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Abstract: Precipitation fluctuations in the Pearl River Basin (PRB) have a significant impact on river
runoff, causing huge economic losses and casualties. However, future precipitation variations in
the PRB remain unclear. Therefore, we explored the projected changes in precipitation in the PRB
based on the coupled model intercomparison project phase 6 (CMIP6) model via three shared socio-
economic pathways scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5). In our study, the optimal ensemble
of global climate models in the PRB was identified using the comprehensive rating index (CRI), which
is based on climatology, spatial variation, and interannual variability, and it was used to analyze
potential precipitation changes in the basin in the period 2025–2100. The results showed that the
CMIP6 models underestimated precipitation in the PRB; the consistency between the observations
and the multi-model ensemble mean of the four best models was higher than those of any other
ensembles, and the CRI value was highest (0.92). The annual precipitation in the PRB shows a
significant increasing trend under three scenarios from 2025 to 2100 (p < 0.01), with the highest rate of
precipitation increase being seen under the high-emission scenario. By the end of the 21st century,
the regional mean precipitation in the PRB will increase by 13%, 9.4%, and 20.1% under SSP1-2.6,
SSP2-4.5, and SSP5-8.5 scenarios, respectively. Spatially, the entire basin is projected to become wetter,
except for a slight decrease of less than 6% in the central part of the basin and the Pearl River Delta
in the near term in the 21st century, and the highest increases are projected to occur in the Xijiang
River basin.

Keywords: Pearl River Basin; precipitation; CMIP6 models; SSP-RCPs

1. Introduction

As an important process involved in the hydrological cycle and water resources
provided by terrestrial ecosystems [1], precipitation greatly influences regional flooding,
drought, and sustainable development [2]. The Intergovernmental Panel on Climate
Change has found that the intensity, frequency, and duration of climate extremes increase in
the context of climate change [3–5], in turn influencing regional mean runoff [6] and causing
extreme events, such as flooding [7] and drought [8]. The Pearl River Basin (PRB) is one
of the three main basins in China; its downstream region is economically developed and
densely populated, and its upstream region covers many farming areas [9,10]. Since the late
1970s, the PRB has played an important role in enabling the sustainable development of the
Chinese economy. In particular, the Pearl River Delta accounts for ~0.4% of China’s land
territory, ~20% of its national gross domestic product, and 40% of all foreign investment
in the country [11,12]. However, because the basin’s climate is primarily governed by
subtropical monsoons, precipitation is unevenly distributed throughout the year, which
leads to frequent large and heavy floods during the flood season, as well as a continuous dry
period [13]. Under the trend of warming, the basin suffers frequent and severe droughts
and floods, which cause large economic losses and ecosystem destruction [14–17]. To
improve socio-economic and ecological security in the PRB, it is important to explore the
variability in future precipitation.
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Global climate models (GCMs) produced through the efforts of the scientific com-
munity within the framework of the Coupled Model Intercomparison Project (CMIP) are
widely used to understand historical climate change and predict future changes in climatic
conditions [18–20]. At present, the CMIP is in phase 6 (CMIP6). Compared to CMIP5,
CMIP6 has significantly improved physical procedures, biogeochemical cycles, the spatial
resolution, and the parameterizing methods [21]. Additionally, future scenarios include the
feedback provided to different forcings, land use changes, geo-engineering, and an updated
collection of shared socio-economic pathways (SSPs), ensuring that the analyses are more
realistic [22]. Therefore, many researchers have forecasted future precipitation variability
at the global and regional scale using the CMIP6 datasets. Examples of previously studied
areas include the globe [23,24], South America [25], Northern Europe [26], and Central
Asia [27]. Moreover, many studies have been conducted in terms of the aspect of projecting
precipitation in various regions of China using GCMs [28–30]. For instance, Tian and
Guo [31] projected a fluctuating upward trend in mean annual precipitation in China from
2015 to 2099 based on the selected eight models assessed under all SSP scenarios. Another
study Chen and Duan [32] reported that there will be an increase in seasonal precipitation
over the Tibetan Plateau during the 21st century. However, GCM outputs include various
uncertainties arising from the structure of the models, parametrization, assumptions, cali-
bration processes, etc., [33]. It is vital to evaluate the accuracy of GCM outputs for different
variables in various regions before conducting future regional climate studies [34]. This
approach allows us to fully comprehend the underlying biases affecting simulations within
a given region, as well as ensure the selection of models with superior performance to
enhance the precision of projected variations. Zhu and Ji [35] evaluated the performance
of outputs from the High-Resolution Model Intercomparison Project in three major river
basins (the Yellow River Basin, Yangtze River Basin, and the PRB) in China and concluded
that high-resolution simulations clearly improved precipitation indices, particularly in
CMIP5. Xiao and Lu [36] screened the best models from among 47 CMIP5 GCMs in terms of
precipitation simulations in the PRB; five models (BCC-CSM1.1, CanESM2, CSIRO-Mk3.6.0,
GISS-E2-R, and MPI-ESM-LR) performed well in this respect. Previous studies of the PRB
were limited to a few models or previously published GCMs, and the regional performance
of each model was not evaluated in detail [37,38]. The results of these studies may not
reliably represent the pattern of precipitation in the basin. Consequently, it is necessary to
evaluate newly released models of future precipitation trends in the PRB.

