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Abstract: Irrigation is one of the key agricultural management practices of crop cultivation in the
world. Irrigation practice is traceable on satellite images. Most irrigated area mapping methods
were developed based on time series of NDVI or backscatter coefficient within the growing season.
However, it has been found that winter irrigation out of growing season is also dominating in north
China. This kind of irrigation aims to increase the soil moisture for coping with spring drought
and reduce the wind erosion in spring. This study developed a remote sensing-based classification
approach to identify irrigated fields out of growing season with Radom Forest algorithm. Four
spectral bands and all Normalized Difference Vegetation Index (NDVI) like indices computed from
any two of these four bands for each of the seven scenes of GF-1 satellite data were used as the input
features in the building of separated RF models and in applying the built models for the classification.
The results showed that the mean of the highest out-of-bag accuracies for seven RF models was 94.9%
and the mean of the averaged out-of-bag accuracies in the plateau for seven RF models was 94.1%; the
overall accuracy for all seven classified outputs was in the range of 86.8–92.5%, Kappa in the range of
84.0–91.0% and F1-Score in the range of 82.1–90.1%. These results showed that the classification was
neither overperformed nor underperformed as the accuracies of all classified images were lower than
the model ones. This study also found that irrigation started to be applied as early as in November and
irrigated fields were increased and suspended in December and January due to freezing conditions.
The newly irrigated fields were found again in March and April when the temperature rose above
zero degrees. The area of irrigated fields in the study area were increasing over time with sizes of
98.6, 166.9, 208.0, 292.8, 538.0, 623.1, 653.8 km2 from December to April, accounting for 6.1%, 10.4%,
12.9%, 18.2%, 33.4%, 38.7%, and 40.6% of the total irrigatable land in the study area, respectively.
The results showed that the method developed in this study performed well. This study found on
the satellite images that 40.6% of irrigatable fields were already irrigated before the sowing season
and the irrigation authorities were supposed to improve their water supply capacity in the whole
year with this information. This study may complement the traditional consideration of retrieving
irrigation maps only in growing season with remote sensing images for a large area.
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1. Introduction

Irrigation is one of the key agricultural management practices of crop cultivation in
the world [1–4]. Irrigation reduces adverse effects of drought, increases crop yield, and
finally maintains a good agricultural production profit. Irrigation consumes a lot of water
resources and thus efficient water use management requires timely irrigation information
in large regions [5]. Irrigated crop land, irrigation events and irrigation water amount are
provide important information in the support of sustainable water resource management.
Studies on hydrology [6], water availability and water use [7], and their interaction with
agricultural production and food security [8], all require accurate information on the
location and extent of irrigated croplands. Detailed knowledge about the timing and the
amounts of water used for irrigation over large areas [3] is also of importance for various
studies and applications.

Irrigation practice is traceable on satellite images [9]. A few global irrigation maps
such as the Global Map of Irrigated Areas (GMIAs) [10] and the Global Irrigated Area Map
(GIAM) [11] have become available. Recently, Wu [12] retrieved a 30-m resolution global
maximum irrigation extent (GMIE) using the Normalized Difference Vegetation Index
(NDVI) and NDVI deviation (NDVIdev) thresholds in the dry and driest months. Zajac [13]
derived the European Irrigation Map for the year 2010 (EIM2010) underpinned by the
agricultural census data. Siddiqui [14] developed irrigated area maps for Asia and Africa
regions using canonical correlation analysis and time lagged regression at 250 m resolution
for the year 2000 and 2010. Zhang [15] produced annual 500-m irrigated cropland maps
across China for 2000–2019, using a two-step strategy that integrated statistics, remote sens-
ing, and existing irrigation products into a hybrid irrigation dataset. Zhao [16] developed
crop class based irrigated area maps for India using net sown area and extent of irrigated
crops from the census and land use land cover data at 500 m spatial resolution for the year
2005. Ambika [17] developed annual irrigated area maps at a spatial resolution of 250 m for
the period of 2000–2015 using data from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) and 56 m high-resolution land use land cover (LULC) information in India.
Gumma [18] mapped irrigated agricultural areas for Ghana using remote-sensing methods
and protocols with a fusion of 30 m and 250 m spatial resolution remote-sensing data.
Xie [19] mapped the extent of irrigated croplands across the conterminous U.S. (CONUS)
for each year in the period of 1997–2017 at 30 m resolution, using the generated samples
along with remote sensing features and environmental variables to train county-stratified
random forest classifiers annually.

