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Abstract: Remote sensing image scene classification (RSISC) has garnered significant attention in
recent years. Numerous methods have been put forward in an attempt to tackle this issue, particularly
leveraging deep learning methods that have shown promising performance in classifying remote
sensing image (RSI). However, it is widely recognized that deep learning methods typically require a
substantial amount of labeled data to effectively converge. Acquiring a sufficient quantity of labeled
data often necessitates significant human and material resources. Hence, few-shot RSISC has become
highly meaningful. Fortunately, the recently proposed deep nearest neighbor neural network based on
the attention mechanism (DN4AM) model incorporates episodic training and class-related attention
mechanisms, effectively reducing the impact of background noise regions on classification results.
Nevertheless, the DN4AM model does not address the problem of significant intra-class variability
and substantial inter-class similarities observed in RSI scenes. Therefore, the discriminative enhanced
attention-based deep nearest neighbor neural network (DEADN4) is proposed to address the few-shot
RSISC task. Our method makes three contributions. Firstly, we introduce center loss to enhance
the intra-class feature compactness. Secondly, we utilize the deep local-global descriptor (DLGD) to
increase inter-class feature differentiation. Lastly, we modify the Softmax loss by incorporating cosine
margin to amplify the inter-class feature dissimilarity. Experiments are conducted on three diverse
RSI datasets to gauge the efficacy of our approach. Through comparative analysis with various
cutting-edge methods including MatchingNet, RelationNet, MAML, Meta-SGD, DN4, and DN4AM,
our approach showcases promising outcomes in the few-shot RSISC task.

Keywords: remote sensing image (RSI); scene classification; few-shot learning; deep nearest neighbor
neural network based on attention mechanism (DN4AM); center loss; deep local–global descriptor
(DLGD); discriminative enhanced attention-based deep nearest neighbor neural network (DEADN4)

1. Introduction

Remote sensing image scene classification (RSISC) is a significant undertaking that has
attracted considerable interest across diverse domains and use cases [1–3]. The continuous
evolution of imaging technology has resulted in notable advancements, contributing to the
progressive enhancement of resolution in remote sensing images (RSI) [4–6]. This encom-
passes a wide array of intricate land cover characteristics, including terrain, mountains,
and bodies of water. The processing of RSI varies depending on the specific characteristics
exhibited by the scenes they depict [1]. Assigning semantic labels to RSI holds immense
importance as this facilitates the unified management and analysis of remote sensing data.
Semantic labels aid in organizing and analyzing these data in a consistent manner. Thus,
the primary objective of scene classification is to categorize RSI based on similar scene
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characteristics using extracted features [7–9]. Presently, the usage of scene classification
technology extends across a wide range of domains, including but not limited to natural dis-
aster evaluation, vegetation mapping, geological surveying, urban planning, environmental
monitoring, object detection, and various other disciplines [10–17].

In recent years, deep learning techniques have gained substantial traction as highly
prospective methodologies for RSISC [18], showcasing notable achievements with mod-
els like VGG16 [19], GoogLeNet [20], AlexNet [21], and ResNet [22]. Deep learning
has revolutionized RSISC by eliminating the need for manual feature retrieval [23–26].
This approach holds immense significance in remote sensing applications. Recently,
Zhai et al. [27] introduced a highly efficient model that addresses the issue of lifelong
learning, which incorporates prior knowledge to enable rapid generalization to new
datasets. In line with this objective, Zhang et al. [28] incorporated the remote sens-
ing transformer (TRS) into the realm of RSISC, with the primary goal of capturing
long-range dependencies and acquiring comprehensive global features from the im-
ages. To further enhance the extraction of semantic features from different classes,
Tang et al. [29] conducted spatial rotation on RSI based on previous studies. This
creative approach helps capture additional valuable information and reduces the po-
tential for misclassification by improving feature discriminability. Harnessing these
breakthroughs resulted in substantial improvements in the accuracy and resilience of
RSISC, leading to enhanced performance in various applications.

From another perspective, the effectiveness of deep learning approaches is often
greatly influenced by the quality and quantity of the available training set. This implies
that a substantial amount of human and material resources must be invested in acquiring
labeled image data. Additionally, well trained deep learning models are only effective for
the scenes included in the training dataset and cannot accurately classify scenes not present
in the training set. To incorporate new scenes, it is necessary to include them in the training
set and retrain the model.

