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Abstract: Tracked robots equipped with flippers and LiDAR sensors have been widely used in urban
search and rescue. Achieving autonomous flipper control is important in enhancing the intelligent
operation of tracked robots within complex urban rescuing environments. While existing methods
mainly rely on the heavy work of manual modeling, this paper proposes a novel Deep Reinforcement
Learning (DRL) approach named ICM-D3QN for autonomous flipper control in complex urban
rescuing terrains. Specifically, ICM-D3QN comprises three modules: a feature extraction and fusion
module for extracting and integrating robot and environment state features, a curiosity module for
enhancing the efficiency of flipper action exploration, and a deep Q-Learning control module for
learning robot-control policy. In addition, a specific reward function is designed, considering both
safety and passing smoothness. Furthermore, simulation environments are constructed using the
Pymunk and Gazebo physics engine for training and testing. The learned policy is then directly
transferred to our self-designed tracked robot in a real-world environment for quantitative analysis.
The consistently high performance of the proposed approach validates its superiority over hand-
crafted control models and state-of-the-art DRL strategies for crossing complex terrains.

Keywords: Deep Reinforcement Learning; rescue robot; intelligent systems; robot control

1. Introduction

In the process of solving the Urban Search and Rescue (USAR) problem of utilizing
ground mobile robots, growing attention has been paid to trajectory planning and naviga-
tion in complex environments, such as multilayered or rugged terrains [1]. However, one
of the main challenges still lies in designing effective strategies to control robots crossing
obstacles safely and effectively. Tracked robots equipped with four flippers exhibit excep-
tional terrain traversal capabilities, facilitating efficient navigation through uneven terrain
during USAR missions [2,3]. While adding multiple flippers enhances the traversability of
the tracked robots, it also introduces a high degree of control freedom. In complex terrain
environments, relying solely on manual control can impose a significant cognitive burden
and increase the time required for terrain traversal tasks, potentially impacting the rescue
success rate [4,5]. Consequently, achieving autonomous terrain traversal is paramount in
augmenting the intelligent operation of tracked robots in USAR tasks.

Since articulated tracked robots can adjust their morphology for safe and efficient
obstacle crossing through flipper movements, extensive research has focused on addressing
the issue of autonomous flipper control. Early studies [6–8] primarily centered on analyzing
the robot kinematics with specific terrain structures, incorporating additional constraints
and simplifications that limit the extensibility of the traversal model. In contrast, recent
research based on Deep Reinforcement Learning (DRL) [9] has allowed researchers to
adopt a more practical approach to devise strategies for traversing obstacles, leveraging
the fitting capabilities of Deep Learning (DL) methods and the optimization capabilities
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of Reinforcement Learning (RL) to solve problems more efficiently. However, the optimal
flipper actions that satisfy the constraints are sparse in large action spaces. Inefficient action
exploration efficiency reduces DRL algorithms’ training efficiency and control, and the
recently proposed Intrinsic Curiosity Module (ICM) [10] helps enhance the algorithmic
action exploration efficiency.

In this article, we aim to investigate DRL for the autonomous control of flippers during
obstacle traversal by tracked robots to enhance efficiency and reduce the operational burden
on human operators, as shown in Figure 1. The key contribution of this work lies in devel-
oping a DRL-based autonomous flipper control algorithm. To be more specific, we design a
novel DRL network architecture named ICM-D3QN, consisting of three main modules. The
first module fuses the states of the robot and the environment and extracts compact features.
Meanwhile, the second module enhances the algorithm’s action exploration efficiency by
directing unexplored flipper actions through an ICM. We finally apply the Double Dueling
Deep Q-Learing Network (D3QN) [11] to provide the proper flipper controls, prioritizing
the satisfaction of prior knowledge and smoothness constraints. To enhance the algorithm’s
generalization capability, we adopt Domain Randomization (DR) [12–15] techniques, and
the traversal strategy is learned in multiple simulated terrain environments with varying
types, sizes, and noise levels. After integrating our algorithm, our flipper-based tracked
robots acquire the capability to navigate various types of terrain and overcome obstacles
effectively. The experimental results show that the proposed approach outperforms manual
modeling [16] and Mitriakov’s up-and-down staircase strategy [17], exhibiting improved
traversal capacity across different environments.

Figure 1. Our NuBot-Rescue tracked robot runs in urban search and rescue environments. It has
four flippers and LiDAR and IMU sensors, showcasing remarkable capabilities in traversing various
terrains: The yellow path in (a) is the direction in which the robot is traveling; the red dotted line
refers to the locally enlarged view of the robot crossing obstacles, as shown in (b); and the blue cube
in (c) is the range of local terrain information.
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To sum up, the main contributions of this article are threefold:

• A novel D3QN-based flipper autonomy control algorithm is proposed, which au-
tonomously regulates the movement of flippers for obstacle-crossing tasks using local
terrain information and ontology state.

• An ICM module has been introduced to enhance the efficiency of action exploration during
the D3QN training process. Ablation experiments demonstrate the algorithm’s conver-
gence capability and obstacle-crossing performance have been significantly optimized.

• The DR technique is employed to train the flipper control strategy in the Pymunk
simulation encompassing a diverse range of terrain variations and directly transfer it
to the more realistic Gazebo simulation and real-world USAR ruins for validation. The
results show that our proposed algorithm has a better generalization ability, achieving
better obstacle-crossing smoothness than the state-of-the-art methods.

2. Related Work

The autonomous control of articulated tracked robots has been studied for decades.
Early works [6–8,18] focused on developing terrain traversal models for the robot in specific
terrains, including geometric, kinematic, and even dynamic models. Li et al. [18] analyzed
the geometric correlation between centroid displacement and the traversal of steps and
stairs by a double-flipper tracked robot. There are also works [6–8] developing dynamic
models for the sequential locomotion of robots ascending and descending steps and stairs.
Such works devise motion strategies for the front and rear flippers based on aligning the
robot chassis with the terrain envelope during manual operation as closely as possible.
To ensure stability, inappropriate flipper configurations were identified by evaluating the
robot’s normalized energy stability margin. These models were analyzed to determine
the proper poses of the robot and used for designing the control strategies accordingly.
However, the analysis of these models was limited to simple and single terrains. When
constructing and tackling complex environments, existing works usually fail.