Most irrigated area mapping methods above-mentioned were based on time series of
NDVI at a relatively low resolution of 250–1000 m. Disaggregating statistics data on the
grid is another way to generate the irrigation maps. For example, the European irrigation
map (EIM) [20] was created by disaggregating regional-level statistics on irrigated cropland
areas into a 100 × 100 m grid, using a land cover map and constrained by the Global Map
of Irrigated Areas (GMIAs) [10]. The remote sensing-based classification approach is also a
great way to produce the irrigated crop maps. Salmon [21] used supervised classification
of remote sensing, climate, and agricultural inventory data to generate a global map of
irrigated, rain-fed, and paddy croplands. Lu [22] tried to use pixel-based random forest to
map irrigated areas based on two scenes of GF-1 satellite images at 16 m in an irrigated
district of China, during the winter-spring irrigation period of 2018. Magidi [23] developed
a cultivated areas dataset with the Google Earth Engine (GEE) and further used the NDVI to
distinguish between irrigated and rainfed areas. A large variety of classification methods at
different scales and showing various levels of accuracy can be found in the literature [24–31].
Many applications and the tool of cloud-based and open source in classification have been
developed recently [32,33]. However, the cloudy contamination and revisit time of optical
satellite creates a major limitation to accurately identifying irrigation signature on the
imagery. SAR imagery is less impacted by the cloud and has the advantage of building a
long time series data to detect the irrigation signature. A number of studies [34–36] used
timer series of SAR images to detect the irrigation event. The fusion of optical and SAR time
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series images for classification is also progressing well in recent years [37–39] in order to
reduce the cloudy issue on the optical image. One study [40] assessed the value of satellite
soil moisture for estimating irrigation timing and water amounts.

All these above-mentioned studies were designed to identify the irrigation signature
mainly in growing season as crop develops. However, irrigation also happens out of
season due to various reasons, such as sufficient water supply out of season, cheaper water
prices, and lower energy prices as well as manpower availability. This kind of irrigation
practice should be given more attention as the winter irrigation is dominating in this region.
Therefore, this study aimed to develop a method to identify the irrigated fields and help
irrigation authorities know the irrigation situation before the growing season arrives to
improve their water supply capacity in the whole year so that the crop production may be
stably maintained. In this study area, it found a great number of fields already irrigated
in winter and in early spring, although fields are bare soil and large volumes of irrigation
water was applied to the fields. This kind of irrigation practice aims to keep enough soil
moisture for sowing crops at the beginning of growing season in spring to avoid irrigation
water competition and in preparation for coping with spring drought. This case also
complements the consideration from those researchers who are developing irrigation maps
within growing season for a large area or at a global level.

2. Study Area and Data
2.1. Study Area

The study area is located in the midstream of the Fen River, at the center of Shanxi
province in north China (Figure 1). This region, also known as the Jinzhong basin, spans
approximately 150 km in length and 30–40 km in width, covering a total area of approxi-
mately 5000 km2. Three prominent rivers—Fen River, Wenyu River, and Xiao River—grace
the landscape. The practice of irrigation has deep historical roots here, spanning over
a millennium. The irrigation domain of the Fen River covers 1046.1 km2 of arable land,
benefiting three cities and a vast agricultural community of a million farmers [41]. The
Wenyu River, a tributary of the Fen River, irrigates an area of 341.8 km2 of arable land [42].
Similarly, the Xiao River irrigates an area of 221.7 km2 of arable land [43]. These irrigation
facilities remain integral, with flooding irrigation still prevailing through the irrigating
channels that nourish the fields. The study area holds prominence as a key grain produc-
tion hub within Shanxi province, significantly contributing to regional food security. Its
agricultural landscape is diverse, incorporating staple crops such as maize, sorghum, and
winter wheat. Orchards, vegetable greenhouses, and other crop fields further enrich its
agricultural mosaic. The conventional growing season extends from May to September,
yet this area supports winter wheat cultivation throughout the winter months. Planting
commences from early to mid-October. After the winter wheat harvest, short-lived crops
are sown to evade early autumn frost. Presently, a few fields are dedicated to winter wheat
cultivation, while most fields remain fallow during winter. This has led to the application
of winter irrigation to these fallow fields. Summer witnesses the cultivation of maize in
most fields, a crop that particularly benefits from winter irrigation. Climatically, the study
area falls within the temperate continental seasonal climate zone, experiencing distinct
seasons—spring, summer, autumn, and winter. Notably, winter and spring receive less
rainfall compared to the pronounced rainy season during summer.
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Figure 1. The location of the study area: (a) shows the Shanxi province in China, (b) shows the study
area in Shanxi province, and (c) shows the study area illustrated on the GF-1 image on 29 April 2023,
respectively.

