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Abstract: The new type of multi-temporal global land use data with multiple classes is able to provide
information on both the different land covers and their temporal changes; furthermore, it is able to
contribute to many applications, such as those involving global climate and Earth ecosystem analyses.
However, the current accuracy assessment methods have two limitations regarding multi-temporal
land cover data that have multiple classes. First, multi-temporal land cover uses data from multiple
phases, which is time-consuming and inefficient if evaluated one by one. Secondly, the conversion
between different land cover classes increases the complexity of the sample stratification, and the
assessments with different types of land cover suffer from inefficient sample stratification. In this
paper, we propose a spatiotemporal stratified sampling method for stratifying the multi-temporal
GlobeLand30 products for China. The changed and unchanged types of each class of data in the
three periods are used to obtain a reasonable stratification. Then, the strata labels are simplified by
using binary coding, i.e., a 1 or 0 representing a specified class or a nonspecified class, to improve
the efficiency of the stratification. Additionally, the stratified sample size is determined by the
combination of proportional allocation and empirical evaluation. The experimental results show that
spatiotemporal stratified sampling is beneficial for increasing the sample size of the “change” strata
for multi-temporal data and can evaluate not only the accuracy and area of the data in a single data
but also the accuracy and area of the data in a multi-period change type and an unchanged type. This
work also provides a good reference for the assessment of multi-temporal data with multiple classes.

Keywords: accuracy assessment; spatiotemporal stratified random sampling; area estimation;
GlobeLand30

1. Introduction

Land cover and land cover change data are essential basic information and key pa-
rameters for global climate change, the ecological assessment of natural resources, and
the monitoring of geographical conditions [1,2]. Moreover, they help to determine water
balance, the carbon cycle, and energy exchange [3–5]. Land cover change is an essential
prerequisite for the implementation of global initiatives in sustainable development and
for the preservation of biodiversity and ecosystem functions [6]. Land cover is also a
direct reflection of the interaction between human activities and nature. For example, the
spatial distribution and pattern of land cover also affect economic conditions, health, and
wealth [2,7,8]. Providing timely and effective information pertaining to global, national,
and regional data on land cover and land use change can be important. Maps for different
time periods usually provide the basis for monitoring changes in land cover, and they can
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take advantage of a sampling approach to land cover change monitoring. A sampling-based
assessment provides uncertainty in terms of the data product, which is very important in
the development and application of remote sensing technology. Firstly, the analysis of the
accuracy assessment will enhance the confidence of the relevant applications using remote
sensing data products. Then, remote sensing products can be a reliable information source
to support many types of applications at the global, national, and regional scales, such as
global climate change, the ecological assessment of natural resources, and the monitoring
of geographical conditions challenges, such as global change [9–11]. Secondly, the accuracy
assessment indicates various sources of errors in the remote sensing data products, which
can provide good feedback for remote sensing technology. Based on accuracy assessments,
remote sensing technology can be further improved.

Accuracy verification is a crucial technique for assessing the accuracy and area of
high-resolution land cover data at both the global and regional scales [12]. A robust and
statistically evaluated map serves as an estimation of classification accuracy, and it is
expressed in an overall and per-category design-based inference [2,13,14]. Sampling-based
accuracy assessments extend to area estimation, which has a more direct economic impact
on land cover, and these areas can range from cropland, forest, artificial surfaces, etc. Due
to classification errors, most pixels that change attribute labels correspond to classification
errors rather than land cover changes, and area estimations that use a direct pixel-based
counting method are biased [15]. The good practice guidelines emphasize that land cover
data and multi-temporal land cover data should be estimated based on reference data such
that the estimates are unbiased [16].

Land cover data products provide a strata basis for post-hierarchical estimations,
which are used to reduce standard errors. At present, domestic and foreign scholars
mainly study the accuracy estimation methods of multiclass land cover data in single
data and multi-temporal single-class land cover data. There are few studies on how
to reasonably stratify multi-temporal and multiclass land cover data. Tang presented a
framework with which to assess the accuracy of the near real-time monitoring of tropical
forest disturbances, which was based on stratified sampling, and this was achieved by
combining three mapped datasets for 2013, 2014, and 2015 (which were produced by
Fusion2, near real-time continuous-change detection and classification (NRT-CCDC), and
Terra-I, respectively [4]). Wickham verified the accuracy of NLCD2016 and NLCD2019 land
cover and evaluated all of the categories of unchanged and changed strata together [17,18].
The original changed strata did not contain the content of the later changed strata so as to
achieve the purpose of effective stratification [17,18]. Arévalo stratified six stable land cover
strata, five dynamic land change strata (which represented the 2001–2016 period), and one
buffer stratum to reduce the impact of the missing errors in the continuous monitoring of
land change activities and the postdisturbance dynamic tests of Landsat time series [19].

Although these products have been validated for accuracy using various methods,
the methods employed are not suitable for multi-temporal and multiclass land cover data
products. Due to the rapid accumulation of multi-temporal and multiclass land cover
data, the amount of data is large, and the spatiotemporal variation in land cover classes is
complex. Multi-temporal land cover can provide data support for accuracy and for the area
estimation of changing ground object types over at least three time periods. The quality of
classifiers comes from the map production process, while the effectiveness of stratification
is highlighted in the accuracy evaluation process. For multi-temporal and multifactor land
cover data, their effective stratification directly affects the accuracy of accuracy estimations
and area estimations. There are still some bottlenecks for the accuracy evaluation of multi-
temporal data. The conversion between different land covers will improve the complexity
of the sample stratification. An assessment with different types of land cover will suffer
from inefficient sample stratification since the multi-temporal and multiclass land cover
data have a mutual transformation of multiple land cover categories in multiple phases. If
the multi-temporal and multiclass land cover data are to be divided into multiple strata
that do not overlap spatially, each transformation type must be set as a separate stratum
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such that there will be hundreds of strata, thousands of strata, or even greater amounts of
strata (which is not suitable for the stratified sampling method). Second, the qualitative
analysis of land cover change is particularly important for practical applications, but the
area proportion of a stable class is larger than that of a changed class, which will lead to
inappropriate sample allocation. Therefore, it is urgent to study the above problems and
understand how to reasonably stratify multi-temporal and multifactor land cover data. In
this paper, we propose a spatiotemporal stratified sampling approach for multi-temporal
data with multiple classes. In this method, the data of each class of land cover in each
period are extracted separately, and the data of a certain class of land cover in multiple
periods are combined. Then, the spatiotemporal stratification is carried out according to
the combination of the change and the unchanged types of land cover class in multiple
phases. In order to facilitate statistics and to improve the efficiency of the stratification, the
specific conversion relationship between the types of land cover was not considered. The
temporal changes in single-class data and the spatial location of different classes were used
to obtain a reasonable stratification. When compared with stable unchanged strata, the
changed strata account for a small proportion and are prone to classification errors.