Machine learning technology has rapidly developed in recent years, and researchers
have turned their attention to robot control methods based on learning-based techniques.
Paolo et al. [19] initially employed a comprehensive end-to-end DRL approach to address
the challenge of autonomous flipper control. They utilized a Convolutional Neural Net-
work (CNN) to extract depth image features from the robot’s front and rear perspectives.
These features and the robot’s state information were incorporated into the Deep Deter-
ministic Policy Gradient (DDPG) algorithm framework for training purposes. However,
the high cost associated with image-based training could have helped to achieve satis-
factory outcomes. Works by Mitriakov et al. [20,21] optimized the mechanical arm’s and
chassis’s overall stability by incorporating it into the reward function. Their methods
solely focused on safety constraints, disregarding the potential for enhanced and expedited
obstacle traversal. However, their recent research marked the pioneering implementation
of DR techniques in training articulated tracked robots [17]. Their investigation primarily
revolved around 3D navigation within structured indoor environments, where DR was
embodied in mazes and staircases set with multiple parameters. Contrary to their research
focus, our proposal posits that applying DR techniques can bolster the robot’s autonomous
prowess in overcoming obstacles and augment its adaptability in intricate surroundings.
Instead, Zimmermann et al. [22] used real terrain traversal data as the expectation, and
the feature with the smallest residual in Robot Terrain Interaction (RTI) was extracted
by DL. The Q-learning method was then used to learn the strategy of switching among
five predefined flippers from the feature. Azayev et al. [23] used data from manual tele-
operation, and a state machine network based on Imitation Learning (IL) was proposed
to optimize the unreasonable flipper action switching in [22]. Their approach considers
the beneficial impact of manual operational expertise on algorithmic control. However, it
necessitates substantial data acquisition and learning costs. Furthermore, the algorithm’s
control effectiveness switches between predefined states and actions, thereby failing to
exploit flippers’ constructive capabilities during obstacle traversal.
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From the above research, DRL can better fit the nonlinear contact model between
the robot and the terrain by combining DL with RL. This allows for obtaining the ac-
tion strategy with multiple index constraints, which has great advantages in solving the
high-dimensional and complex problem of tracked robots crossing obstacles. Neverthe-
less, attributable to the exorbitant expenses associated with data acquisition and training,
achieving substantial advancements in current research poses a major challenge. Moreover,
numerous studies focusing solely on security constraints lose sight of the beneficial impact
of artificial experiential knowledge on algorithms, resulting in a sluggish and incongru-
ous obstacle-traversal effect. In addition, DRL relies heavily on the quantity and quality
of experience samples, which often leads to a decrease in the quality of samples due to
insufficient action exploration, thus affecting the training result. In the field of DRL, the
generalized mechanism of the curiosity module is to improve a robot’s learning efficiency
and performance by encouraging it to try out actions and explore new states during the
learning process.

Current research on the curiosity module includes information gain, goal-directed,
and unsupervised exploration. The first module was usually realized by a Bayesian ap-
proach [24], which selected the actions with the largest confidence, i.e., uncertainty, for
exploration by estimating the confidence of the state transferred after all the executed
actions of the robot. It was a supervised learning method, requiring labeled experience and
data for the quantitative evaluation of features. The second module generally sets the goal
of exploration [25,26], such as the number of times a certain state is explored, to encourage
the robot to explore toward the goal state with fewer explorations. This approach relied
on setting goals, which depended on good prior knowledge, resulting in a more limited
strategy. On the other hand, curiosity modules for unsupervised exploration encoded
the state space through a network such as a self-encoder, thereby encouraging the robot
to explore state features that were different from its current experience. This approach
belonged to the internally driven curiosity module [10], which could discover unexplored
information by driving the robot to explore new states through the error of self-encoded
state features without external incentive signals. Combining it with the reward incentive of
DRL methods could assist the robot in learning a better action strategy in the presence of
sufficient exploration.

Unlike existing DRL methods for flipper control, our proposal applies to real-time
smooth obstacle crossing in various urban complex environments. We construct various
terrain scenarios in the 2D Pymunk simulation with lower sample acquisition costs. Ad-
ditionally, we devise a reward function that considers prior knowledge and smoothness
metrics to guide the training process. By integrating ICM, we significantly enhance the
exploration efficiency of the extensive state-action space during training. Consequently, we
propose an ICM-D3QN flipper autonomy control algorithm tailored for discrete motion
space, enabling the robot to achieve improved convergence and traversal capabilities across
diverse terrains. We successfully implement this algorithm in both a 3D simulation environ-
ment and a real-world setting, subjecting it to rigorous testing on challenging and complex
urban scenes. The results demonstrate its ability to facilitate the articulated tracked robot’s
smooth and swift traversal of obstacles in real time.

3. Methodology
3.1. Problem Formulation

We employ our self-designed NuBot-Rescue robot as the experimental platform, as
shown in Figure 1. This platform offers advantageous central symmetry properties, and
its components, namely the tracks and flippers, can be controlled independently. In this
study, we assume that human operators or path-planning algorithms are responsible
for controlling the rotation of the robot tracks, while the developed autonomous flipper
algorithm governs the motion of the flippers.

In real-world scenarios involving traversing complex terrains, minimizing robot in-
stability, such as side-slipping, is important. To achieve this, human operators typically
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align the robot’s forward direction with the undulating terrain of obstacles [27], employing
similar measures for both the left and right flippers. Building upon this premise, we project
the terrain outline and robot shape onto the robot’s lateral side. An example of the robot’s
and terrain interaction is shown in Figure 2. Our approach suits environments with minor
left-to-right fluctuations and significant up-and-down fluctuations.

Figure 2. Terrain and robot model simplification in this paper. The blue arrow is the hypothetical
path human remote control chooses to reduce instability. The red dots represent the terrain points in
the local perception domain.

In this article, we use DRL to develop an autonomous control system for the flippers
of a tracked robot. Specifically, we formulate the problem as a Markov Decision Processes
(MDP) model that leverages the robot’s current pose and surrounding terrain data as
the state space (see Section 3.2) and the front and rear flipper angles as the action space
(see Section 3.3). A reward function is established to meet the task’s particular requirements
(see Section 3.4), and subsequently, the ICM algorithm (see Section 3.5) and a novel DRL
network are introduced into the MDP model (see Section 3.6).