The outputs of single models are invariably subject to bias and uncertainty, and
they, thus, prevent accurate predictions of future climatic patterns [39,40]. Generally, the
multi-model ensemble average (MME) approach can eliminate the most noise in single
models, thereby reducing uncertainties in simulations and enhancing model performance
compared to those of individual models [41]. Previous studies projected the precipitation
applied via the MME approach to GCMs [42–44]. For example, Wu and Lei [29] used the
MME to predict the future characteristics of the upper Yangtze River. They noted that the
mean annual precipitation would increase under the three SSPs, with a significant increase
occurring under SSP1-2.6. However, some models do not perform well for certain variables
at the regional scale [27,45]. The simulation performance of the MME is profoundly
influenced by poorly performing models. Therefore, compared to the MME, the multi-
model ensemble mean of the best models (BMME) may provide more reliable and credible
projections because it only considers high-performing models [46,47]. Moreover, the
optimal number of GCMs required to generate the ensemble has not been determined [48].
Previous studies mainly used ensembles comprising 3–10 descending models [32,49–51]
or set thresholds to enable evaluation indicators to identify the best models [52]. Thus,
these studies have some limitations in terms of determining the best simulations for a
given region. Therefore, determining the most appropriate datasets and optimal number of
GCMs required to generate the ensemble in the PRB is another goal of this study.

In this study, we assessed the ability of CMIP6 GCMs to reproduce the historical
precipitation in the PRB and simulated the spatiotemporal changes in precipitation for
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three periods (near term: 2025–2044; medium term: 2045–2064; long term: 2081–2100) in
the 21st century under the combined scenarios of the shared socio-economic pathways and
representative concentration pathways (SSPs-RCPs). We sought to answer the following
questions: (1) how well do CMIP6 models reproduce the climatology, spatial patterns, and
interannual variability in historical precipitation in the PRB? (2) Which ensemble method
is optimal for the simulation of the precipitation, and how effective is the statistical bias
correction method that we applied? (3) How will annual precipitation change in terms of
time and space in the PRB under the three scenarios. The exploration of these questions is
not only beneficial in terms of further understanding the way in which precipitation in the
PRB responds to global warming, but also of great importance to perform further research
into changes in hydrological drought and flood, improving water resource management,
mitigating watershed disaster risks, optimizing agricultural and ecosystem management,
and helping communities to cope with climate change in the region.

2. Methods and Materials
2.1. Study Area

The Pearl River (Figure 1), which is located in southern China, is the third largest
river in China, having a watershed of 4.54 × 105 km2. The Pearl River flows through
Yunnan, Guizhou, Guangxi, Guangdong, Hunan, and Jiangxi provinces and northern
Vietnam. It consists of the West River, North River, and East River and the Pearl River
Delta system [53]. The terrain in the basin is complex and diverse, but mainly comprises
mountains and hills. The plain area is small and diffuse, accounting for only 5.5% of the
total area. The terrain decreases from the northwest to the southeast [12]. The PRB is
located in the tropical and subtropical climate zones; the central part of the Tropic of Cancer
crosses the basin. The annual average temperature is 14–22 ◦C, and the annual average
precipitation rate is 1200–2200 mm. The seasonal distribution of precipitation is uneven;
about 80% of annual precipitation occurs between April and September, and there is no or
little rain for 3 consecutive months during the dry season [54,55].
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Figure 1. Location of the Pearl River Basin and distribution of meteorological stations.

2.2. Data

The daily precipitation rate simulations for CMIP6 covering the historical period
(1995–2014) and the future period (2015–2100) were obtained from the Earth System Grid
Federation website (https://esgf-node.llnl.gov/search/cmip6, accessed on 3 June 2022).
Twenty-one CMIP6 GCMs were considered, and the condition of selection was the avail-
ability of precipitation variables, which were available for the historical period, and three
SSPs, which were available at the start of this study. Table 1 presents a summary of the
detailed information used by the 21 CMIP6 models. The future projections will be driven
by three new scenarios—SSP1-2.6, SSP2-4.5, and SSP5-8.5—that combined the SSPs and

https://esgf-node.llnl.gov/search/cmip6


Remote Sens. 2023, 15, 4608 4 of 19

representative concentration pathways (RCPs). Specifically, the SSP1-2.6 represents the
combined effects of low social vulnerability, low challenges for mitigation, and a low forc-
ing signal. The SSP2-4.5 is a scenario that combines intermediate societal vulnerability with
an intermediate forcing level. The SSP5-8.5 is the only SSP scenario in which emissions
are high enough to produce a radiative forcing of 8.5 W m−2 in 2100 [22,56]. The SSP1-2.6,
SSP2-4.5 and SSP5-8.5 scenarios used in our study symbolized a low-, a medium-, and a
high-emission scenario, respectively. In addition, because of the inconsistent resolution of
the model data, we interpolated all selected models into a 0.25◦ × 0.25◦ spatial grid using
bilinear interpolation.