The research objective of this paper is to test the proposed spatiotemporal stratified
sampling method, which is based on single-class, spatiotemporal changed and unchanged
types combined with the estimation protocol, and we apply this to the GlobeLand30
China [20] region from 2000 to 2020. This paper quantitatively describes the land cover
changes and non-changes in China over a 20-year period, which includes the following:
(1) evaluating the accuracy of China land cover data in 2000, 2010, and 2020, and (2) esti-
mating the accuracy and area of land cover change and non-change in China over the last
20 years.

2. Methodology

In this work, a statistical inference-based sampling method was utilized to indepen-
dently stratify each land cover class, and the area and accuracy of each land cover class
with and without change were accurately evaluated. The accuracy estimation and area
estimation of GlobeLand30 data in China followed good practice recommendations [16].
The experimental process in this paper is shown in Figure 1. The experimental data were
preprocessed to generate the GlobeLand30 data for the three periods in China, and then the
spatially representative sample pixels were selected based on the spatiotemporal stratified
random sampling method for visual interpretation. This provided the experimental prepro-
cessed data from the years 2000, 2010, and 2020 for the GlobeLand30 data in China. The
different classes of land cover in the three periods were divided into three to seven strata
according to the importance of the change type conversion from 2000 to 2020 [16,21]. The
stratified sampling that is based on the combination of changed and unchanged types of
land cover classes in multiple phases can ensure that rare strata have enough samples to
achieve the purpose of accurately estimating its user accuracy [18]. The total sample size
of each class was calculated based on the probabilistic statistical sampling optimization
model [22]. A 30 m resolution pixel of each class served as the sampling unit. Based on
a probabilistic sampling design, stratified random sampling was employed for sample
selection in each spatiotemporal stratum. The visual interpretation of the reference data was
conducted to quantify the parameter estimations that were based on the samples [21,23].
Finally, the approach for assessing land cover accuracy was described, and the accuracy of
the results was analyzed.
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Figure 1. The overall workflow for the accuracy assessment of multi-temporal and multiclass
GlobeLand30 data in China.

2.1. Dataset

The GlobeLand30 dataset contains rich and detailed information about the spatial
distribution of land cover, which can reflect human land use activities and the landscape
patterns formed by them. In this experiment, the Chinese dataset from 2000 to 2020
was obtained from the Welcome-GlobeLand30 website (globeland30.org (accessed on
2 August 2023)), and the images of the same year were imported into ArcMap 10.6. Since
multiple images were downloaded, a series of data preprocessing was required to generate
the entire land cover data of China. The black edges between the images were eliminated,
and all images were embedded into one. Through the boundary of China, shp data were
clipped into the mosaic image. The GlobeLand30 data for the China region were obtained,
as shown in Figure 2. For a better spatial analysis of the data, the data projection was
converted from D_WGS_1984 to GCS_WGS_1984. The GlobeLand30 data in China mainly
include nine land cover classes, i.e., cultivated land, forest, grassland, shrub, wetland, water,
artificial surfaces, bare land, and ice and snow [20], as shown in Table 1. The publication of
GlobeLand30 data in 2000, 2010, and 2020 provided important data support for the regional
land cover change evaluation in China from 2000 to 2020. Since the beginning of the 21st
century, with the acceleration of industrialization and urbanization, land cover types have
changed significantly in China [24]. Although the significance of land cover change is well
recognized by researchers, there remains a dearth of quantitative analysis on this topic in
China, and this impedes the widespread utilization of land cover datasets.

Table 1. GlobeLand30 land cover classes [20].

Category Description

Cropland Area used for the production of annual cultivated crops, such as corn,
paddy land, vegetables, fruit trees, tilled tidal flats, mudflats, etc.

Forest
Area refers to land with a crown density of more than 10% but also

includes land with a crown density of less than 10% that is not used for
other land types.
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Table 1. Cont. [20].

Category Description

Grassland
Area dominated by natural grassland with a total vegetation coverage ratio
of more than 20%, including areas used for animal husbandry production

and all kinds of natural grassland, such as meadows, savannas, etc.

Shrub Area dominated by relatively low-growing plants without a main stem and
with a total vegetation cover of more than 20%.

Wetland
A confluence of land and water near or at the surface of the ground or of

shallow water and soil with a bog or hygrophyte growth in a wetland
section.

Water
Liquid water on land surfaces, including rivers, lakes, reservoirs, ponds,

fishponds, etc., except for cultivated land, such as paddy fields, wetlands,
multi-year snow-covered areas or glaciers, and marine types.

Artificial surfaces
Area formed by artificial activities covered by asphalt, concrete, sand,

stone, brick, glass, and other building materials, including residential areas,
industrial and mining land, land for transportation facilities, etc.

Bare land
Land with less than 20% total vegetation cover, including saline-alkali

surfaces, sandy land, gravel land, rocky land, biological crusts, etc., but
excludes human-made cover, tidal flats, sea surfaces, etc.