2.2. Satellite Data and Processing

GF, the acronym of Gaofen in Chinese and high resolution in English, is one of the key
Earth observation programs in China. As the first satellite of the Chinese High Resolution
Earth Observation System, GF1 Satellite was successfully launched on 26 April 2013 [44].
Four sets of multiple spectral cameras (wide field of view, WFV) were equipped onboard
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GF-1 and had a mosaic coverage spanning 800 km at 16-m spatial resolution and a 4-day
revisit frequency [45]. As one of limitations in comparison with other high resolution
satellite imagery, WFV has only four bands listed in Table 1. The L1B data of GF-1 WFV
data in this study were collected from National Satellite Meteorological Center, China. After
the visual check of all images, the images with less than 25% cloud coverage were selected
and processed for this study. Thereafter, the FLAASH approach was used to perform
the atmospheric correction [46]. The RPC Orthorectification approach [46] was used to
perform the geometrical correction from L1B data. Considering that GF-1 had relatively
large geometric errors, a 10 m Sentinel-2B image obtained on 17 October 2022 was used as
the reference image to co-register all GF-1 images with the image chip matching method.
The results for the co-registration of all GF-1 images will be reported in another article in
preparation. The images in the same day were mosaiced and tailored to the study area.
Finally, the available images were listed in Table 2. Due to partial cloud contamination,
the satellite data in November and February were removed and the final valid data fit in
seven dates. In order to make it compatible with other high resolution satellite data, like
Sentinel-2 and Landsat 8/9, the spatial resolution of GF-1 WFV in this study was set to
15 m, not 16 m as expected normally.

Table 1. Band Specification and Spatial Resolution of GF-1 WFV.

Band Number Central Wavelength (nm) Bandwidth (nm) Resolution (m)

1 485 70 16

2 555 70 16

3 660 60 16

4 830 120 16

Table 2. The used GF-1 WFV data.

No. 1 2 3 4 5 6 7

Date 27 December 2022 4 January 2023 25 January 2023 3 March 2023 27 March 2023 8 April 2023 29 April 2023

2.3. Field Data and Training Samples

A 3-day field campaign was carried out on 24–26 February 2023. During the field
campaign, the georeferenced pictures were taken with a GPS camera along the roads
following predefined itineraries in the study area. At home, the land cover classes with
the longitude and latitude coordinates were retrieved by visually screening pictures with
the tool developed for the photo data interpretation [47–49]. During the field campaign,
irrigated fields were partially frozen and waterlogged and it was also easy to identify on
the satellite images. The final output of this process was a formatted file gathering all GPS
points with corresponding classes, class codes, author, roadside (left or right), collecting
dates, and times and the corresponding picture file names. Finally, 3616 ground truth
pictures were valid and with spatial reference. All those sample points were distributed
over the study area as shown in Figure 2.

The field samples include built-up, water body, tree, orchards, irrigated filed, bare
land, winter wheat, green house, and others. These samples are point-based ground truth
and not ideally and evenly distributed in the study area. These field samples were used for
further collecting, more and well-distributed training and validation samples by visually
interpreting satellite images. The final samples were randomly separated into two groups
with a ratio of 70% to 30%. 70%of the samples were used to build the classification model
and perform the classification, while 30% were used for the validation of classified images.
Following our previous experiences [47–49], the distance between two samples was taken
into account in the sample separation process. In case both were too close, all pixels in
the adjacent area were chosen as either training or validation. For instance, all samples
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at the level of image pixel taken in one field represented only one class, so it is good to
treat them as one big sample. The threshold of the distance in this study was set as 900 m.
This step avoids the strong spatial correlation among samples. Table 3 lists the description
of all classes identified for final classification. Table 4 lists the number of samples and
the proportion for each class at 15-m level for this study. Irrigation 1 represents the fields
waterlogged or frozen in winter after the large volume flooding irrigation. Irrigation 2
represents the fields with the high soil moisture but without surface water. Two conditions
explicated represented water amount difference in the fields. Irrigation 1 meant there was
too much water in the fields. Due to a large volume of water applied to the field and
weak evaporation in winter, no classification samples for Irrigation 2 were identified on
17 December, 4 January, and 25 January. In the other dates, the two kinds of irrigation
conditions in the field were able to be identified.
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Figure 2. The distribution of field samples in the study area.

