.69–97.85% and 0.21–0.65, respectively. According to the comparison with other
urban references of the LandScan population products, urban entities could be considered
a more effective product for delineating urban extents when considering the socioeconomic
background of urban areas.

4. Discussion
4.1. Efficiency of SNPP-VIIRS-like Data for Urban Mapping

As complex and dynamic landscapes, urban areas consist of different spatial features
and characteristics. Thus, clear-cut urban boundaries are very difficult to see in reality.
When only physical features or human activity surfaces are used, it is very difficult to
demarcate urban areas. Therefore, an efficient method is one that integrates both aspects.
Spatial variations could be observed after comparing the NTL data, Globeland 30 product,
and LandSat8 images for 2020 in five provincial capitals. Shi et al. [38] also used the same
data products to assess the applicability of NTL data for urban mapping.

We attempted to differentiate the color variations in the same area derived from
these three products from different satellites. In the Globeland and Landsat8 images, the
concrete structures and impermeable surfaces are displayed in red or purple (Figure S4a–j)
in urban and nonurban areas. However, in the NTL images, the same land cover type
is displayed in different NTL intensities (Figure S4k–o). This variation occurred in the
different perceptions of urban entities. Ma et al. and Zhou et al. [26,55] emphasized that
human perceptions should also be considered when identifying urban areas along with
other physical impervious constructions such as road networks and buildings. Shi et al. [38]
further indicated that other sensing data should also be integrated for accurate urban entity
extraction. The lack of long-time series data also affects urban entity extraction. However,
NTL data could be used to capture and identify both the geographical extent of human
activities and the differences in impervious surfaces [41,51]. Thus, characteristics of urban
surfaces such as size, shape, and activities can be effectively detected by using SNPP-VIIRS-
like data compared to DMSP-OLS data. Thus, it is better to combine two sources to produce
more accurate and reliable long-time series data products.

However, in practice, there is a limitation in the uncertainty of NTL data when using
them for mapping and extracting urban areas. Even though the intensity of urban lights is
reflected in nighttime light images, the distribution of characteristics of urban entities is
not always adequately represented for a variety of reasons. To improve the results in future
studies, it may therefore be more efficient and beneficial to combine NTL images with
high-resolution remote sensing data. Most of the previous studies were mainly focused
on physical surface extraction rather than human activity surfaces and socioeconomic
information [24,56,57]. However, in a few previous studies, the capability of NTL data to
capture human activity was highlighted. However, those studies also used the built-up
area as a boundary demarcation parameter [46,55]. Similar findings were observed by Shi
et al. [38] in their global urban entity extraction research performed using SNPP-VIIRS-like
data. Additionally, it is crucial to take into account that the switch from Blue LED to White
LED lighting technology has had a significant impact on urban areas and streets over the
past ten years when conducting NTL-based research in the future [58].

4.2. Relationship between Urban Growth and Urban Economic Development

Urban GDP data were utilized to examine the consistency between urban expansion
and economic growth because it is one of the main urban socioeconomic indicators. Al-
though the best estimate of urban economic growth in prefecture cities is the combined
district GDP, the city-level GDP data were used for regression analysis. Previous researchers
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have also sought to determine how well NTL data could evaluate urban expansion and
urban economic development. The correlation between the urban entity and urban GDP
was evaluated by Shi et al. [38]. The study compared the relationship between UE, HE,
and MODIS extent with urban GDP data for 270 cities during the period 2000–2020. All
regressions had significant correlation coefficient (R2) values of total urban areas and
urban GDP.

During the examined period, the R2 values for UE and GDP ranged from 0.6189
to 0.7543 (Figure S5a–e). The correlation coefficient between HE and GDP ranged from
0.5553 to 0.8532 (Figure S5f–j). The R2 values for MODIS and GDP ranged from 0.4467
to 0.5840 (Figure S5k–o). Thus, a comparatively high relationship could be identified
between the urban entity and urban GDP compared to MODIS. Although the R2 value
of HE and GDP was slightly higher than that of UE, these results could present a similar
relationship between urban growth and socioeconomic growth, especially in terms of urban
GDP. Shi et al. [38] observed that there was a higher correlation between urban entities and
GDP than HE and MODIS when they measured the correlation between the urban area
and urban GDP growth.

4.3. Applicability of K-Means Classification for Urban Mapping

The main difference between the previous studies and our study was the urban entity
definition approach. In most previous studies, NTL data were transformed into impervious
surfaces/built-up areas using the threshold method and mutation detection [47,59,60].
Threshold methods have omitted some highly populated areas as urban patches in most
prefecture cities. Mutation detection is also a common method that detects urban areas
with supporting data. Considerable misidentifications of urban areas could be observed in
most cities from HE and MODIS products. However, the urban entities extracted using
K-means classification in this study could be considered impervious surfaces that take into
consideration the optimal thresholds of socioeconomic activities since the SNPP-VIIRS-like
data can reflect the actual distribution of human activities [61,62].

The advantage of the K-means is that it extracts urban areas in a rapid and efficient
manner using the NTL intensity with additional remote sensing data. Shi et al. [38,63]
also proved that considering pixel characteristics K-means classification could be used
for comparative analysis in any spatiotemporal dimension. However, utilizing K-means
classification for urban mapping has a number of limitations. It is difficult to choose the
initial cluster centers and determine how many clusters there should be. Furthermore,
too many or too few clusters may yield unreliable results. Since the K-means algorithm
assumes that clusters have a spherical shape, it is impossible to handle non-spherical shapes.
However, in reality, urban entities may have complex non-spherical shapes. Additionally,
outlier effects may lead to inaccurate classification results since outliers can alter how the
algorithm divides clusters. Therefore, it would be more efficient to use more sophisticated
algorithms and additional data sources for more accurate results in future studies.

5. Conclusions

This study tested the effectiveness of SNPP-VIIRS-like data for the extraction of urban
entities from 270 prefecture cities in China during the period 2000–2020. The rationality
assessment proved that extracted urban entities were spatially consistent with the LandScan
population product and road networks. This further confirmed the notion of urban entities
and reflects the spatial distribution of human activity surfaces. The study compared the
extracted urban entities with conventional impervious surface and built-up area data such
as those of the MODIS and HE products to delineate their similarities and differences. It also
confirmed that urban entities are basically consistent with these data products. Regression
results also derived a positive relationship between urban entities and socioeconomic
development variables such as urban GDP. Urban areas in China increased from 8082 km2

to 74,417 km2 indicating a 10.8% growth rate during the past 20 years. Most provincial
capitals including Shanghai, Beijing, and Chongqing showed considerable growth except
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for a few small provincial capitals such as Lhasa and Haikou. Since NTL data brightness
thresholds have greater variations in the global context, new clustering methods superior to
the K-means should be applied to derive more realistic results integrating high-resolution
remote sensing data in future urban mapping research, integrating high-resolution remote
sensing data in future urban mapping research. In that way, urban areas would be evaluated
more accurately and effectively since brightness variations could reflect the different human
activity zones in urban areas.
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parison results of urban areas for UE, HE, MODIS on provincial, and, national levels, 2000–2020;
Figure S4: Visual differences of urban entities of five capitals in Globeland, Landsat8, and SNPP-
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