3.2. State Space

Local Terrain Information H: The reference coordinate system for local terrain infor-
mation H is denoted as [L]. In this coordinate, the center of the robot chassis serves as the
origin, with the X-axis representing the robot’s forward direction and the Z-axis indicating
the opposite direction of gravity. To effectively express the Robot Terrain Interaction (RTI),
we divide the point set T consisting of terrain point clouds l(xT , zT) in front of, behind,
and below the robot into N equally spaced subpoint sets Ti, and obtain N average heights
hi as local terrain information representation by downsampling (as shown by the red dots
in the Figure 3):

H = {hi} = { mean
l(xT ,zT)∈Ti

(zT)},

T = {Ti}, i = 1 · · ·N,

xT ∈ [xTr , xTf ] = [−N
2

d,
N
2

d],

(1)

where xT and zT represent the horizontal and vertical coordinates of terrain points in the
coordinate system [L]. xTr and xTf represent the boundaries of the perception domain

along the X-axis and cover a range of [−N
2 d, N

2 d]. Figure 3 depicts the average height h2
within subpoint set T2.
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Figure 3. State Space: Includes dynamic interactive information between local terrain and robot. The
red dots represent the terrain points after downsampling in the local perception domain T .

Robot State E: The coordinate system for the rescue robot is defined as an [R] coordi-
nate system with the center of the robot chassis as the origin, the X-axis facing the chassis,
and the Z-axis perpendicular to the chassis facing upward, as shown in Figure 3 denoted
as blue. The robot state E consists of the angle of the robot’s front flipper θ f 1, the angle of
the robot’s rear flipper θ f 2, and the chassis pitch angle θR. The angle of the flipper is the
X-axis angle between the flipper and the robot [R] coordinate system, which is positive if
the flipper is above the chassis. The elevation angle of the chassis is the angle between the
[R] coordinate system and the X-axis of the [L] coordinate system, which is positive if the
chassis is above the X-axis of the [L] coordinate system.

E = {θ f 1, θ f 2, θR},

θ f 1, θ f 2, θR ∈ [−π

3
,

π

3
].

(2)

3.3. Action Space

The robot’s action, which governs its movement, is generated as the output of our
RL network. The tracked robot can adjust its posture by rotating its flipper, facilitating
efficient traversal over obstacles. The action space of the MDP model is designed in the form of
discrete angular increments of ∆θ f when the flipper rotates, where ∆θ f =

π
12 . The front and rear

flippers have three motion elements: clockwise rotation of ∆θ f , counterclockwise rotation
of ∆θ f , and nonrotation. Therefore, the motion space is expressed as the combination of
nine motions a of the front and rear flipper:

A = {aij} = {i∆θ f , j∆θ f }, (3)

i =


−1 front flippers rotate clockwise
0 front flippers hold on
1 front flippers rotate counterclockwise

j =


−1 rear flippers rotate clockwise
0 rear flippers hold on
1 rear flippers rotate counterclockwise

.

3.4. Reward Function

A well-designed reward function is crucial in accomplishing specific tasks for robots [28],
as it encourages learning efficient control strategies for the flippers. We merge prior knowl-
edge from human operational experts with quantitative metrics to design reward functions
for RTI that satisfy the requirements for smooth and safe obstacle crossing. Specifically, a
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front flipper motion reward R f lipper, a smoothness reward Rpitch, and a contact stability
reward Rcontact are included.

Reward of flipper R f lipper: The front flipper of the robot plays a crucial role in adjust-
ing its posture while enabling the main track to conform to the terrain as much as possible,
and it needs to anticipate upcoming obstacles. We refined the practical flipper strategy
based on the manual teleoperation experience introduced by Okada et al. [8] and designed
a motion-based reward function specifically for the front flipper. We denote the reward of
front flippers as R f lipper.

Figure 4a,b are schematic diagrams of the reward design of the front flipper when the
robot goes up and down obstacles, respectively. In this section, the hinge point pb f between
the front flipper and the chassis is selected as the reference point, which is connected with
the expanded terrain point (obtained by the original terrain point expanding the half of
thickness B of the robot, shown as the red triangle) in the point set T f as the vector −−→pb f pi

(shown as the green vector), and the angle between −−→pb f pi and the X-axis of robot coordinate
system are calculated. The one with the largest angle value is selected as the candidate
angle of the front flipper (shown by the yellow vector). The R f lipper is mainly responsible
for guiding the robot to change its posture to adapt to the terrain actively. A proper reward
value is conducive to reducing the little and meaningless action exploration of the robot
during training and guiding the robot to explore the reasonable front flipper action more
efficiently. The absolute difference ∆θ f 1 between the robot’s front flipper angle θ f 1 and the
candidate angle θ∗f 1 is taken as the reward index, and R f lipper is defined as

R f lipper =

{
−1, if ∆θ f 1 > 1

λ1

−λ1∆θ f 1, otherwise
,

∆θ f 1 = |θ f 1 − (θ∗f 1 ±
π

36
)|,

(4)

where λ1 is the threshold coefficient of ∆θ f 1.

(a) Ascending an obstacle. (b) Descending an obstacle.

Figure 4. Schematic diagram of reward R f lipper calculation.

Reward of Smoothness Rpitch: Terrain traversal smoothness is an important evalua-
tion standard, and the pitch angle of the robot chassis changes as gently as possible through
the cooperation of the rear and front flippers. We propose to use the relevant indicators of
the robot chassis pitch angle as a reward to optimize the robot’s terrain traversal stability,
denoted as Rpitch.

The absolute change in pitch angle is ∆|θR(t)|, and the average change in pitch angle
in k time steps is defined as ∆θk

r (t):

∆|θR(t)| = |θR(t + 1)| − |θR(t)|

∆θk
R(t) =

1
k− 1

t+k−1

∑
i=t
|θR(i + 1)− θR(i)|,

(5)

where t represents the number of steps the robot performs in a single terrain traversal
episode, as shown in Figure 5; the absolute change in pitch angle ∆|θR(t)| reflects that the
pitch change trend of the robot chassis is rising (∆|θR(t)| > 0), and we limit the situation
that the robot is near the overturning boundary, hoping that the pitching trend of the robot
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will not rise further when it is in high overturning risk. The average change in pitch angle
within k step ∆θk

R(t) reflects the stability of the robot’s terrain traversal. According to
the two related indexes of pitch angle mentioned above, the reward of terrain traversal
smoothness is designed as Rpitch, which is defined as

Rpitch =


−1, if (|θR| > π

4 and ∆|θR(t)| > 0)
−1, if∆θk

R(t) >
1

λ2

−λ2∆θk
R(t), otherwise

, (6)

where λ2 is the threshold coefficient of ∆θk
R(t).