Table 3. Land cover types and their brief descriptions.

Class Acronym Description

Cropland Irrigation 1 I1 Waterlogged or Frozen field after irrigation
Irrigation 2 I2 Field with high soil moisture after irrigation

Winter Wheat WW Winter wheat field
Straw Covered Cropland SC Cropland covered by the straw or other residues out of season

Bare Cropland BC Bare and no covered cropland out of season
Greenhouse GH Greenhouse for vegetable or other cash crops

Orchards OC Fruit trees plantation
Plantation PL Cropland planted with wood or shrub trees

Non
Cropland

Built-up BU Artificial area including building, road, and factory
Barren Land BL No vegetation covered area in rock mountain

Deciduous Forest DF Deciduous tree and shrub
Evergreen Forest EF Coniferous tree and shrub

Water Body WB Lake, River, Dam, and other Water body
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Table 4. The number of training samples and the proportion for each class.

DATE\
Class

27 December 2022 4 January 2023 25 January 2023 3 March 2023 27 March 2023 8 April 2023 29 April 2023

No. (Pixel
Counts)

Proportion
(%)

No. (Pixel
Counts)

Proportion
(%)

No. (Pixel
Counts)

Proportion
(%)

No. (Pixel
Counts)

Proportion
(%)

No. (Pixel
Counts)

Proportion
(%)

No. (Pixel
Counts)

Proportion
(%)

No. (Pixel
Counts)

Proportion
(%)

BC 1898 9.2 1705 7.9 1604 7.8 1466 7.1 1602 8.3 1569 7.8 1485 7.7

BL 1071 5.2 1015 4.7 1045 5.1 1085 5.2 1052 5.5 957 4.8 1014 5.3

BU 7349 35.6 6836 31.8 7662 37.3 7502 36.1 6873 35.6 7403 36.8 7077 36.8

DF 1466 7.1 1214 5.6 1339 6.5 1402 6.7 1319 6.8 1347 6.7 1259 6.5

EF 2067 10 2016 9.4 2067 10.1 2089 10 2139 11.1 1801 8.9 2060 10.7

GH 704 3.4 2561 11.9 695 3.4 745 3.6 687 3.6 514 2.6 700 3.6

I1 1588 7.7 1523 7.1 1562 7.6 879 4.2 812 4.2 459 2.3 371 1.9

I2 0 0 0 0 0 0 1327 6.4 1408 7.3 2587 12.8 1461 7.6

OC 342 1.7 436 2.1 402 2 347 1.7 374 1.9 399 2 531 2.8

PL 121 0.6 204 0.9 108 0.5 167 0.8 158 0.8 112 0.6 118 0.6

SC 1111 5.4 1051 4.9 829 4 770 3.7 391 2 164 0.8 155 0.8

WB 2278 11 2407 11.2 2114 10.3 2412 11.6 1806 9.4 1968 9.7 2140 11.2

WW 622 3.1 546 2.5 623 3 602 2.9 674 3.5 858 4.2 879 4.5

Total 20,617 100 21,514 100 20,544 100 20,793 100 19,295 100 20,138 100 19,250 100
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3. Methodology
3.1. Classification Flowchart

Figure 3 presents the flowchart for this study. The GF-1 WFV satellite data from November
2022 to April 2023 were collected and processed. The main processing steps include calibration,
geometric, and atmospheric correction. The calibration coefficients are available from the web
portal [50]. The DN values in the images were converted to reflectance in the calibration
step. The RPC Orthorectification approach [46] was applied to do geometric correction
of all GF-1 L1b data. Thereafter, the FLAASH approach [46] was used to perform the
atmospheric correction. In order to make all GF-1 images geometrically match each other,
all images were co-registered with one scene of 10 m Sentinel-2 image obtained on 17
October 2022. Then, all finely co-registered images were mosaiced based on observing date
and tailored to the study area.
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Figure 3. The flowchart for this study.

At the same period, the field data were collected. In general, these field data were not
enough for the classification in terms of spatial distribution and statistical amount. In order
to make well-spatially distributed training samples, these geotagged photos were linked
with the satellite image to help skilled interpreters to visually identify more samples on
satellite images. The classification samples corresponding to each image were separated
into training and validation sets by a ratio of 70% to 30%.