Ice and snow Permanent snow-covered areas, ice caps, and glaciers. Seasonal snow and
ice-covered areas on land and water are not included in this category.Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 27 
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2.2. Spatiotemporal Stratification and Simplification

The purpose of the accuracy assessment of multi-temporal GlobeLand30 data for
China is to determine the quality of the data in China by statistical inference via samples
that are representative of the overall quality of the data. In contrast to the traditional
stratification method that is based on land cover categories, the increase in temporal
domains significantly improves the complexity of data product quality assessment. How to
reasonably stratify land cover data is the focus of this research. In this experiment, there are
evident differences between the pixel change and the unchanged data of the three periods
of GlobeLand30 data in China. Thus, the stratification of the strata according to individual
categories of spatiotemporal changed and unchanged information ensures that the datasets
are distributed in each spatiotemporal distribution context and that they can be evaluated.
In order to assess the accuracy and the proportion of the area of the GlobeLand30 data in
China, the changed and unchanged types of each class of land cover for the three periods
were used as the stratification basis [25,26]. The spatial–temporal stratified sampling that is
proposed in this study, as shown in Figure 3, is as follows:
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Figure 3. The flowchart of spatiotemporal stratified sampling. (a) Land cover class in 2000, as shown
by the blue dots; (b) land cover class in 2010 (yellow dots indicate the new pixels of the similar classes
when compared to 2000); (c) land cover in 2020 (green dots indicate the new pixels of the similar
classes when compared to 2010); (d) the three periods of land cover taken and combined together, as
shown by the red dots, and (e) the spatiotemporal stratified sampling. (001–111 is the binary code of
the spatiotemporal stratification of each land cover class corresponding to Table 2).
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Table 2. Temporal and spatial stratification of the multi-temporal land cover data.

Category Stratum Binary Coding

Cropland

Stable cropland, cropland gain from 2000 to 2010,
cropland loss from 2000 to 2010, cropland gain
from 2010 to 2020, cropland loss from 2010 to

2020, cropland gain then loss, cropland loss then
gain.

111, 011, 100, 001, 110, 010, 101

Forest

Stable forest, forest gain from 2000 to 2010, forest
loss from 2000 to 2010, forest gain from 2010 to
2020, forest loss from 2010 to 2020, forest gain

then loss, forest loss then gain.

111, 011, 100, 001, 110, 010, 101

Grass

Stable grass, grass gain from 2000 to 2010, grass
loss from 2000 to 2010, grass gain from 2010 to
2020, grass loss from 2010 to 2020, grass gain

then loss, grass loss then gain.

111, 011, 100, 001, 110, 010, 101

Shrub

Stable shrub, shrub gain from 2000 to 2010, shrub
loss from 2000 to 2010, shrub gain from 2010 to
2020, shrub loss from 2010 to 2020, shrub gain

then loss, shrub loss then gain.

111, 011, 100, 001, 110, 010, 101

Wetland

Stable wetland, wetland loss from 2000 to 2010,
wetland loss from 2010 to 2020, wetland gain
from 2000 to 2010, wetland gain from 2010 to

2020.

111, 011, 100, 001, 110

Water

Stable water, water gain from 2000 to 2010, water
loss from 2000 to 2010, water gain from 2010 to
2020, water loss from 2010 to 2020, water gain

then loss, water loss then gain.

111, 011, 100, 001, 110, 010, 101

Artificial
surfaces

Stable artificial surfaces, artificial surfaces gain
from 2000 to 2010, and artificial surfaces gain

from 2010 to 2020.
111, 011, 001,

Bare land

Stable bare land, bare land gain from 2000 to
2010, bare land loss from 2000 to 2010, bare land
gain from 2010 to 2020, bare land loss from 2010

to 2020.

111, 011, 100, 001, 110

Ice and
snow

Stable ice and snow, ice and snow gain from 2000
to 2010, ice and snow loss from 2000 to 2010, ice
and snow gain from 2010 to 2020, ice and snow

loss from 2010 to 2020.

111, 011, 100, 001, 110

Firstly, the multi-temporal and multiclass land cover data are listed separately for each
class in each period (Figure 3a–c), and the three-phase data of the same land category are
combined as candidate samples (Figure 3d). The GlobeLand30 data in China with nine
land cover categories were divided into nine types of sample candidate regions.

Secondly, spatiotemporal stratified sampling was conducted through a selection of
the changed and unchanged types of each class of data in the three periods (Figure 3e).
In the stratification process of this experiment, only the changed and unchanged type of
a certain category during the 2000–2020 period is considered. It is impossible to collect
a sufficient sample size to estimate the area of a specified class that is converted to other
classes at an acceptable level of cost and precision [27]. Therefore, the labeled combination
of changed and unchanged data in a single category over multiple periods was the basis
for stratification.

In order to facilitate the recording, the specified class and nonspecified class data
were labeled using binary coding, i.e., 0 and 1, where 1 represents the specified class,
and 0 represents the nonspecified class data. In certain regions of China, the changed
type of land cover class occupies a small proportion such that there are only a few or no
sample pixels for it. When considering the change in area proportion, spatiotemporal
stratification follows the rule regarding classes where the priorities change or have no
change [28]. Therefore, this small amount of changed land cover type class of information
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is not taken as a stratum in this experiment. The spatiotemporal stratification of the nine
land cover classes in the GlobeLand30 data of China is shown in Table 2. In the joint
stratification of multiple land cover classes, other classes of data compared to one class of
data represent examples of nonspecific types of data; as such, stable nonspecified classes
were no longer regarded as separate strata in the process of the spatiotemporal stratification
of multi-temporal and multiclass land cover. This stratified approach is also different from
the previous stratified sampling design of multi-temporal single-class data [6,29,30]. In this
experiment, the spatiotemporal stratified random sampling method was adopted to select
sample pixels, and this method can ensure that there are enough samples of the interested
changed stratum for sample-based statistical estimations [4,16].