Table 1. List of CMIP6 GCMs used in this study.

ID Model Name Country Institution Atmospheric
Resolution (Lat × Lon)

1 ACCESS-CM2 Australia CSIRO-ARCCSS 1.25◦ × 1.875◦

2 ACCESS-ESM1-5 Australia CSIRO 1.25◦ × 1.875◦

3 CMCC-ESM2 Italy CMCC 0.9◦ × 1.25◦

4 EC-Earth3 Europe EC-EARTH-Cons 0.7◦ × 0.7◦

5 EC-Earth3-Veg Europe EC-EARTH-Cons 0.7◦ × 0.7◦

6 EC-Earth3-Veg-LR Europe EC-EARTH-Cons 1.125◦ × 1.125◦

7 FGOALS-g3 China CAS 2.25◦ × 2◦

8 GFDL-ESM4 USA NOAA-GFDL 1◦ × 1.25◦

9 INM-CM4-8 Russia INM 2.00◦ × 1.50◦

10 INM-CM5-0 Russia INM 2.00◦ × 1.50◦

11 IPSL-CM6A-LR France IPSL 2.50◦ × 1.27◦

12 KACE-1-0-G Korea NIMS-KMA 1.875◦ × 1.25◦

13 KIOST-ESM Korea KIOST 1.875◦ × 1.86◦

14 MIROC6 Japan MIROC 1.4◦ × 1.4◦

15 MPI-ESM1-2-HR Germany MPI-M 0.94◦ × 0.93◦

16 MPI-ESM1-2-LR Germany MPI-M 1.875◦ × 1.86◦

17 MRI-ESM2-0 Japan MRI 1.125◦ × 1.125◦

18 NESM3 China NUIST 1.875◦ × 1.86◦

19 NorESM2-LM Norway NCC 2.5◦ × 1.89◦

20 NorESM2-MM Norway NCC 2.5◦ × 1.89◦

21 TaiESM1 Taiwan, China AS-RCEC 0.94◦ × 1.25◦

Daily precipitation data derived from 1995 to 2014 at 43 national standard meteo-
rological stations were obtained from the Chinese Meteorological Administration (http:
//data.cma.cn/) and used as the reference dataset to evaluate the models. Figure 1 shows
the locations of the stations. The CN05.1 data from 1961 to 2014, which were obtained
through interpolation using data derived from over 2400 observing stations in China, had
a 0.25-degree spatial resolution and daily temporal resolution. It has been reported to have
good performance in China [57]. The data were used as a reference to perform the bias
correction of the CMIP6 models.

2.3. Methodology
2.3.1. Model Evaluation Metrics

Model performance in terms of precipitation simulation relative to observations during
the historical period was evaluated in the domains of climatology, spatial patterns, and
interannual variability. Specifically, climatology was evaluated using the normalized mean
absolute error (NMAE) [58], which was calculated as follows:

NMAE =
MAE − MAEcimp6med

MAEcimp6med
(1)

http://data.cma.cn/
http://data.cma.cn/
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where MAE is the mean absolute error between the observations and GCM simulations,
and MAEcmip6med is the median MAE in all selected CMIP6 models. A negative NMAE for
a dataset suggests a superior performance compared to most CMIP6 models.

The Taylor skill score (TSS) was employed to assess the models’ ability to reproduce
spatial patterns of precipitation, which are widely used to assess the regional performance
of GCMs [50,59]. TSS was expressed as follows:

TSS =
4(1 + R)2

(σm
σo

+ σo
σm

)2(1 + Ro)
2 (2)

where R is the spatial correlation coefficient between the observations and GCM simula-
tions, and Ro is the maximum possible correlation coefficient; σm and σo are the standard
deviations of the GCM simulations and observations, respectively. A value nearing 1
signifies a higher degree of agreement between the observations and simulations in terms
of spatial performance.

The interannual variability skill (IVS) score was used to evaluate the interannual vari-
ability in the simulations relative to the observations [60,61]. The formula was as follows:

IVS = (
STDm

STDo
− STDo

STDm
)

2
(3)

where STDm and STDo are the standard deviations of the GCM simulations and obser-
vations, respectively. Lower IVS values signified the more accurate reproduction of the
interannual variability in CMIP6 models.