Figure 5. Avoidance of pitching dangerous posture. Blue indicates the robot’s posture at the current
moment, which is at a dangerous edge; Red indicates the possible dangerous trend of the robot,
which needs to be avoided.

Reward of Contact Rcontact: Under the guidance of R f lipper and Rpitch rewards, the
robot can learn smooth obstacle-crossing maneuvers, but the robot’s interaction with the
terrain still suffers from some implausible morphology, such as the front and rear flippers
supporting the chassis off the ground. This morphology meets the smoothness constraints,
but the driving force could be utilized more efficiently, and the torque applied to the
flippers needs to be bigger. The contact between the tracks and the terrain is the medium
of the robot’s driving force. The robot’s chassis and flippers are equipped with main and
subtracks, respectively, and the size of their contact area with the terrain determines the
robot’s driving ability, especially the main tracks. Therefore, the Rcontact reward needs to
guide the robot to contact the terrain as much as possible with the chassis tracks to provide
sufficient driving force, and there must be contact points at the front and back of the robot’s
center of mass at the same time.

case =


case1, if cp1 ∈ Tbr and cp2 ∈ Tb f

case2, if cp1 ∈ Tbr and cp2 ∈ T f

case3, if cp1 ∈ Tr and cp2 ∈ Tb f

case4, otherwise

, (7)

Rcontact =

{
0, if case ∈ (case1, case2, case3)
−1, case4

. (8)

among them, cp1 and cp2 are the farthest contact points between the robot and the terrain;
the partitions of T f , Tb f , Tbr, Tr are shown in Figure 4a.

Reward of Terminate Rend: In the training process of the RL algorithm, the process
from the starting point until the robot meets the end condition is called a terrain traversal
episode, and a settlement reward will be given at the end of each episode. When the robot
reaches the finish line smoothly, and the chassis is close to the ground, it is regarded as
a successful obstacle crossing in this episode, and a big positive reward is obtained. It is
necessary to design negative rewards according to the task scene’s specific situation to
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restrain the robot’s dangerous or inappropriate behavior. Thus, when the robot meets the
following conditions, it obtains a larger settlement reward and ends the current episode:

Rend =


+R, reached
−R, |θR| ≥ π

3

−R, t ≥ tmax

−R, got stuck

. (9)

among them, tmax represents the maximum number of steps the robot performs in a single
terrain traversal episode, and R represents the value of the settlement reward.

In summary, the sum of rewards Re
t earned by the robot at each obstacle-crossing

time t is expressed as Equation (10), where κ is the weight of each reward term and
κ1, κ2, κ3 ∈ [0, 1].

Re
t = Rend + κ1R f lipper + κ2Rpitch + κ3Rcontact (10)

3.5. ICM Algorithm

To improve the robot’s exploration of obstacle-crossing action and state, ICM is de-
signed to encourage the robot to try new actions and move to a new state so that it is
possible to explore higher-reward obstacle-crossing performance. For the single-step tra-
jectory {st, at, st+1, Rt} of MDP, ICM is used to evaluate the curiosity level of the robot in
the current state. The specific structure is shown in Figure 6, including the Encoder model,
Forward prediction model, and Inverse prediction model.

𝑭
𝝍

𝑰

𝒔𝒕

𝒂𝒕

𝒔𝒕+𝟏 𝝍(𝒔𝒕+𝟏)

𝝍(𝒔𝒕)

𝒂𝒕

𝝍(𝒔𝒕+𝟏) 𝑳𝜻
𝑭

𝒂𝒕

𝑳𝜻
𝑰

Figure 6. ICM Algorithm: The single-step trajectory of MDP serves as inputs, while the ψ and F
models compute the curiosity value LF

ζ for the present state-action and the I models output loss LI
ζ .

Encoder model ψ: Responsible for coding the original state space into a feature
space with stronger representation ability. As the key feature state of the obstacle-crossing
problem, this feature space should fully contain all the information robots use for decision
making. The state space of the traversal MDP model is composed of robot state and terrain
information, which fully represents the process of RTI. Encoder model ψ is used to encode
current state st and transition state st+1 into feature vectors ψ(st) and ψ(st+1).

Forward prediction model F: The F simulates the operation mode of the environ-
mental model and is used to estimate and predict the transfer characteristic state of the
robot after acting. Its inputs are robot action at and characteristic state vector ψ(st), and
the predicted transferred characteristic state vector ψ̂(st+1) is the output. The difference
between the ψ̂(st+1) output by the F and the characteristic state ψ(st+1) encoded by the
encoder ψ indicates the curiosity level of the robot. We introduce the curiosity level as the
intrinsic reward Ri

t into the reward function of Reinforcement Learning to encourage robots
to explore more unknown states. Thus, the loss function LF

ζ of the F, the intrinsic curiosity
reward Ri

t, and the reward sum of each obstacle-crossing time step Rt can be defined as

LF
ζ = MSELoss(ψ̂(st+1), ψ(st+1)), (11)
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Ri
t , ηLF

ζ = η
1
M
||ψ̂(st+1)− ψ(st+1)||22, (12)

Rt = Re
t + Ri

t, (13)

where ψ̂(st+1) = f (ψ(st), at),η is the scaling factor of intrinsic curiosity reward, and M is
the characteristic state vector ψ(st+1).

Inverse prediction model I: The core of the I is to infer what actions the robot has
taken to cause this transfer through the current and transfer states. Its inputs are the current
feature state ψ(st) and the transition feature state ψ(st+1), and the goal is to output the
reasoning action ât, which is as small as possible from the action at executed by the robot.
Under the constraint of the backward inference model, the encoder ψ learns how to extract
the accurate feature state space when the network is updated, thus predicting the forward
inference model more accurately. The cross-entropy loss function is used to describe the
loss of the I, which can be expressed as

LI
ζ = CrossEntropy(at, ât) = −

1

∑
i=−1

1

∑
j=−1

p(at,ij) log(p(ât,ij)) (14)

where ât = I(ψ(st), ψ(st+1)); p(at,ij) and p(ât,ij) represent the probability, receptively, that
the front flipper samples the i action and the rear flipper samples the j action in the vector
at and ât.