2.3. Sample Size Determination and Allocation

The sample assessment unit in this study is a single pixel at a 30 m spatial resolution,
and these units were selected from each stratum and were consistent with Strahler’s [31]
“best practice” recommendations. The sample size of each class was calculated based on
the probability statistical sampling model [23]. Then, the sample size for each stratum
of each class was based on a proportional allocation. In the case of determining the total
sample size, the sample size of each class is allocated according to the proportion of its
area to the total area. Generally, changed strata may be assigned a small sample size due
to the small, mapped area, which makes accurate estimates of user accuracy for changed
strata impossible. To solve the problem, the sample size of these strata should be increased.
If the sample size allocated to the rare strata is small, it can be filled up to 100. The
100 sample pixels in certain strata introduced trade-offs between the interpretation work
and an acceptable margin of error in the estimation [32]. The number 100 is actually an
empirical value, which was obtained from reference [16]. The previous research shows
that such a sample size performs better than other allocations, showing minimal estimated
variances in the user’s accuracy, producer’s accuracy, and the proportion of area. Since the
area proportion of the changed strata is often smaller than other strata, setting a minimal
sample size is an important way to get a reliable assessment. Then, the sample pixels were
randomly selected from all pixels that were mapped as that type in the stratum.

2.4. Accuracy Analysis and Area Estimation

Accuracy analysis is the statistical estimation of the results following the visual inter-
pretation of samples obtained through probability sampling [33,34]. The results of visual
interpretation can be presented as error matrices, where the rows represent the map labels
and the columns represent the reference labels [12]. The protocol of agreement is defined
as a match between the map label and the reference label [35]. The reference data are
high-resolution Google Earth images [36,37], and each sample pixel is visually interpreted
by two experts independently. For pixels with different interpretation results, three or more
experts collectively discuss them, and consistent attribute labels are given according to the
majority rule [38]. The analyses are based on reference labels for three dates: 2000, 2010,
and 2020, with a resolution of 30 m per sample pixel. Enlarging each sample pixel point to
a block of 3 × 3 pixels can effectively prevent the impact caused by the inherent position
error and geographic matching error of satellite imaging [39]. The correct interpretation of
pixels is performed by formulating judgment principles, such as effective area proportion
and the percentage of pixels matched correctly [40]. The Google Earth images obtained for
each sample pixel in 2000, 2010, and 2020 were visually judged. The slider time toolbar
helps the interpreter view images of multiple dates in the same sample location [27]. When
the time period corresponding to the Google Earth high-resolution image does not conform
to the time period of the sample pixels, it can be judged based on the images about 2 years
before and after the same period of the sample or from the combination of multiple time
series images. The recording of the land cover class composition of each sample pixel and
the reference labels were provided by interpreters. If the reference label of the sample
pixel was stable over the three periods, then it was considered unchanged. In the visual
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interpretation of whether the sample pixels were considered as having changed, the label
of pixel i in the previous year could not be equal to the label of pixel i in the next year.

For the accuracy estimation of multiclass data in a single-year period and the accuracy
estimation of changed and unchanged types between two periods, the strata and map
classes were different; thus, it was reasonable to use Stehman’s [12] stratified estimator.
Each cell of the error matrix represents the estimated percent of an area for each defined
class as a match between the map and reference label [17,33]. The following formula was
used to estimate the accuracy of the agreement measures and the associated standard errors.
The overall accuracy (OA) is defined as follows [12,18]:

ÔA = (
1
N
)

H

∑
h=1

Nh P̂h (1)

where P̂h = ∑
u∈h

yu
nh

is the sample proportion of the correctly classified pixels in stratum h

(yu = 1 if pixel u is classified correctly; otherwise, yu = 0). Furthermore, u ∈ h implies that
sample pixel u was selected from stratum h. nh is the sample size in stratum h, and N is
the total number of pixels in the region of interest, whereas Nh is the number of pixels in
stratum h. H is the population size of the strata. The variance of OA is defined as [12,18]

V̂(ÔA) = (
1

N2 )
H

∑
h=1

N2
h (1−

nh
Nh

)s2
yh/nh (2)

where, s2
yh is the sample variance of yu within stratum h.

The overall accuracy was estimated for the land cover products of three time periods,
and this was achieved by taking into account the specific types of the binary map of changed
and non-changed land cover. For example, the overall accuracy of the types of change and
unchanged cropland from 2000 to 2010. This gives the overall accuracy of the combination
of the changed and unchanged types of cropland over three time periods: 2000–2010–2020.

The user accuracy (UA) and producer accuracy (PA) are the empirical estimates of
conditional probabilities P (the reference label of class A| mapped as class A) and P
(mapped as class A| the reference label of class A). In the practical application, the two
indicators were estimated as a notification ratio [12]:

R =
Y
X

(3)

where Y is the population total of yu, which is defined as follows:

yu =

{
1,
0,

u ∈ conditionA
u /∈ conditionA

(4)

X is the population total of xu, which is defined as follows:

xu =

{
1,
0,

u ∈ conditionB
u /∈ conditionB

(5)

For example, to estimate the user accuracy of cropland, A is the pixel u, which is
mapped as cropland, and the label of the reference data is also cropland. B would be pixel
u, which is mapped as cropland. If the producer accuracy of the cropland is estimated,
A is the pixel u, which is mapped as cropland, and the label of the reference data is also
cropland. B would then be the pixel u, which has a reference label of cropland. The ratio
can then be reformed into the following [12]:

R̂ =
Ŷ
X̂

=
∑H

h=1 Nhyh

∑H
h=1 Nhxh

(6)
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where xh is the sample mean of xu for stratum h, and yh is the sample mean of yu for
stratum h. The variance of the ratio is estimated as follows:

V̂
(

R̂
)
=

(
1

X̂2

)[
∑H

h=1 N2
h (1− nh/Nh)(s2

yh + R̂2s2
xh − 2R̂sxyh)/nh

]
(7)

where nh is the sample size in stratum h, s2
xh is the sample variance of xu for stratum h, s2

yh
is the sample variance of yu for stratum h, and sxyh is the sample covariance of xu and yu in
stratum h.

s2
yh = 1

nh−1

H
∑

i=1
(yu − yh)

2

s2
xh = 1

nh−1

H
∑

i=1
(xu − xh)

2

sxyh =
H
∑

i=1
(yu − yh)(xu − xh)/(nh − 1)

(8)

Since the stratification does not correspond to land cover classes, the user accuracy and
the producer accuracy of the changed type should be calculated using the samples from
multiple classes [27]. For example, the samples used for estimating the user accuracy of
changed cropland from 2000 to 2010 include two types. The first is those samples mapped
as cropland in 2000 that were changed to other classes in 2010. The other is those samples
mapped as other classes in 2000 that were changed to cropland in 2010. If there is no sample
pixel in a stratum satisfying condition A, the parameters are set as yu = 0, yh = 0 and the
sample variances (s2

yh) are equal to 0. If there is no sample pixel in a stratum satisfying
condition B, the corresponding parameters are set as xu = 0, xh = 0 and the sample variances
(s2

xh) are equal to 0.
To estimate the proportion of the area of the 2000–2010 and 2010–2020 land cover

changed for each class, e.g., gain, loss, and net, we defined yu as follows:

yu =


0→ 1 uchanged to the target class (gain)

0→ 0, 1→ 1 udid not change
1→ 0 uchanged from the target class (loss)

(9)

The estimated area of change for a single class in square kilometers was calculated as
follows:

Â = 0.0009 ∗ N
n

∑
u=1

yu/n (10)

where n is the total sample size. The standard error of the area estimate was calculated as
follows [25]:

SE(Â) = 0.0009 ∗ Ns/
√

n (11)

where s =

√
n
∑

u=1

(yu−y)2

n−1 is the standard error of sample.

3. Results and Discussion

Based on the results of the visual interpretation of the reference sample, the corre-
sponding error matrix was obtained, and the accuracy and area of the classes were further
estimated [32]. In this study, we used the three periods of the GlobeLand30 data for China
to verify whether the spatiotemporal stratified sampling method is suitable for multi-
temporal land cover data. The spatiotemporal stratified sampling design was based on
the changed and unchanged types of each class in the three periods. This approach can
estimate the accuracy of singular data, binary change, and the three period changes of land
cover data, which includes the overall accuracy, user accuracy, and producer accuracy with
the corresponding standard error. The area of each land cover area class can be calculated
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by the error matrix, including the singular data area of land cover, the area of changes
between two phases, and the corresponding estimated standard errors [24,32,41].

3.1. The Spatiotemporal Stratified Sampling of GlobeLand30 in China

The purpose of spatiotemporal stratified sampling was to obtain a sample subset of
the three periods of the GlobeLand30 data for China. First, the union of the three periods of
the individual land cover classes of the GlobeLand30 data for China was extracted. Second,
each land cover class was divided into several strata by using a combination of the changed
and unchanged types of each class in the three periods (Figure 4). For example, when
the three periods showed a change in China’s regional forest—on the basis of spatial and
temporal changed and unchanged forest in the three periods being classified into seven
strata (as shown in Figure 4b)—these were, respectively, the following: the stable forest
stratum (111), which represents forest from 2000 to 2020, the forest loss stratum (100, 110),
which could be divided into two cases: forest in 2000 and non-forest in 2010 or forest in
2000 but non-forest in 2020. The forest gain stratum (001 and 011) was divided into two
cases: non-forest in 2000 and forest in 2010 or non-forest in 2000 and forest in 2020. The
forest dynamic changed stratum (010 and 101) refers to the non-forest areas in 2000, the
forest areas in 2010, and the non-forest areas in 2020, as well as the forest areas in 2000, the
non-forest areas in 2010, and the forest areas in 2020. The sample size of each land cover
class was determined according to the probability statistical sampling model [23] (Table 3).
A total of 9338 samples were selected for accuracy assessment, with each sample spatial
location corresponding to three periods of reference labels. The sample size of each stratum
was allocated in proportion to the area. The strata for which the sample size was less than
100 were adjusted to 100. The distribution of the forest samples in different strata was taken
as an example (Table 4). According to the area ratio of each stratum pixel-to-total pixel,
the sample size allocated to the forest gain then loss stratum, the forest loss during the
2000–2010 period stratum, and the forest loss then gain stratum were less than 100. Then,
the sample size of these three strata was adjusted to 100. Finally, the sample size allocated
to each stratum of the forest is shown in the adjusted results of Table 4. The sample pixels
of each stratum were randomly selected for inspection, and their spatial distribution is
shown in Figure 5.

Table 3. Sample size of each land cover class.

Land Cover Class Sample Size Land Cover Class Sample Size

Cropland 1987 Water 1030
Forest 1236 Artificial surfaces 622

Grassland 1041 Bare land 1107
Shrub 717 Ice and snow 904

Wetland 694 Total 9338

Table 4. Sample size of each stratum of forest in the three periods.

Stratum Pixels % Proportionally Adjusted

Forest gain from 2010 to 2020 74,895,126 6.5 143 143
Forest gain then loss 36,502,895 3.1 70 100

Forest gain from 2000 to 2010 52,240,761 4.5 100 100
Forest loss from 2000 to 2010 46,593,596 4 89 100

Forest loss then gain 31,190,465 2.7 59 100
Forest loss from 2010 to 2020 60,876,520 5.3 116 116

Stable forest 857,387,729 73.9 557 557
Total 1,159,687,092 100% 1134 1216
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Figure 5. Spatial distribution of the samples in each spatiotemporal stratum of each class (001–111 is
the binary code of the spatiotemporal stratification for each land cover class corresponding to Table 2).
(a) Cropland; (b) Forest; (c) Grass; (d) Shrub; (e) Wetland; (f) Water; (g) Artificial surface; (h) Bare
land; (i) Ice and snow.