In the next step, a Random Forest classifier was used to execute the classification
with each image and corresponding training samples. The classified image was checked
by validation samples based on error confusion matrix and expert knowledge visually.
If the classification accuracy is not acceptable, tuning the training samples may improve
the classification quality. Referring to F1-Score for each type, the classification samples
were further tuned by spatially increasing or removal of some bad quality samples until
the result was acceptable. Once the accuracy is acceptable, the final classified map is
output, and the final accuracy is reported. Considering the irrigation changes over time,
the training samples and validation samples were collected separately based on each image.
The classification was carried out one image by one image and not worked with time
series [51,52]. When all classified images were done, the final maps and statistics were
made for further analysis.
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3.2. Classifier Algorithm

The supervised classification algorithm is widely used at present. In supervised
classification, the training samples must provide an association with the input images.
The final class for each pixel is decided by the classifier. Many literatures [33,47,51,52] has
proved that the accuracy from Random Forest (RF) often overperforms other supervised
classifiers, e.g., Maximum Likelihood (ML) and Support Vector Machine (SVM). RF has
become the popular classifier in recent years as it is robust and easy to apply and only few
parameters need to be set and tuned accordingly. Therefore, RF was selected for this study.
RF is a supervised machine learning algorithm and a kind of ensemble of the decision trees.
RF can handle high dimension of and redundant input satellite data and does not have
preference to the certain satellite data. What is of importance in executing RF is that it has
to pay attention to the overfitting of the classification model. The detailed algorithm of
RF may refer to the literature [53–57]. RF has only two key parameters to be considered.
One is the number of features and another is the number of trees. RF will use the certain
number of randomly selected features to build the model. It is not the case that the higher
the accuracy, the more features are used. The highest accuracy may be reached with only a
contained number of features. The drawback is that the higher number of features increases
computing time. In this study, the number of features was set as the square root of the
number of input bands of the image. The accuracy will reach the plateau after the certain
number of the tree and there is no need to set a very high number. After the tests, 100 was
set for the number of the tree. More features may increase the accuracy of the classified
image. Every two spectral bands may be used to calculate a NDVI like index following our
previous study [49]. So, in this study, all possible NDVI like indices were calculated and
added with four spectral bands as the input features for the final classification.

3.3. Validation Methods

The error confusion matrix is usually used to quantitatively evaluate the accuracy of
the classified image. The overall accuracy, OA, the Kappa, and F1-Scores may be further
calculated based on the error confusion matrix. This study used above-mentioned indices
to evaluate the accuracy. The formulars of computing OA, the Kappa, and F1-Scores may
refer to the literatures [47–49].

In this study, the validation of each classified images was carried out separately with
its independent validation samples. The statistic was computed by counting the number of
pixels for each class.

4. Results and Analysis
4.1. The Classification Model Accuracy Analysis

The accuracy of the classified model determines the top boundary of accuracy that
classification may reasonably reach. The higher the model accuracy goes, the higher the
classification accuracy may reach. Figure 4 shows the accuracies of out-of-bag of all models
of Random Forest algorithm. The accuracy of out-of-bag is increasing as the number of
trees increases and the accuracy reaches the plateau after 30 tries. In this study, it should
be reasonable as the number of trees was set to 100 according to Figure 4. There were
slight differences among all these models but the difference was in a range of about 2%
that meant it was quite small. Figure 5 shows the averaged value and maximum value of
model accuracy in the range of plateau taken from 50 to100 in this study. The averaged
highest accuracy for seven models was 94.9% and the averaged mean accuracy was 94.1%.
These data show that all models were good and acceptable.



Remote Sens. 2023, 15, 4599 10 of 16

Remote Sens. 2023, 15, x FOR PEER REVIEW  9  of  16 
 

 

index following our previous study [49]. So, in this study, all possible NDVI like indices 

were calculated and added with  four spectral bands as  the  input  features  for  the final 

classification. 

3.3. Validation Methods   

The error confusion matrix is usually used to quantitatively evaluate the accuracy of 

the classified image. The overall accuracy, OA, the Kappa, and F1-Scores may be further 

calculated based on the error confusion matrix. This study used above-mentioned indices 

to evaluate the accuracy. The formulars of computing OA, the Kappa, and F1-Scores may 

refer to the literatures [47–49]. 

In this study, the validation of each classified images was carried out separately with 

its independent validation samples. The statistic was computed by counting the number 

of pixels for each class. 