2.3.2. Comprehensive Rating Metrics

As there are multiple evaluation metrics, it is necessary to calculate model rankings
to determine the comprehensive performance. The comprehensive rating index (CRI) has
been widely used to rank the performance of GCMs [27,50,62] and was defined as follows:

CRI = 1 − 1
nm

n

∑
i=1

ranki (4)

where n and m are the number of indices and models, respectively. The closer the CRI
value is to 1, the more optimal the model’s performance.

2.3.3. Bias Correction

The application of GCMs in climate change impact and adaptation studies was con-
strained by the inherent systematic biases arising from modeling the atmospheric system
using mathematical and physical equations [63,64]. The basic premise of bias correction is
that the relationship observed between regional and large-scale climate variables in current
climatic conditions is similarly applicable to future scenarios [65]. The quantile mapping
(QM) method corrects this bias by mapping the cumulative distribution function (CDF) of
the model (Fm) to the CDF of the observations (Fo):

Xcorr = F−1
o (Fm(Xm)) (5)

where Xm is the original modeled data for a given future timeframe, and Xcorr is the
corresponding bias-corrected outcome; Fo

−1 is the inverse CDF of the observation. The
QM method is widely applied in hydrological and climate change studies conducted in
various regions due to its superior performance compared to those of other methods.

2.3.4. Assessment of Predictions of Future Changes in Precipitation

The BMME approach is widely recognized as an effective way to reduce uncertainties
in individual model simulations, thereby improving the accuracy and credibility of pre-
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dictions [46,66,67]. To facilitate a more accurate analysis of future precipitation changes in
the PRB, we utilized the BMME method to mitigate biases in CMIP6 GCMs simulations. It
is necessary to point out that when performing the current analysis, we only employed a
simple multiple models mean and did not consider the weights of the individual models.

We conducted an analysis of future precipitation changes using multiple indicators,
focusing on temporal variations and spatial distributions. Specifically, the precipitation
anomaly percentage was used to analyze the projected changes and spatial distributions
of annual precipitation under three scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) relative
to the historical reference period (1995–2014); Meanwhile, an examination was conducted
to assess the model’s agreement of the projected climate change signals. The change
signal was considered robust to be when ≥75% of the members agreed on the direction
of change [68,69]. Sen’s slope [70,71] and the Mann–Kendall significance (MK) test [72,73]
were used to explore the temporal variations and changes in trends of annual precipitation
in the time series. Uncertainty related to model differences were quantified in terms of the
signal-to-noise ratio (SNR) [74,75], which was defined as follows:

SNR =
M
σ

(6)

where M is the muti-data ensemble mean, and σ is the standard deviation. SNR > 1
indicated a higher level of consistency between models within an MME or BMME, i.e.,
higher confidence in the projection.

3. Results
3.1. Evaluation of CMIP6 Models
3.1.1. Climatology

In this section, we comprehensively assess the precipitation prediction performance
of CMIP6 models based on climatology, spatial variation, and interannual variability. For
climatology, the precipitation biases (Figure 2) and NMAE (Figure 3a) exhibited obvious
discrepancies between the 21 CMIP6 models. The relative bias between different models
and observed annual precipitation has a large spatial heterogeneity, and the reproduction
degree of annual precipitation of some models is better in the middle of the basin than
in the western plateau and eastern coastal area. Precipitation bias ranged from −0.92 to
2.93 mm/d, with more than half of the models showing “dry deviation” in the PRB. The
bias was smallest for the NorESM2-LM and largest for FGOALS-g3. Wet bias was seen in
all models in the western plateau, ranging from 6 to 244%. The top-10 models (NMAE < 0)
in terms of the climatology simulation were NorESM2-MM, KACE-1-0-G, TaiESM1, EC-
Earth3-Veg, MPI-ESM1-2-LR, EC-Earth3, MPI-ESM1-2-HR, INM-CM5-0, IPSL-CM6A-LR,
and MRI-ESM2-0.