At the beginning of the algorithm, the feature extraction ability of the encoder and the
prediction ability of the F are weak; so, the curiosity value will be large, which drives the
robot to explore more. With the progress of obstacle-crossing training, the state of the robot
is being explored more and more, and the role of curiosity mechanisms in encouraging
exploration will gradually decrease, making the robot make more use of learned action
strategies. To sum up, the overall loss function of the ICM algorithm is expressed as follows:

Lζ = βFLF
ζ + β I LI

ζ , (15)

where βF and β I are the coefficients of forward prediction model loss and backward
inference model loss, and βF, β I ∈ [0, 1] and ζ are the network parameters of ICM.

3.6. Algorithm and Network

We show our DRL network architecture in Figure 7, which consists of three main
blocks. The block ¬ highlighted in green is the RTI feature extraction module, which is
responsible for generating the interaction features during the terrain traversal process.
Terrain data H (green vector) and robot information E (blue vector) are fed into the network
to produce the interaction feature vector S

′
t via the front-end feature extraction module.

Due to the relatively small size of the estimated motion vectors, robot state, and terrain
information, there is no requirement for designing complex networks similar to those used
for images or 3D point clouds [29]. The network mainly consists of fully connected layers
(yellow) and LeakyReLu nonlinear activation layers (orange). Multilayer Perceptron (MLP)
is employed to extract features from terrain information H

′
, incorporating them with robot

state information E to create a new interactive feature vector S
′
t through single-layer MLP.

The block  highlighted in orange is the D3QN module, which combines the advan-
tages of Double DQN [30] and Dueling DQN [31]. D3QN uses the advantage function
A(S

′
t, at) to evaluate the relative value of each action in the current state to help the robot

make more informed decisions. The A(S
′
t, at) is calculated by subtracting the state value

function V(S
′
t) from the action value function Q(S

′
t, at) (the output of the Q network).

Specifically, the V(S
′
t) is used to estimate the expected return in a given state, which is to

evaluate the value of the S
′
t. The Q(S

′
t, at) is used to estimate the expected return of taking

a specific action in a given state, which is to evaluate the value of action at. By calculating
the A(S

′
t, at), we can obtain the potential of each action relative to the average level in the
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current state, and the robot can choose the action with the greatest advantage to execute,
thus improving the accuracy and effect of decision making.

…
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Figure 7. Network structure of our ICM-D3QN flipper autonomous control algorithm: ¬ is a feature
extraction and fusion module for extracting and integrating robot and environment state features,
® is a module for enhancing the efficiency of flipper action exploration, and  is a deep Q-Learning
control generation module.

The block ® highlighted in purple is the ICM network, which is responsible for
outputting the intrinsic reward. The network structure of its Encoder model ψ, For-
ward prediction model F, and Inverse prediction model I consists of 3, 2, and 2 MLP
layers, respectively.

4. Experimental Results

This section mainly demonstrates the training procedure of the proposed ICM-D3QN
autonomous flipper control algorithm in the Pymunk simulation and the experimental
results in the Gazebo simulation and real environment. Section 4.1 describes the basic
settings of the experiments, which specifically include the NuBot-Rescue robot platform
and the settings of the training environment and the physical environment. Section 4.2
demonstrates the ablation experiments of the algorithmic network. Section 4.3 demonstrates
the algorithm’s traversal performance in various simulated and real-world scenarios,
including a qualitative analysis of the traversal process, comparing it with the baseline
method, and an experiment on urban ruins.

4.1. Experiment Setups
4.1.1. Robot Platform

NuBot-Resuce has two main tracks and four independent flippers, presenting a cen-
trosymmetric structure. In addition, its upper level is equipped with a LiDAR sensor
(RS-Bpearl is manufactured by RoboSense in Shenzhen, China.), an inertial measurement
unit (IMU) sensor (MTi-300 is manufactured by Xsens Technologies in the Netherlands.),
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and two cameras for online local mapping, pose estimation, and acquisition of front-to-back
images of the robot.

4.1.2. Training Settings

Pymunk (pymunk.org (accessed on 17 September 2023.)) is a simulator based on
the Chipmunk physics engine implemented in the Python environment, allowing easy
and scalable simulation of physics effects such as rigid bodies, collision detection, and
joint constraints. We establish a simulation training environment to expedite the training
procedure, leveraging the Pymunk physical simulation engine. The following are the
settings of the training environment:

• Robot Model. Based on the Section 3.1 assumptions, the articulated tracked robot is
modeled as a three-part model based on the symmetric structure, including the rear
flippers, the chassis, and the front flippers. Each part comprises a rectangle and two
circles, constrained by articulation and rotation relationships.

• Terrain Model. To improve the algorithm’s ability to generalize, we employ the
concept of DR. By creating a range of terrain scenarios with randomized sizes and
noise, we aim to enrich the sample experience during training. More specifically,
we establish a set of typical urban rescue scenes that include Step, Staircase, and
Ramp, as shown as Table 1. We then characterize each scene type using parametric
methods. This approach facilitates the organized management of various terrain
scenes and enables the generation of terrain shapes with random parameters. The
scene is represented using a parameterized format:

T = Terrain(M, X, Z). (16)

The interpretation of terrain scene parameters can be observed in Figure 8. In this
representation, the step scene consists of a random arrangement of individual step
units with varying sizes. The staircase scene consists of a set of step units of the
same size, orderly arranged. Similarly, the ramp scene is comprised of ramp units
of different sizes. The parameter M signifies the number of units within the scene,
while X and Z represent the length height of each unit, respectively. Considering the
robot’s maximum ability to overcome inclined obstacles at around 45◦, there exists the
following constraint for Xunit and Zunit in the staircase and ramp terrain:

Xunit ∈ [Xmin, Xmax], Zunit ∈ [Xunit, Zmax]. (17)

During the algorithm training process, the values of the robot’s flipper angle, the
parameter values of the terrain shape, and the noise of sensing are randomly generated,
which ensures diversity in the robot’s state and terrain information, which is beneficial for
robustness and adaptability. For each episode of obstacle-crossing training, the start and
end points are set to be 1 m away from the start and end of the terrain. The robot is trained
through the above three types of scenes, and the parameters used in the training are shown
in the Table 2. Finally, the algorithm training was deployed on a desktop computer with a
16-core Intel Core i7-11700F 2.50 GHz CPU, GeForce RTX3060 Ti GPU, and 64 GB RAM.