4. Results and Analysis 

4.1. The Classification Model Accuracy Analysis 

The accuracy of the classified model determines the top boundary of accuracy that 

classification may reasonably reach. The higher the model accuracy goes, the higher the 

classification accuracy may reach. Figure 4 shows the accuracies of out-of-bag of all mod-

els of Random Forest algorithm. The accuracy of out-of-bag is increasing as the number 

of trees increases and the accuracy reaches the plateau after 30 tries. In this study, it should 

be reasonable as the number of trees was set to 100 according to Figure 4. There were slight 

differences among all  these models but  the difference was  in a range of about 2%  that 

meant it was quite small. Figure 5 shows the averaged value and maximum value of model 

accuracy in the range of plateau taken from 50 to100 in this study. The averaged highest 

accuracy for seven models was 94.9% and the averaged mean accuracy was 94.1%. These 

data show that all models were good and acceptable. 

 

Figure 4. The accuracies of models corresponding to each image. Figure 4. The accuracies of models corresponding to each image.

Remote Sens. 2023, 15, x FOR PEER REVIEW  10  of  16 
 

 

 

Figure 5. The accuracies of models corresponding to each image. 

4.2. The Classified Images and Accuracies 

GF-1 WFV has only four bands, namely blue, green, red, and near  infrared. These 

bands are the basic features that may be used for the classification. However, according to 

our previous study [49], every two spectral bands of four bands were used to calculate a 

NDVI like index and added as the input features. Figure 6 shows the classified images for 

all seven dates. The accuracies are listed in Table 5. 

According to Table 5, in terms of overall classification performance, the OA for 7 clas-

sifications was between 86.8 and 92.5, Kappa between 84.0 and 91.0, F1-Score between 82.1 

and 90.1. After  the visual check of all classified  images and  looking at all  these overall 

performance  accuracy  indictors,  it  concluded  that  these  classifications were well-per-

formed. As irrigation is the focus for this study, in the training phase, two kinds of irriga-

tion conditions were identified. Irrigation 1 represented the fields with surface water or 

frozen ice and Irrigation 2 represented the fields without surface water but with high soil 

moisture. The F1-Scores for irrigation 1 on 17 December, 4 January, and 25 January were 

very high. In the other four dates, two kinds of irrigation condition were classified and the 

F1-Scores were not kept at the same height. The F1-Scores for irrigation 1 decreased a little 

and the F1-Scores for Irrigation 2 were in a large range of 72.7 to 95.8. It proves these two 

types were still able to be separated. 

Figure 5. The maximum and mean accuracies of models corresponding to each image in the plateau.



Remote Sens. 2023, 15, 4599 11 of 16

4.2. The Classified Images and Accuracies

GF-1 WFV has only four bands, namely blue, green, red, and near infrared. These
bands are the basic features that may be used for the classification. However, according to
our previous study [49], every two spectral bands of four bands were used to calculate a
NDVI like index and added as the input features. Figure 6 shows the classified images for
all seven dates. The accuracies are listed in Table 5.
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Table 5. Accuracies for all dates.

27 December 2022 4 January 2023 25 January 2023 3 March 2023 27 March 2023 8 April 2023 29 April 2023

OA 92.5 90.3 89.8 88.8 91.1 86.8 90.9
Kappa 91.0 88.0 88.0 87.0 89.0 84.0 89.0
F1-Score 90.1 85.9 84.2 83.7 86.7 82.1 86.5
I1 97.2 97.1 92.2 88.1 87.2 91.7 86.0
I2 - - - 72.7 75.6 80.3 95.8
WW 93.4 75.9 73.0 82.9 97.6 83.5 95.1
SC 85.7 79.3 81.4 59.1 61.6 55.4 63.3
BC 83.4 75.4 73.2 60.5 74.0 82.4 86.3
GH 91.9 87.5 81.6 96.1 96.7 81.0 87.2
OC 86.8 93.7 73.4 87.2 82.2 83.2 96.1
PT 77.1 63.0 63.7 77.5 71.7 39.2 68.2
BU 94.1 92.0 93.4 92.4 93.6 90.3 93.7
BL 89.7 91.5 95.5 86.4 95.3 59.3 86.3
DF 85.8 82.0 95.4 89.6 94.3 88.7 82.4
EF 98.1 98.3 99.2 98.4 99.4 95.1 91.9
WB 97.5 95.0 95.5 97.0 97.3 93.8 93.3

According to Table 5, in terms of overall classification performance, the OA for 7 clas-
sifications was between 86.8 and 92.5, Kappa between 84.0 and 91.0, F1-Score between 82.1
and 90.1. After the visual check of all classified images and looking at all these overall
performance accuracy indictors, it concluded that these classifications were well-performed.
As irrigation is the focus for this study, in the training phase, two kinds of irrigation condi-
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tions were identified. Irrigation 1 represented the fields with surface water or frozen ice
and Irrigation 2 represented the fields without surface water but with high soil moisture.
The F1-Scores for irrigation 1 on 17 December, 4 January, and 25 January were very high.
In the other four dates, two kinds of irrigation condition were classified and the F1-Scores
were not kept at the same height. The F1-Scores for irrigation 1 decreased a little and the
F1-Scores for Irrigation 2 were in a large range of 72.7 to 95.8. It proves these two types
were still able to be separated.