3.2. Multi-Temporal and Specified Class Accuracy

The user accuracy and producer accuracy of the changed and unchanged strata of each
class in the three periods are shown in Figure 6. It can be seen from the results (Figure 6)
that the accuracy of each class was quite different, but the accuracy of the stable strata
(111) of each class was higher, and the user accuracy of this strata was greater than the
producer accuracy. However, the user accuracy (UA) of the changed strata was generally
poorer than the producer accuracy (PA). The user accuracy of the change strata of the
artificial surfaces was higher than that of other classes. The standard error of the producer
accuracy for forest, grass, shrub, and bare land was high, and this may be attributed to a
large classification error. Generally, the user accuracy of the changed strata was smaller
than the producer accuracy, which was the opposite of that of the unchanged strata; thus,
the classification error had a greater impact on the changed strata. The user accuracy of the
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change in artificial surfaces was higher than that of the other types of change. The high
standard error of the mapping accuracy of forest, grassland, shrub, and bare land may be
due to the similar spectral values and large classification errors of these categories. As far
as the overall accuracy is concerned, the accuracy of bare land was the highest, while that
of shrub was the lowest. The reason is that in bare land areas, the area of the unchanged
regions was larger, whereas, for the shrub, the area of changed regions was larger, resulting
in the classification error having a significant impact on the overall accuracy.
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Figure 6. User accuracy and producer accuracy of the spatiotemporal stratified sample of each class.
The error bars refer to the error of the estimated parameter with 95% confidence intervals. (001–111
is the binary code of the spatiotemporal stratification for each land cover class corresponding to
Table 2).

3.3. Single Data and Multiclass Accuracy

The accuracy evaluation of the single data and multiple classes was conducted to
evaluate the accuracy of the GlobeLand30 land cover data for China in each period. Spa-
tiotemporal stratified sampling provides a variety of possibilities for evaluating the accuracy
of single-data and multiclass land cover data. Users can choose the strata according to their
needs so as to obtain the desired precision of some stratum or a combination of several
strata.
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3.3.1. The Accuracy of All Strata for Each Class

The accuracy of the period contains all of the strata of each class, as shown in Figure 7.
In this case, the sample data of strata 100, 101, 110, and 111 were considered in 2000, the
sample data of strata 011, 010, 110, and 111 were considered in 2010, and the sample data of
strata 001, 011, 101, and 111 were considered in 2020. The overall accuracy (OA) was 80%,
79%, and 76.2% for 2000, 2010, and 2020, respectively (Figure 7). Since the user accuracy
and producer accuracy of shrub and wetland are rather low, the increasing area proportion
of these two classes leads to a decreasing overall accuracy over time. The standard error
of the OA was less than 1% regardless of the time period. The UA values for cropland,
forest, artificial surfaces, bare land, and ice and snow exceeded 80%. The UA and PA for
2000, 2010, and 2020 exceeded 60% for all classes except the UA for shrub. The PA of shrub,
water, artificial surfaces, and ice and snow in the three periods is greater than the UA. The
UA for cropland, forest, grass, and bare land in the three periods is greater than the PA.
However, the standard error of the cartographic accuracy was greater than the standard
error of the user accuracy for many categories, such as the water, artificial surfaces, and ice
and snow regions, suggesting that the classifiers used to produce data products performed
poorly in these land cover classes.
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Figure 7. The accuracy of the period contains all of the strata of each class. (a) Year 2000,
OA = 80 ± 0.5%. (b) Year 2010, OA = 79 ± 0.5%. (c) Year 2020, OA = 76.2 ± 0.5%.
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3.3.2. The Combined Accuracy of the Strata That Changed Once and the Strata That Were
Stable and Unchanged

The combined accuracy of the strata that changed once and the strata that were stable
and unchanged in each class is shown in Figure 8. In this case, only the sample data of
strata 100, 110, and 111 were considered in 2000, the sample data of strata 111 and 110
were considered in 2010, and the sample data of strata 001, 011, and 111 were considered
in 2020. The overall accuracy (OA) was 81.5%, 81.5%, and 77.4% for 2000, 2010, and 2020,
respectively (Figure 8). The user accuracy for grass, shrub, water, artificial surface, and ice
and snow in 2020 was lower, resulting in an overall accuracy that was lower than that of
2000 and 2010.
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3.3.3. The Combined Accuracy of the Three Periods as Stable and Unchanged Strata

The accuracy of the three periods in terms of the stable and unchanged strata of each
class is shown in Figure 9. In this case, only the sample data of stratum 111 were considered
in 2000, 2010, and 2020 for each class. The overall accuracy of the three periods was higher
than 90%. The user accuracy of each class exceeded 80%, and the ice and snow area had
the highest user accuracy for the three periods. The overall accuracy of the three phases
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of data is very close, which also shows that the 111 strata have a very stable classification
accuracy. The accuracy of the unchanged strata was higher than that of the combination of
the changed and unchanged strata.
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Figure 9. The combined accuracy of the three periods according to stable and unchanged strata.
(a) Year 2000, OA = 91.4 ± 0.4%. (b) Year 2010, OA = 91.4 ± 0.4%. (c) Year 2020, OA = 91.5 ± 0.4%.