Figure 8. The interpretation of terrain scene parameters. (a–c) separately show a Step composed of
6-step units with different sizes, a Staircase composed of 4-step units with the same size, and a Ramp
composed of a ramp unit.

pymunk.org
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Table 1. Parameters of evaluating terrain scenes in training and testing.

Training Scene Testing Scene

Scene M X/m Z/m Scene M X/m Z/m

Step [1, 7] [0.1, 1] [−0.4, 0.4] 33.7◦-stair 5 0.3 0.2

Staircase [1, 7] [0.0, 0.4] [0.05, 0.25] 45◦-stair 5 0.2 0.2

Ramp [1, 3] [0.6, 1.2] [0.1, 1.2] Continuous-ramp 10 0.6 0.2

Urban-ruins - 7.5 0.7

Table 2. Parameters of traversal training.

Parameters Learning Rate Replay Buffer Size Batch Size λ1 λ2 κ1, κ2, κ3 βF βI

Value 5× 10−4 8× 106 256 0.1 0.33 0.005 0.8 0.2

4.1.3. Testing Settings

In the testing session, the feasibility and generalization ability of the algorithms is
evaluated through experiments conducted in Gazebo and the real world.

Gazebo (gazebosim.org (accessed on 17 September 2023)) provides realistic physics-
based simulations that allow algorithms to be evaluated in various scenarios and ter-
rains, which helps reduce the risks and costs associated with real-world experimenta-
tion. Our robot simulation model references the Contact Surface Motion (CSM) model of
Pecka et al. [32]. The simulation parameters of the LiDAR and IMU are consistent with the
NuBot-Rescue.

Autonomous navigation and obstacle-crossing experiments occur in unfamiliar sur-
roundings, and a comprehensive comprehension of the environment and the availability of
precise maps serve as the bedrock for successful autonomous navigation [33,34]. To ensure
the accuracy of the terrain and the robot’s pose information, we employ a terrain point
cloud map created using the dependable ALOAM map-building algorithm [35,36]. This
map, gradually constructed as the robot progresses, gives us 15 downsampled and filtered
terrain points and real-time robot states as inputs. The robot maintains a constant speed of
0.15 m/s (the maximum speed can reach 0.3 m/s) without adjusting its forward direction.
The algorithm controls the entire flipper with a rotation speed of 25◦/s, and it performs
five repetitions of the experiment in each experimental scene.

The terrain tested in the experiment includes the 33.7◦-stair, 45◦-stair, Continuous-
ramp, and Urban-ruins, as shown in Figure 9 and Table 1. Specifically, the staircase is
the standard terrain for RoboCup RRL rules (rrl.robocup.org (accessed on 17 September
2023)), the Continuous-ramp tests the algorithm’s performance in situations with contin-
ual pitch bumps, and the Urban-ruins tests the algorithm’s ability to adapt to irregular,
complex terrain.

Different algorithms govern the robot’s traversal of obstacles with varying elapsed
durations for obstacle-crossing scenarios of equal length and difficulty. Merely relying on
the mean value of the absolute rate of change in the pitch angle, denoted as |θ̇R|, fails to
objectively assess the robot’s performance in a single obstacle-crossing task. To address this
limitation, we propose the metrics θ̂R, which combine the task duration and the absolute
rate of change in the pitch angle. θ̂R represents the integration of the absolute rate of change
in the robot’s pitch angle over the mission time tcost. Meanwhile, ẐR denotes the average
absolute values of the robot’s center height velocity.

θ̂R =
∫ tcost

0
|θ̇R|dt =

T−1

∑
t=1
|θR(t + 1)− θR(t)|, (18)

ẐR =
∑ |żR|
T − 1

, (19)

gazebosim.org
rrl.robocup.org
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where T represents the total number of time steps in the single-trip task, and θ̂R and
ẐR signify overall pitch bump and height shock during the over-the-obstacle endeavor,
respectively. A smaller value indicates more seamless control, measured in radians
and m/s.

33.7°-stair-real 45°-stair-real Continuous-ramp-real Urban-ruins

45°-stair-sim33.7°-stair-sim Continuous-ramp-sim

Figure 9. The testing scenes in simulation and real world, including structured and unstructured and
indoor and outdoor situations.

4.2. Ablation Experiment

Figure 10 depicts the training progress of the algorithm both before and after incor-
porating the ICM network structure. The vertical axis represents the average reward per
100 episodes, while the horizontal axis denotes the number of episodes. Upon ICM-D3QN
and D3QN initiating training after accumulating 4× 106 experiences, ICM-D3QN shows su-
perior convergence performance. This is because DR enhances the generalization ability of
the algorithm, but it will lead to higher training costs and difficult convergence. Compared
with D3QN, the proposed ICM-D3QN network structure encourages active exploration of
unfamiliar states and actions, ultimately leading to stronger convergence ability.

Table 3 illustrates the algorithm’s performance in crossing obstacles before and after
integrating the ICM network structure under various simulation scenes. To more accurately
replicate the potential sensing deviations that may occur in the real environment, a control
group called “ICM-D3QN+Noise” was established. Gaussian noise is applied to the sensing
data during testing in this group, with µ = 0 cm and σ = 10 cm. The proposed ICM-D3QN
flipper control algorithm exhibits smaller θ̂R and ẐR values than D3QN in the staircase and
ramp scenes. It suggests that ICM-D3QN enhances the smoothness of the robot’s motion
during the obstacle-crossing process. The second column of Table 4 indicates an average
enhancement of 13.8% (θ̂R) and 14.3% (ẐR) across the three task terrains. Furthermore, the
third column of Table 4 demonstrates a slight reduction in smoothness for the ICM-D3QN
algorithm in the three task terrains when subjected to higher levels of sensing noise, which
is about 6.1% (θ̂R) and 6.5% (ẐR). This resilience to terrain-sensing noise highlights the
algorithm’s robustness.
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Figure 10. Comparison of training curves of D3QN and ICM-D3QN.