4.3. The Irrigated Area Analysis in Watersheds

According to the time series of satellite images, it found that irrigation carried out in
early November when quite a few fields were irrigated and unfortunately there was no
valid GF-1 satellite image which covered the entire study area available during this period
for this study. As it was in winter and the temperature went down to below zero gradually,
the irrigated fields were covered by frozen ice due to the cold temperature. The irrigated
fields found were increased and suspended in December and January. Ice starts to melt
in late-February, and the newly irrigated fields were found again in March and April as it
was able to apply irrigation. The largest irrigation area was identified in late-April as the
sowing happened in May and the fields must dry up for sowing. Based on these classified
images, the irrigation area on each date was calculated for each watershed. Table 6 lists the
statistics of irrigation conditions on seven dates for three watersheds in the study area.

Table 6. The irrigation area for 3 watersheds (Unit: km2).

Fen River Wenyu River Xiao River

Sum I1 I2 I1 I2 I1 I2

27 December 2022 98.6 65.8 - 22.9 - 9.9 -
4 January 2023 166.9 115.1 - 33.9 - 17.9 -
25 January 2023 208.0 143.1 - 37.6 - 27.3 -
3 March 2023 292.8 10.2 166.1 3.4 98.5 1.1 13.5
27 March 2023 538.0 6.2 306.4 1.3 166.0 0.3 57.8
8 April 2023 623.1 9.4 436.2 0.7 107.2 0.3 69.3
29 April 2023 653.8 5.8 453.1 1.1 120.5 0.9 72.4

Fen River irrigation area is the largest one in the study area. The area of irrigated
fields identified in frozen winter season accounted for 13.7% of total irrigatable land and
the area of irrigated fields before sowing increased and accounted for 43.9%. As a tributary
of Fen river, Wenyu river irrigable land ranks the second. The area of irrigated fields in
winter reached 11.0% of total irrigatable land, and the area of irrigated fields before sowing
increased to 35.6%. Xiao river irrigation area is the smallest one. The area of irrigated fields
identified in frozen winter season accounted for 12.3% of total irrigatable land and the area
of irrigated fields before sowing increased and accounted for 33.0%.

5. Discussion
5.1. The Challenges of Identifying Irrigation Outside the Growing Season

Our purpose was to know how many and in which fields irrigation has applied before
the sowing season in May in spring. Many irrigated fields were able to be retrieved in the
classification as the training samples were able to be visually identified. This case study
has achieved its original research purpose and may complement the existing methods of
mapping irrigation fields in growing season.

However, sometimes, it is not able to make the training samples inclusive. Shallow
surface water or soil water in a few irrigated fields evaporates over time and the water in
the fields gradually disappears as the air temperature goes up in spring. To distinguish
this kind of dry up of irrigated field from other classes becomes indistinct due to the long
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interval between two satellite images. These kinds of irrigated fields will be omitted in the
classified results as there are no training samples represented in this scenario.

This study was able to identify the irrigated fields but it did not answer which day
irrigation was applied and how much water was applied. Both questions were not able to be
answered in this study and they should be taken into consideration in the future research.

5.2. The Consideration in This Irrigation Mapping

In this study, only 7 scenes of GF-1 images out of growing season were valid and
it witnessed the real capacity of GF-1 alone for identifying the irrigation fields. Optical
satellite image is prone to cloud contamination. The better the results will be, the more
multiple sources satellite images are available. Ideally, if daily and high-quality satellite
images are available, it can identify the new irrigation event in time. In this sense, the
integration of many more other high resolution satellite data, such as Sentinel-1/2 and
Landsat8/9, should improve this study considerably.