3.1.2. Spatial Variation

A Taylor diagram is presented to visually display the spatial performances of selected
GCMs (Figure 3b). The spatial correlation coefficient, standardized standard deviations,
and standardized root mean square errors for the 21 GCMs range from 0.61 to 0.91, 0.47
to 1.33, and 0.41 to 0.8, respectively. For the spatial correlation coefficient, except for the
FGOALS-g3 model, the values are all greater than 0.8, indicating that the simulations of
precipitation in the PRB produced by the majority of CMIP6 models are reliable. Regarding
the values of standardized standard deviation, there is a significant dispersion among the
GCMs, with more than half of the models exhibiting lower standard deviations than those
observed, indicating that the majority of models underestimate the spatial variability in
precipitation within the basin. Figure 3a presents the TSS values for each GCM, which
range from 0.26 (FGOALS-g3) to 0.83 (NorESM2-MM), indicating substantial variations in
the abilities of different models to capture the spatial patterns of annual precipitation in
the PRB. More than 80% of the models have TSS values greater than 0.6, demonstrating
the abilities of CMIP6 climate models to capture the spatial patterns of precipitation in the
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PRB. Among these models, NorESM2-MM, KACE-1-0-G, TaiESM1, EC-Earth3-Veg, and
MPI-ESM1-2-LR perform well in terms of capturing the spatial patterns of precipitation.
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3.1.3. Interannual Variability

Figure 4 shows the bias of precipitation amount during the period 1995–2014 for each
month and model. Precipitation in the PRB is concentrated between April and September;
average monthly precipitation exceeds 100 mm in that period. From the figure, it is
evident that the KIOST-ESM and FGOALS-g3 models significantly underestimate monthly
precipitation, particularly during the summer season, with the relative bias being >30%.
This finding is consistent with the previous findings, indicating a clear dry bias in the
precipitation simulations of these two models in the PRB. On the other hand, the ACCESS-
CM2, ACCESS-ESM1-5, INM-CM4-8, INM-CM5-0, and MIROC6 models overestimate
summer precipitation in the basin. Based on the detailed explanation provided in Section 3,
the IVS was employed as an indicator to assess the models’ abilities to replicate interannual
variability. Figure 3a shows IVS values of precipitation between the observations and model
simulations. Except for the FGOALS-g3 and KIOST-ESM models, which have IVS values
greater than 2, all models have IVS values below 1, indicating that CMIP6 climate models
can accurately reproduce the interannual variation in precipitation in the PRB. Among these
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models, the models that exhibit the most accurate representation of interannual variability are
TaiESM1, KACE-1-0-G, NorESM2-MM, CMCC-ESM2, and NESM3. It is worth noting that
the best-performing models in terms of interannual variability were not consistent with those
noted in terms of spatial variation. Therefore, in order to obtain a comprehensive assessment of
CMIP6 GCMs, it is important to consider multiple metrics based on their specific applications.
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3.1.4. Overall Model Performance

To identify the best-performing models, the CRI was applied to rank the models
in terms of climatology, spatial pattern, and interannual variability by employing three
metrics (NMAE, TSS, and IVS). The NorESM2-MM, TaiESM1, EC-Earth3-Veg, KACE-1-0-G,
EC-Earth3, CMCC-ESM2, IPSL-CM6A-LR, MPI-ESM1-2-LR, MRI-ESM2-0, and NorESM2-
LM models had better performance in terms of precipitation predictions over the PRB; they
all had CRI values above the median (0.48) (Figure 5a).
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A single model alone cannot provide a comprehensive assessment of future projections;
the MME approach provides more robust predictions. Therefore, we ranked all of the
models in descending order based on their previous CRI values, and we constructed
21 skill-based BMMEs. The ensembles included the varying numbers of models (from 1 to
21), where BMME1 was the best single model with respect to the PRB and BMME21 denoted
the MME. We assessed the simulation performance of the 21 ensembles by calculating the
NMAE, TSS, and IVS to obtain the ranking of each ensemble, and the CRI was employed to
obtain the overall ranking of the ensembles. Figure 5b shows the historical simulated CRI
values of each ensemble. The result reveals that the performance of the BMME surpasses
the MME. Notably, the best ensembles used to simulate precipitation in the PRB is the
multi-model ensemble mean of four optimal models (BMME4), which was generated via
the NorESM2-MM, TaiESM1, EC-Earth3-Veg, and KACE-1-0-G models; the CRI was highest
for BMME4 at 0.92.
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3.2. GCMs Correction

We used the QM method to correct the outputs of the four best models (NorESM2-MM,
TaiESM1, EC-Earth3-Veg, and KACE-1-0-G) that make up the BMME4. Figure 6 illustrates
the spatial pattern of relative bias in the mean annual precipitation between the BMME4
and observation. The results demonstrate a noticeable reduction in the bias between
the bias-corrected BMME4 and the observed bias. For instance, prior to bias correction,
the annual mean precipitation rate in the upstream area of the PRB was significantly
overestimated, having a maximum deviation of 62.7%. However, after the bias correction,
the maximum deviation decreased to 7.73%. Meanwhile, we calculated the values of three
evaluation metrics (NMAE, TSS and IVS) for the bias-corrected BMME4 and BMME4
models. The NMAE, TSS, and IVS values for BMME are −0.04, 0.86, and 0.42, respectively;
after bias correction, these values changed to −0.24, 0.92, and 0.25, respectively. These
results indicated that the BMME4, after being bias corrected via the QM method, effectively
reduces the bias between the simulation and observation, and it exhibits better performance
across the perspectives of climatology, spatial patterns, and interannual variability than the
non-bias-corrected model. The bias-corrected BMME4 results can be employed to perform
future precipitation change analysis. Therefore, in the following analysis, the bias-corrected
BMME4 is used to explore the future precipitation changes in the PRB during the period
2025–2100.
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3.3. Future Changes in Annual Precipitation
3.3.1. Interannual Variability in the Projected Changes