From the different strata of the accuracy results for each class in the three periods
(Figures 7–9), the combined accuracy of the strata that changed once and the strata that
were stable and unchanged for each class of the GlobeLand30 data for China was close
to the result presented by Xie et al. (80.46%) [42] and the result reported by Wang et al.
(84.2%) [43]. Stratified sampling based on the category of land cover fails to fully consider
the samples of the changed strata, which is an important reason for the difference in accu-
racy between them. In the case of little difference between sample sizes, when considering
the combination of different strata, the accuracy is different. Setting different strata has
different significance effects on accuracy. However, it is certain that strata with a higher
change frequency will have a lower accuracy. If these strata are selected as a single stratum,
the number and weight of the unreliable samples will undoubtedly be increased, and the
impact on the overall accuracy will also be evident. When compared to the single data
stratified sampling method by land cover class, the spatiotemporal stratified sampling of
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multi-temporal and multiclass land cover data showed that classification errors were more
likely to occur in the strata that rarely changed. As such, how should we consider the
weight of such errors when calculating the accuracy of data products?

3.4. Binary Change and No-Change Accuracy

Based on the results of the temporal and spatial stratification of multi-temporal land
cover data, the accuracy of the binary changed and unchanged data was evaluated. For
example, the class-specific changes from 2000 to 2010 were defined as a nonspecific category
in 2000 and converted into a specific category in 2010, and the specific category in 2000
was converted to a nonspecific category in 2010. The 2000–2010 specific categories that
were unchanged were defined, as per the 2000–2010 period—they were all specific cate-
gories. The category-specific change for 2010–2020 was defined as 2010 being a nonspecific
category that was converted into a specific category in 2020, and 2010 was a specific cate-
gory that was converted into a nonspecific category in 2020. Furthermore, the 2010–2020
specific categories that were unchanged were defined as a specific category for 2010–2020.
Table 5 shows the overall accuracy, user accuracy, producer accuracy, and accuracy of the
unchanged and changed classes of the nine categories during the 2000–2010 and 2010–2020
periods. The accuracy of unchanged forest, changed forest, grassland, and bare land was
high, whereas the accuracy of the changed regions was low, but their overall accuracy
exceeded 90%. The reason for this was that the changed areas of the land cover types were
much smaller than the unchanged areas; thus, the classification error of the unchanged
areas had little impact on the overall accuracy. The overall accuracy reflected the advan-
tages of high user accuracy and the accuracy for the unchanged areas. However, when the
area proportion of a specific category of changed areas was not that different from that of
the unchanged areas, the accuracy of the unchanged areas affected the overall accuracy,
e.g., the user accuracy of the unchanged shrub, wetland, artificial surfaces, and ice and
snow regions was high. However, the producer accuracy was reduced due to the omission
error of change. The standard error of the accuracy of the unchanged areas was smaller
than the standard error of the accuracy of the changed areas, which indicates that the data
quality of the changed areas was lower than that of the unchanged areas; this also verifies
the need for the spatiotemporal stratification of data. The stratification of data for different
precisions can improve the reliability of the accuracy evaluation.

Table 5. Unchanged and changed user and producer accuracy values expressed as a percentage.
Standard error (also as a percentage) in parentheses for the 2000–2010 and 2010–2020 periods.

Cropland
Map

Reference
2000–2010 OA = 95.1 ± 0.5% 2010–2020 OA = 92.6 ± 0.6%

Unchanged Change Total UA (%) Unchanged Change Total UA (%)

Unchanged 0.9472 0.0095 0.9567 99 (0.3) 0.9051 0.0139 0.919 98.5 (0.4)
Changed 0.0394 0.0039 0.0433 9 (1.4) 0.0598 0.0211 0.0809 26.1 (1.6)

Total 0.9866 0.0134 0.9649 0.035
PA (%) 96 (0.2) 29.1 (9.7) 93.8 (0.3) 60.3 (5.6)

Forest
Map

Reference
2000–2010 OA = 94.79 ± 0.7% 2010–2020 OA = 93.5 ± 0.7%

Unchanged Changed Total UA Unchanged Changed Total UA
Unchanged 0.9416 0.0038 0.9454 99.6 (0.2) 0.9240 0.0082 0.9322 99.1 (0.4)

Changed 0.0483 0.0063 0.0546 11.5 (1.6) 0.0573 0.0105 0.0678 15.4 (1.7)
Total 0.9899 0.0101 0.9813 0.0187
PA 95.1 (0.2) 62.2 (14.7) 94.2 (0.3) 55.9 (10.2)
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Table 5. Cont.

Grass
Map

Reference
2000–2010 OA = 92.42 ± 0.9% 2010–2020 OA = 92.4 ± 0.9%

Unchanged Changed Total UA Unchanged Changed Total UA
Unchanged 0.9217 0.0095 0.9312 99 (0.4) 0.9142 0.0025 0.9167 99.7 (0.2)

Changed 0.0663 0.0025 0.0688 3.7 (0.9) 0.0735 0.0098 0.0833 11.7 (1.6)
Total 0.988 0.012 0.9877 0.0123
PA 93.3 (0.3) 21.1 (19.8) 92.6 (0.4) 79.6 (12.5)

Shrub
Map

Reference
2000–2010 OA = 60.2 ± 2% 2010–2020 OA = 57.1 ± 2%

Unchanged Changed Total UA Unchanged Changed Total UA
Unchanged 0.5780 0 0.578 1 (0) 0.5311 0.0190 0.5501 96.5 (1.2)

Changed 0.3983 0.0237 0.422 5.6 (1.1) 0.4096 0.0402 0.4498 8.9 (1.4)
Total 0.9763 0.0237 0.9407 0.0592
PA 59.2 (1.3) 1 (0) 56.5 (1.2) 67.9 (12.1)

Wetland
Map

Reference
2000–2010 OA = 74.29 ± 1.9% 2010–2020 OA = 69.3 ± 1.9%

Unchanged Changed Total UA Unchanged Changed Total UA
Unchanged 0.6562 0.003 0.6157 99.5 (0.4) 0.547 0.0187 0.5657 96.7 (1)

Changed 0.254 0.0867 0.3843 25.4 (2.8) 0.2886 0.1458 0.4344 33.6 (2.7)
Total 0.9407 0.0593 0.8356 0.1645
PA 72.1(1.4) 96.6 (2.3) 865.5 (1.7) 88.7 (2.9)