To summarize, the ablation experiments confirm the substantial improvements in con-
vergence ability and obstacle-crossing performance achieved by the ICM-D3QN algorithm.

Table 3. Ablation study on proposed ICM-D3QN. The bold number indicates the best performance.

Algorithm

33.7◦-Stair-Sim Ascent 45◦-Stair-Sim Ascent
Continuous-Ramp-Sim

and 45◦-Stair-Sim Descent and 33.7◦-Stair-Sim Descent

θ̂R [rad] ẐR [m/s] θ̂R [rad] ẐR [m/s] θ̂R [rad] ẐR [m/s]

D3QN [37] 5.242 ± 0.239 0.074 ± 0.013 5.712 ± 0.357 0.056 ± 0.012 4.963 ± 0.173 0.048 ± 0.001

ICM-D3QN + Noise 4.605 ± 0.188 0.063 ± 0.002 5.114 ± 0.270 0.057 ± 0.010 4.864 ± 0.202 0.043 ± 0.003
ICM-D3QN 4.245 ± 0.208 0.057 ± 0.008 4.857 ± 0.179 0.046 ± 0.003 4.603 ± 0.133 0.047 ± 0.002

Table 4. The variation range of smoothness metrics of D3QN, ICM-D3QN+Noise compared with
ICM-D3QN algorithm in different scenes. θ̂R ↑ and ẐR ↑ represent a worse performance.

Scenes
D3QN [37] ICM-D3QN+Noise

θ̂R [rad] ẐR [m/s] θ̂R [rad] ẐR [m/s]

33.7◦-stair-sim ascent and 45◦-stair-sim descent 19.0% 23.0% 7.8% 9.5%
45◦-stair-sim ascent and 33.7◦-stair-sim descent 15.0% 17.9% 5.0% 19.3%

Continuous-ramp-sim 7.3% 2.1% 5.4% −9.3%

Mean variation range 13.8%↑ 14.3%↑ 6.1%↑ 6.5%↑

4.3. Performance Experiment
4.3.1. Qualitative Analysis

This section encompasses experiments conducted on 33.7◦-stair, 45◦-stair, and Continuous-
ramp scenes, aiming to validate the efficacy of transferring the ICM-D3QN from simulation
to real-world environments. Figures 11 and 12 show the traversal process in the steep stairs
of ICM-D3QN autonomous flipper control algorithm:

• 1∼3: The robot harmonizes its pose with the inclination of ascending stairs through
cooperation between the front and rear flippers.

• 4∼6: The robot efficiently ascends the platform, employing active depression of the
front and rear flippers to minimize impact and pitch oscillation.

• 7∼9: The algorithm regulates the robot’s front flipper to apply significant downward
pressure, reducing the descent impact effectively.
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• 10∼12: The robot adeptly descends the stairs, maintaining stability by using the front
flipper for support near ground contact, achieving a smooth arrival at the target.

The traversal process of ICM-D3QN in a Continuous-ramp with symmetrical left and
right heights is shown in Figure 13. In the face of the Continuous-ramp with obvious
bumps in the pitch angle, the ICM-D3QN algorithm controls the robot’s rear flipper to
remain flat and controls the front flipper to adapt to the changes in the terrain actively to
minimize the degree of the robot’s bumps in obstacle crossing, as shown in stages 4∼8
of Figure 13.

The aforementioned qualitative analysis evinces the efficacy of our algorithm for
seamless migration onto a robotic platform, showcasing smooth and safe obstacle-crossing
performance on challenging terrains, such as steep stairs and continuous ramps.

1 42 3 5

7 8 9 10 1211

Figure 11. Experiment of the ascending 33.7◦-stair-real and descending 45◦-stair-real.

1 42 3 5

7 8 9 10 1211

Figure 12. Experiment of the ascending 45◦-stair-real and descending 33.7◦-stair-real.

1 42 3 5

9 10876

Figure 13. The experiment of crossing the continuous ramp-real.

4.3.2. Comparison with Baseline Methods

Owing to the profound integration of flipper control methods for articulated tracked
robots with the robotic platform, published open-source methodologies for controlling flip-
pers are scarce. A related DRL work uses RGBD images as input and Soft Actor–Critic (SAC)
algorithm [38] to train a robot to flip over a staircase scenario in a Gazebo simulation [17].
To ensure comparability, we substitute our robot model for theirs within their open-source
Gazebo simulation environment, while the perception method follows the RGBD camera.
We then train it using their proposed network architecture and test in 33.7◦-stair-sim and
45◦-stair-sim scene.
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Table 5 demonstrates a comparison of the quantitative metrics’ results. Our ICM-
D3QN algorithm yields superior outcomes in these metrics, indicating that our approach
enables smoother stair ascents and descents by the robot. Moreover, while Mitriakov’s
method trains separately, with distinct reward functions for ascending and descending
stairs; our approach employs a unified set of reward functions to train in more intricate and
diverse terrains. As a result, the resulting policy network exhibits enhanced generalization
ability and performance.

Table 5. Comparison of traversal performance metrics with Mitriakov’s method in the simulated
stairs. The bold number indicates the best performance.

Algorithm
33.7◦-Stair-Sim Ascent 33.7◦-Stair-Sim Descent 45◦-Stair-Sim Ascent 45◦-Stair-Sim Descent

θ̂R [rad] ẐR [m/s] θ̂R [rad] ẐR [m/s] θ̂R [rad] ẐR [m/s] θ̂R [rad] ẐR [m/s]

Mitriakov’s 4.534 ± 0.248 0.127 ± 0.009 3.173 ± 0.180 0.072 ± 0.003 4.956 ± 0.135 0.163 ± 0.023 2.992 ± 0.077 0.090 ± 0.003
Ours 2.298 ± 0.223 0.057 ± 0.008 2.012 ± 0.143 0.050 ± 0.003 2.856 ± 0.153 0.062 ± 0.006 1.971 ± 0.070 0.054 ± 0.005

Moreover, we utilize Chen’s algorithm [16] to implement a manual modeling method,
which involves iteratively exploring the action-pose space and dynamically planning the
most cost-effective sequence of actions. This algorithm is deployed on the NuBot-Rescue
robot platform and evaluated in a staircase scene. Table 6 demonstrates a comparative anal-
ysis of quantitative metrics in a real staircase environment. For the θ̂R metric for descending
33.7◦ stair and the tcost metric for descending 45◦ stair, Chen’s approach achieves more
similar results to ours. The overall results highlight the obstacle-crossing performance of
our ICM-D3QN algorithm in the face of steep staircases, with higher overall pitch stability,
lower center-of-mass height change rate, and shorter obstacle-crossing elapsed time.