The trends of annual precipitation under the three scenarios during the period 2025–2100
were analyzed using the MK test and Sen’s slope (Table 2). There was a noteworthy and
statistically significant increase in precipitation from 2025 to 2100, with a confidence level of
0.01, and the precipitation slopes exhibited differences between different scenarios. Specifi-
cally, the annual precipitation is predicted to increase by 22.42, 19.08, and 36.92 mm/decade
under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 pathways, respectively.

Table 2. Results of the trend analysis of annual precipitation projected for the period 2025–2100.

Index SSP1-2.6 SSP2-4.5 SSP5-8.5

z 3.67 ** 3.38 ** 5.48 **
Sen’s slope 22.42 19.08 36.92

Note: ** represents a confidence level of 0.01. The unit for Sen’s slope for precipitation is mm/decade.

The projected variations in average precipitation in the PRB over time are shown in
Figure 7; the precipitation anomaly percentage is expressed according to the average of
the historical period (1995–2014). Generally, the mean annual precipitation in the PRB
uniformly increased in the period 2025–2100, with some differences seen between the
three scenarios. For example, the annual precipitation anomaly percentage from 2025 to
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2100 ranged from −12.5 to 22.3% (SSP1-2.6), −13 to 23.1% (SSP2-4.5), and −13.7 to 42.6%
(SSP5-8.5), respectively. As time progressed, the precipitation anomaly showed a gradual
increasing trend under different time frames. By the end of the 21st century (2081–2100),
the annual average precipitation is projected to increase by 10.2, 6.7, and 17.4% under the
SSP5-8.5, SSP2-4.5, and SSP1-2.6 pathways, respectively.
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(dark blue), and SSP5-8.5 (dark red) simulations are shown.

3.3.2. Spatial Distribution of the Projected Changes

The spatial patterns of the annual precipitation trends during the period 2025–2100
under the three scenarios are shown in Figure 8. The annual precipitation shows a signifi-
cant increasing trend in most parts of the PRB in the 21st century under the three scenarios
(p < 0.05), being in the range 14.12–80.84 mm/decade. Notable spatial differences can be
seen across different scenarios, with the highest increases seen under the high-emission
scenario. For instance, the linear trends increase from the central part to the western and
eastern parts of the basin, with the highest growth trend (>30 mm/decade) being concen-
trated in the Beijiang River Basin under the SSP1-2.6 pathway. Under the SSP2-4.5 pathway,
the largest trends (>40 mm/decade) are mainly concentrated in the middle of the PRB,
and the rate of increase in the annual precipitation rate is projected to gradually decrease
from the middle to the periphery. With the increase in the emission concentration, the
entire basin will experience significant increases (p < 0.05) in the precipitation rate under
the SSP5-8.5 pathway, and the p-values for over 98% of the basin are less than 0.01. The
precipitation rate increases ranges from 17.3 to 80.8 mm/decade, and the highest trends
are concentrated in the Beijiang River Basin, the Dongjiang River Basin, and the Liujiang
River Basin.

Figure 9 shows the projected percentage variations in the annual precipitation rate in
the PRB for the near term (2025–2044), medium term (2045–2064), and long term (2081–2100)
under the three scenarios relative to the period 1995–2014. Overall, the projected precipita-
tion rate across nearly the entire basin showed a trend of increase compared to the historical
period in the three periods under all three scenarios, except for a slight decrease of less
than 6% in the central part of the basin and the Pearl River Delta in the near term in the
21st century. The projected precipitation in most of the PRB showed a robust increase
in the three periods, with much higher increases being seen in the long term than in the
near term. In the near term, the precipitation changes range from −5.2 to 11.8% under the
SSP1-2.6 scenario, −4.8 to 11.3% under the SSP2-4.5 scenario, and −4% to 15.6% under
the SSP5-8.5 scenario, with the spatial average increases reaching 3.7%, 2.6% and 13%,
respectively. Meanwhile, the projected precipitation increase is 2.7~23.8%, 2.1~21% and
9.7~36.9% in the long term relative to the period 1995–2014, with the spatial averages of
the increases reaching 13%, 9.4% and 20.1% under the SSP1-2.6, SSP2-4.5 and SSP5-8.5
pathways, respectively. The entire basin is projected to become wetter by the end of the 21st
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century under all three emission scenarios, with the highest growth rates observed under
the high-emission scenarios. Furthermore, the result showed that the higher increases are
projected to occur in the Xijiang River Basin.
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Figure 9. Annual precipitation anomaly in the Pearl River Basin in the (a–c) near term, (d–f) medium
term and (g–i) long term relative to the period 1995–2014 under three scenarios. A black dot in the
grid indicates that at least 80% of the models in the grid area make predictions in the same direction
as the signal.