In this study area, farmers conduct irrigation to the bare arable land as soon as the
winter comes. It is easier to visually identify the irrigated field from bare land than
vegetated fields. Two sets of irrigation scenarios in the fields were distinguished. Irrigation
1 represents the fields waterlogged or frozen in winter after the large volume flooding
irrigation. Irrigation 2 represents the fields with the high soil moisture but without surface
water. Due to the cold temperature and less evaporation in winter, no classification samples
for Irrigation 2 were identified on the images of 17 December, 4 January, and 25 January
while all irrigation samples represented Irrigation 1 as the irrigated fields were frozen on
these dates. In the other four dates, the two kinds of irrigation conditions in the field were
able to be identified.

5.3. The Winter Irrigation Impact on Ecosystem

The winter irrigation was a kind of cultivation management in the region in order to
increase crop yield in the next year. Irrigation out of growing season has the advantage of
protecting the ecosystem. It may help reduce the wind erosion due to wet soil in the field
surface when the strong wind happens in spring. But a large volume of water applied also
brings some adverse ecological effects on the farming system. Sowing in Spring 2023 had
to be postponed due to wet soil in the field. On the image of 29 April 2023, it still found
surface water on the fields. These fields were not able to be sowed in time. Therefore, the
answer to the economic and minimum amount of water put into the field also needs to be
further investigated. Soil salinization is another adverse effect induced by irrigation. Large
volume of water speeds up evaporation in spring and brings the salt in deep soil back to
the field surface. These effects on the ecological system imposed by irrigation out of season
are worth further investigating in the near future.

6. Conclusions

This study explored the remote sensing-based classification approach to identify
irrigated fields out of growing season in the winter season of 2022 to 2023. The proposed
classification approach took four spectral bands and all NDVI like indices computed from
any two of these four bands of GF-1 satellite data as the input features of the Random
Forest algorithm. Regarding the two key parameters of RF, the number of features was
set as the square root of the number of input bands of the image while the number of the
tree was set to 100. The classification samples corresponding to each image were obtained
by visual interpretation with the support of collected field data and then separated into
training and validation sets by a ratio of 70% to 30%. Finally, the irrigated fields along with
time in Jinzhong basin of Shanxi province, China were retrieved on the seven scenes of
valid GF-1 satellite images, respectively.

The results show that the method developed in this study performed well and no
overperformance and underperformance were found as the accuracies of classified image
were not higher or far lower than that from models. The validations showed that the mean
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of the highest out-of-bag accuracies for seven RF models was 94.9% and the mean of the
averaged out-of-bag accuracies in the plateau for seven RF models was 94.1%; the overall
accuracy for all seven classified outputs was in the range of 86.8–92.5%, Kappa in the
range of 84.0–91.0%, and F1-Score in the range of 82.1–90.1%. The lowest OA was 86.8% in
comparison with the model accuracy of 92.9%, and the highest OA 92.5% in comparison
with the model accuracy of 94.4%. The F1-Scores for irrigation 1 on 17 December, 4 January,
and 25 January were very high and in the range of 92.2–97.2%. On the other four dates,
the F1-Scores for Irrigation 1 decreased slightly and in the range of 86.0–91.7%, and the
F1-Scores for Irrigation 2 were in a large range of 72.7 to 95.8%.

It also found that irrigation in the study area was carried out in early November but
the quite few fields started to be irrigated, and the number of irrigated fields increased and
suspended in December and January when the irrigated fields were covered by frozen ice
and it was not able to apply irrigation due to low temperature. The irrigation was carried
out again as the temperature went up in late February. The irrigation extended dramatically
in March and April. The largest irrigation area was identified in later April as the sowing
happened in May and the fields must dry up for sowing. The area of irrigated fields in
the study area were increasing over time with sizes of 98.6, 166.9, 208.0, 292.8, 538.0, 623.1,
653.8 km2 from December to April, accounting for 6.1%, 10.4%, 12.9%,18.2%, 33.4%, 38.7%,
and 40.6% of the total irrigatable land in the study area, respectively.

This case study shows that there is another window out of growing season to map
the irrigated fields using Random Forest classification algorithm. This knowledge may
complement the traditional consideration of retrieving irrigation maps only in growing
season with remote sensing images for a large area. It also found too much water was
applied in this study area and a few wet fields were not able to be sowed in time. The
positive and adverse effect on the ecologic system imposed by irrigation out of season is
worth being further investigated in the near future in order to support sustainable water
resources management in the region. If the dense and even-distributed time series of valid
satellite images may be made available, the irrigated fields over time may be well identified
with the proposed approach. It frequently provides better irrigation information to the
water resource authority and then the water resource authority may evaluate the excess
water usage and its ecological consequences.
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