Water
Map

Reference
2000–2010 OA = 88.7 ± 1% 2010–2020 OA = 86.7 ± 1.1%

Unchanged Changed Total UA Unchanged Changed Total UA
Unchanged 0.8576 0.0019 0.8595 99.8 (0.2) 0.8304 0.0073 0.8377 99.1 (0.4)

Changed 0.1115 0.0290 0.1405 20.7 (2) 0.1254 0.0368 0.1622 22.7 (2.1)
Total 0.9691 0.0309 0.9558 0.0441
PA 88.5 (0.5) 94 (4) 86.9 (0.6) 83.4 (5.7)

Artificial
surfaces

Map

Reference
2000–2010 OA = 82 ± 1.7% 2010–2020 OA = 60.5 ± 2%

Unchanged Changed Total UA Unchanged Changed Total UA
Unchanged 0.7333 0.0106 0.7439 98.6 (0.6) 0.4642 0.0141 0.4783 97.1 (0.7)

Changed 0.1691 0.0871 0.2562 34 (4.7) 0.3809 0.1409 0.5218 27 (4.4)
Total 0.9024 0.0977 0.8451 0.155
PA 81.3 (1.7) 89.2 (4.2) 54.9 (2.3) 90.9 (2.8)

Bare land
Map

Reference
2000–2010 OA = 93 ± 0.8% 2010–2020 OA = 92 ± 0.9%

Unchanged Changed Total UA Unchanged Changed Total UA
Unchanged 0.9256 0.0021 0.9277 99.8 (0.2) 0.9129 0.0005 0.9167 99.9 (0.1)

Changed 0.0679 0.0044 0.0723 6.1 (1.5) 0.0793 0.0073 0.0833 8.5 (1.6)
Total 0.988 0.012 0.9877 0.0123
PA 93.2 (0.3) 67.4 (23.2) 92 (0.4) 93.2 (9.2)

Ice and
snow
Map

Reference
2000–2010 OA = 87.7 ± 1.3% 2010–2020 OA = 58.7 ± 1.7%

Unchanged Changed Total UA Unchanged Changed Total UA
Unchanged 0.8724 0 0.6157 1 (0) 0.5709 0.0002 0.7818 99.9 (0.1)

Changed 0.1228 0.0047 0.3843 3.7 (1.3) 0.4127 0.0163 0.2182 3.8 (1.1)
Total 0.9952 0.0047 0.941 0.059
PA 87.7 (0.8) 1 (0) 58 (1.5) 99 (2.6)

3.5. Specific Class Binary Change Area Estimation

Estimating the area of each land cover class and the area of change in different phases
can be used to evaluate the changed and unchanged information in the land cover data.
A specific class net change was defined as the value that increased or decreased in that
class over two periods. Between 2000 and 2020, the net increase in the forest area was only
slight, and the increase in the forest area between the 2000–2010 and 2010–2020 periods
was significant, which is inseparable from the continuous large-scale national afforestation
policy in China. However, the loss of forest is related to poor land plowing, conversion to



Remote Sens. 2023, 15, 4593 22 of 25

pasture, and urbanization expansion. In particular, urban expansion led to the intensive
conversion of forest regions (see Figure 10). The area of forests, water bodies, artificial
surfaces, and bare land saw a net increase over the 20-year period. The increase in forests
and the decrease in cropland were partly due to the policy of returning farmland to forest.
In addition, there may be overlapping parts between the different types of land cover, such
as the mixed pixels for the cropland and forest boundaries, which have a high probability of
being misclassified in these two categories, thus affecting the accuracy of the area estimation.
In 2020, the area of artificial surfaces in China increased by 56% compared with that in
2000, and the growth rate from 2010 to 2020 was greater than that from 2000 to 2010. In the
past 20 years, the water areas of China have increased continuously due to the expansion
of lakes and dam construction on the Tibetan Plateau. Generally, ice and snow regions
exist in mountain areas with large temperature differences between day and night in the
form of mountain and valley glaciers and snow caps. There was a significant difference
between the increase and decrease in ice and snow areas in the 2000–2010 and 2010–2020
periods, and the area of permanent snow and ice increased from 2010–2020. From 2000 to
2020, the areas of grass gradually decreased, shrub first increased and then decreased, and
the wetland areas gradually increased.
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4. Conclusions

The quality control of multi-temporal land cover data with multiple classes is the
foundation of many qualitative applications that require the appropriate stratified sampling.
Therefore, a spatiotemporal stratified sampling method is proposed by considering both
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the changed and unchanged types of each class of data in the three periods. Then, a
binary coding approach is utilized to deal with the problem of complex transformation
between multiple classes. Additionally, the stratified sample size is allocated by combining
the construction area ratio and the minimal value, which ensures enough samples in the
changed strata, improving the reliability of the accuracy assessment. The stratified sampling
method based on spatiotemporal change can be applied to multi-temporal data with more
epochs (the number of time-series datasets is not less than 3). The sampling design is
similar to the spatiotemporal stratified sampling method proposed in this paper. However,
since more periods of data have more complex transformations, we need to analyze them
according to specific data. Refined sample allocation enables an accurate area estimation
for land cover changes. Additionally, the samples with frequent changes have a higher
probability of returning a classification error, which shows that stratification sampling
based on temporal changes is necessary. This experiment, based on the multi-temporal
GlobeLand30 land cover data with multiple classes in China, shows that the accuracy of the
changed strata was lower than that of the unchanged strata. Since the uncertainty between
the two acquisitions was larger than a single one, the accuracy of the multi-temporal land
cover data in a single period was higher. The accuracy of the strata that changed more
frequently was lower than that of the strata that changed with less frequency. The different
classes of land cover showed a difference in user and producer accuracy. When considering
the land cover changes in the past 20 years, the results showed that the building, forest,
water, wetland, and bare land areas increased significantly, whereas the other types of land
cover decreased.
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