3.3.3. Uncertainties of the Projected Changes

To analyze the uncertainty in precipitation projections, we calculated the SNR for the
BMME4 between the beginning, middle, and end of the century under three scenarios
(Figure 10). The SNR has been used to measure the spread and magnitude of discrepancies
within the bias-corrected BMME4 dataset. The SNR being < 1 indicates that the signal
is less reliable and the noise is significant. SNR being > 4 may suggest that the distribu-
tion differences between multiple datasets may be small, indicating a strong consistency
between the models. A larger SNR represents less uncertainty in the projected climate
change signals. The SNR used to project precipitation exceeds four under three scenarios
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(Figure 10) for the near, mid, or long term. This finding implies that the selected GCMs,
which have demonstrated an accurate representation of past precipitation patterns in this
study, have good consistency in terms of predicting future annual precipitation rates. In
the near term, the range of SNR for precipitation is the highest, with high values often
coexisting with areas of high precipitation rate change. This finding indicates that the
signal of future precipitation changes in this sub-region is robust. In the long term, the
range of SNR values narrows, and the magnitude of uncertainty under SSP5-8.5 becomes
greater than in other scenarios. The uncertainty in the projected precipitation rate in the
PRB gradually increases over time.
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4. Discussion

In this study, we evaluated the ability of CMIP6 models to simulate precipitation in
the PRB in terms of climatology, spatial patterns, and interannual variability using three
indices (NMAE, TSS, and IVS). The simulation results were compared to observations
obtained from 1995 to 2014. The results show that the CMIP6 GCMs can reliably reproduce
the precipitation characteristics in the PRB. However, there is some bias between the sim-
ulation and the observation. Most of the CMIP6 models had a dry bias in the PRB; this
phenomenon was also observed in previous published CMIP3 and CMIP5 models [76,77].
Despite the CMIP6 GCMs having an improved physical algorithm and more complicated
physical processes, they still have a dry bias in South China [78]. The bias might be at-
tributed to the uncertainty involved in simulating large-scale atmospheric circulations in
the models [79–82]. The underestimation of the meridional wind speed over the Tibetan
Plateau implies that less water vapor transportation to the southern regions of China occurs,
which may consequently contribute to a dry bias in precipitation [83]. In addition, we also
cannot overlook the impact of inherent and systematic biases relative to observations due
to a coarser resolution, imperfect boundary conditions, poor parameterizations, misrepre-
sentation of physical processes, etc. [25,84,85]. To mitigate the impacts of these biases, we
applied bias correction to the selected models based on the precipitation products, and the
result demonstrated that the QM method could reduce the bias of GCMs and effectively
improved the simulation performance of the GCMs.

To determine the optimal ensemble required to perform precipitation simulation in
the PRB, we calculated the CRI value of each ensemble according to the three indicators of
climatology, spatial patterns, and interannual variability. The MME had the lowest CRI
value (0.08), which indicates that it had the lower ranking among all ensembles for all three
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metrics, and the BMME approach outperformed the MME [60,66]. These results show that
the MME is very limited compared to other ensembles, and a straightforward average
ensemble derived from all models may not be optimal for climate change exploration in
PRB. However, the BMME, which is based on models with better skill, eliminates the effect
of poorly performing models and provides a highly reliable signal that greatly reduces
uncertainties [86]. Therefore, this study recommends applying the BMME approach to
carry out more reliable future projections. Furthermore, the ensemble of the four best
models (NorESM2-MM, TaiESM1, EC-Earth3-Veg, and KACE-1-0-G), which had the highest
CRI value (0.92), performed better than the best single model and all other ensembles,
suggesting that BMME4 may be a good choice to perform climate change studies in the PRB.
It should be noted that some of the models participating in CMIP have similarities in terms
of their physical process modules, and code sharing between models results in similar
numerical calculations and process expressions in certain aspects. Simple multi-model
ensembles can inevitably amplify the weights of certain biases. In the future, the ability of
the weighted MME to simulate precipitation should be further considered.