Table 6. Comparison of traversal performance metrics with Chen’s method in real-world stairs. The
bold number indicates the best performance.

Scene
θ̂R [rad] ẐR [m/s] tcost [s]

Chen’s Ours Chen’s Ours Chen’s Ours

33.7◦-stair-real ascent 3.522 ± 0.274 2.966 ± 0.196 0.053 ± 0.003 0.051 ± 0.002 30.074 ± 2.327 28.550 ± 2.051
33.7◦-stair-real descent 2.653 ± 0.638 2.680 ± 0.103 0.065 ± 0.003 0.052 ± 0.001 31.178 ± 4.056 26.680 ± 0.467

45◦-stair-real ascent 3.853 ± 0.281 3.429 ± 0.258 0.069 ± 0.004 0.059 ± 0.037 29.754 ± 4.599 28.220 ± 1.419
45◦-stair-real descent 3.350 ± 0.241 3.271 ± 0.102 0.120 ± 0.106 0.055 ± 0.002 26.449 ± 2.302 27.424 ± 0.492

4.3.3. Real-World Urban Searching and Rescuing Experiment

The experimental site of the urban ruin is situated upon an outdoor lawn, predom-
inantly consisting of sandbags, concrete blocks, and abandoned furniture, spanning ap-
proximately 7.5 m. The site encompasses asymmetrical obstacles, while surrounding grass
influences perception accuracy, rendering it apt for assessing our algorithms’ generalization
capacity and obstacle-traversing efficacy in intricate, asymmetrical environments. Through-
out the experimental trials, the robot’s directional movement is directed by a remote human
operator utilizing real-time wireless transmission of video imagery, while the ICM-D3QN
algorithm governs the manipulation of the flippers.

Figures 14 and 15 showcase the robot smoothly traversing amidst a backdrop of
urban ruins, maintaining a stable posture. When the robot ascends a hill constructed
with sandbags and concrete blocks, even though there is a bump in the hill (as shown
as Figure 14: 2∼3), the algorithm regulates the rear flippers to exert slight downward
pressure, thereby preventing any potential tipping of the chassis. Simultaneously, the
front flippers exert downward force to minimize any impact when traversing the bump,
enabling the robot to safely and smoothly surmount the hill. Furthermore, even when
navigating across a pallet characterized by a hollow surface (unrepresented in the training
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data), our algorithm successfully guides the robot to maintain an exemplary traversal form,
as exemplified in Figure 14: 7∼12 and Figure 15: 1∼5. Video describing more details about
obstacle crossing can be shown in Supplementary Materials.

1 42 3

5 86 7

9 1210 11

Figure 14. Experiment on the urban ruins (forward).

1 42 3

5 86 7

9 1210 11

Figure 15. Experiment on the urban ruins (backward).

Table 7 presents the mean quantitative data of eight experimental rounds conducted,
both in forward and backward directions. In addition to the three metrics listed previously,
they record the overall stability of the roll and yaw angles, providing a more comprehensive
overview of the algorithm’s performance in traversing obstacles within an asymmetrical
environment. Backward passes exhibit more pronounced θ̂R metrics than forward passes
due to the more notable influence of slippery sandbags and moveable concrete blocks
on the robot’s descent. The experimental results decisively demonstrate our algorithm’s
resolute generalization ability within asymmetric environments, thereby facilitating the
robot’s secure, seamless, and expeditious traversal of obstacles encountered in certain
scenarios, such as collapsed building sites in urban areas.

Table 7. Traversal performance metrics of Urban Searching and Rescuing experiment in the
real world.

Scene θ̂R [rad] θ̂roll [rad] θ̂yaw [rad] ẐR [m/s] tcost [s]

Urban ruins (forward) 8.011 ± 0.720 6.997 ± 0.656 2.619 ± 0.342 0.059 ± 0.003 77.562 ± 4.814
Urban ruins (backward) 8.434 ± 0.377 7.036 ± 0.713 2.753 ± 0.277 0.067 ± 0.007 76.662 ± 3.097
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5. Conclusions

This paper introduces a novel flipper control algorithm, ICM-D3QN, based on DRL.
It aims to address the challenges faced by tracked robots when crossing obstacles. Our
algorithm leverages the state information and local terrain data to learn flipper control
actions through an optimized reward function. By incorporating the ICM module and DR
technique, we enhance the algorithm’s convergence and obstacle-crossing performance,
enabling the robot to navigate and overcome obstacles seamlessly. We assess the perfor-
mance of ICM-D3QN against D3QN in the Gazebo simulation environment. The results
indicate that integrating the ICM mechanism improves the algorithm’s convergence and
obstacle-crossing capabilities. Furthermore, we quantitatively compare ICM-D3QN with
Mitrikov’s approach and Chen’s manual modeling technique in a challenging staircase
scenario. The outcome highlights the superiority of our algorithm’s learned flipper con-
trol strategy across various metrics, including overall pitch angle stability, stability of
center-of-mass height change rate, and obstacle-crossing time. Additionally, ICM-D3QN
demonstrates certain generalization abilities, maintaining smooth obstacle crossing even
in complex and asymmetric urban ruins and resilience in outdoor scenarios with high
sensing noise.

Nevertheless, when confronted with environments featuring substantial lateral oscilla-
tions, the applicability of the proposed technique may be diminished. In future work, we
further deliberate on the intricate challenge of enabling independent flipper locomotion to
adequately address the demands of adapting to diverse, rugged terrains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15184616/s1, Video ICM-D3QN: Deep Reinforcement Learning
for Flipper Control of Tracked Robots in Urban Rescuing Environments.
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