Precipitation projections can provide assistance with the implementation of integrated
watershed management and disaster prevention, as well as proactive responses to climate
change. Warming in the PRB is predicted to exceed 1 ◦C/decade [87]. Evapotranspiration
and precipitation in the basin would theoretically increase under global warming [39,88].
Min et al. [89] predicted that the precipitation in East Asia will exhibit a faster growth rate
than the global average in the 21st century. Our results based on CMIP6 models indicate
that precipitation in the PRB will significantly increase (p < 0.01) in the 21st century under
the three scenarios. The linear trend of precipitation changes reaches the highest level
(36.92 mm/decade) under the high-emission scenario SSP5-8.5, with all grid points having
passed the 95% significant test. Lu K. et al. [90] have also identified similar findings,
i.e., that precipitation under the SSP5-8.5 will show a wetter trend in the whole of China
than SSP1-2.6 and SSP2-4.5, whether it occurs in the near term or long term. The above
results also indicate the greater sensitivity of the climate system to anthropogenic warming.
The projected increase in precipitation is directly proportional to the magnitude of the
radiation force [91]. The precipitation pattern in the PRB is profoundly influenced by the
Asian summer monsoon, which projected a trend of earlier onset and later retreat in the
future owing to global warming [92–94]. The prolonged duration of the rainy season will
bring about increased terrestrial precipitation. We projected the high-growth areas to be
mainly located in the west of the basin, namely in the Xijiang River Basin, compared to
the baseline period (1995–2014), which helps to increase the water resources available
downstream. However, the Xijiang River Basin, with its complex terrain, will face increased
risks of mountainous disasters and floods due to longer durations of precipitation. This
issue poses threats to downstream water conservancy projects and the safety of residents.
Therefore, it is of great societal significance to further explore the future runoff changes
and the future trends of hydrological drought and flood risks in the basin in the context of
global warming based on existing studies of future precipitation changes.

The uncertainties in climate models have often been a limiting factor, particularly at a
local scale [95,96]. However, the uncertainties in GCMs are unavoidable [97]. The SNR has
been a key attribute in climate research, as it measures the level of consistency between
members of the multi-model ensemble by focusing on the spread between them [66,74,75].
A higher SNR implies a smaller range of uncertainty in terms of predicting climate change
signals. The BMME method with larger SNR values has been used in this study, which
argues that climate change projections generated via a subset of superior-performing
models are reliable. Additionally, the uncertainty in the projected precipitation in the
PRB gradually increases over time. Various factors, such as emissions scenarios and GCM
structures, still impact the uncertainty of the projected precipitation rate. Future studies
should give more consideration to ensemble approaches that assign weights based on the
performance of each GCM to obtain more reliable climate projections and explore more
varied approaches to reduce uncertainty.
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5. Conclusions

To the best of our understanding, our study was the first study to assess the ability
of 21 CMIP6 GCMs to reproduce historical precipitation in the PRB, using meteorological
observations related to climatology, spatial patterns, and interannual variability. In this
study, various model performance indices were used to comprehensively evaluate the
performances of single models, and model rankings were obtained. In this manner, we
determined the optimal number of GCMs required to complete ensemble generation. Then,
based on the multi-model ensemble mean of the optimal models (with bias correction),
the annual precipitation changes in the PRB under the three scenarios during the period
2025–2100 were predicted. The results show the following findings:

1. The evaluation showed that most of the CMIP6 models had a dry bias in the PRB.
For a given single model, performance varied greatly between indices. According
to all indices, the NorESM2-MM, TaiESM1, EC-Earth3-Veg, KACE-1-0-G, EC-Earth3,
CMCC-ESM2, IPSL-CM6A-LR, MPI-ESM1-2-LR, MRI-ESM2-0, and NorESM2-LM
models exhibited good performances in the PRB, with CRI values exceeding the
median (0.48).

2. We determined the optimal ensemble to perform precipitation simulation in the PRB.
When the ensemble number was set to 4 (NorESM2-MM, TaiESM1, EC-Earth3-Veg,
and KACE-1-0-G), precipitation in the PRB could be best simulated, and the CRI value
(0.92) was higher than that of any single model and all other ensembles, including the
MME. In addition, the QM method could effectively correct the bias of the selected
models, having a better performance than before bias correction in all metrics. The
corrected precipitation outputs can be used to model regional hydrological models
and simulate and predict the potential changes in runoff under different scenarios in
the future.

3. The annual precipitation in the PRB from 2025 to 2100 showed a significant increasing
trend under all three scenarios. Annual precipitation is projected to increase by 22.42,
19.08, and 36.92 mm/decade under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 pathways,
respectively. By the end of the 21st century, mean precipitation in the PRB will
increase by 13%, 9.4%, and 20.1% under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 pathways,
respectively; the increases will be higher the western area of the basin, namely the
Xijiang River Basin.

4. Uncertainties are inevitable in precipitation projections. In this paper, the BMME
approach was adopted to reduce such uncertainties, but there is still room for improve-
ment. To further improve the accuracy of precipitation projections, more methods
(such as assigning weight by considering the skill of the models) should be compared
in future studies.
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