Therefore, for the problem of scene classification in RSI, few-shot learning becomes
highly meaningful. The core issue of few-shot learning revolves around exploring methods
to rapidly acquire knowledge from a limited set of annotated samples, with the aim of
enabling the model to exhibit rapid learning capabilities [30–32]. Given the possibility of
utilizing prior knowledge to address this core issue, few-shot learning methods can be
classified from three standpoints: (i) data, where prior knowledge enriches the supervised
learning process; (ii) model, where prior knowledge diminishes the complexity of the
hypothesis space; and (iii) algorithm, where prior knowledge modifies the search for the
optimal hypothesis within the provided hypothesis space [30–32]. For example, Cheng et al.
introduced a Siamese-prototype network (SPNet) with prototype self-calibration (SC) and
intercalibration (IC) to tackle the few-shot problem [33]. SC utilizes supervision information
from support labels to calibrate prototypes generated from support features, while IC
leverages the confidence scores of query samples as additional prototypes to predict support
samples, further improving prototype calibration. Chen et al. proposed a novel method
named multiorder graph convolutional network (MGCN) [34], which tackles the few-
shot scene classification challenge by employing two approaches: mitigating interdomain
differences through a domain adaptation technique that adjusts feature dispersion based on
their weights, and decreasing the dispersion degree of node features. Therefore, in the few-
shot task, the deep features learned by the model should not only have good separability,
but also have strong discriminability, so that new classes can be recognized with a limited
set of annotated samples. Vin et al. [35] introduced an episodic training approach as a
solution to tackle the challenges associated with few-shot learning. In the training stage,
a support set is created by randomly selecting K images for each of the C classes that are
sampled from the dataset, resulting in a total of C× K images. Subsequently, N images are
chosen from the remaining dataset for each class among the selected C classes, forming a
query set. An episode is formed by combining one support set with one query set. Multiple
iterations of training using different episodes are performed until convergence, enabling
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the network to provide the class labels of query set images based on their resemblance to
the support set. The predominant approach in metric learning-based few-shot methods
entails the direct computation of the distance between support samples and query samples,
enabling the subsequent learning of a classifier based on this measured distance. They do
not fully exploit the network’s robustness in extracting features, resulting in the reduced
discriminability of the model’s output features and consequently hindering the overall
performance of few-shot models.

Moreover, RSI frequently presents significant intra-class variations and noticeable inter-
class similarities, posing challenges for precise scene image classification. The substantial
intra-class variance pertains to the assortment of visual attributes exhibited by objects
belonging to the same semantic class. Certain ground-level entities demonstrate variations
in terms of style, shape, and spatial distribution. For example, as shown in Figure 1a,
churches exhibit diverse architectural styles, while airports and railway stations display
notable differences in their distinct shapes. Furthermore, when an airplane or space
platform captures a RSI, due to different imaging conditions, the color and radiation
intensity in the identical category may be significantly different due to weather, cloud,
fog and other factors. For example, beach scenes exhibit significant differences under
different imaging conditions. The notable similarities across distinct classes in RSI is
primarily due to the presence of similar objects or semantic overlap among different
scene classes. For example, in Figure 1b, both bridge and overpass scenes contain the
same objects, and basketball court and tennis court exhibit a high degree of semantic
information overlap. In addition, the vague definition of scene classes can also lead to
reduced inter-class differences, resulting in visually similar appearances for some complex
scenes. Therefore, distinguishing between these scene classes can be extremely challenging,
which is attributable to the extensive intra-class variations and pronounced inter-class
resemblance. For example, images that do not belong to the same class are classified into
one class, and different classes may be assigned to images that actually belong to the same
class due to the diversity of samples. For this reason, the acquisition of a classifier capable
of extracting discriminative features from RSI significantly contributes to enhancing the
performance of RSISC.

(a) prominent intra-class diversity

Airport Beach

Church Railway Station

Overpass Basketball Court

Bridge Tennis Court
(b) significant inter-class similarity

Figure 1. Schematic representation showcasing samples from the NWPU-RESISC45 dataset, illustrat-
ing prominent intra-class diversity and significant inter-class similarity.
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To solve the few-shot RSISC, Chen et al. [36] proposed the deep nearest neighbor
neural network based on attention mechanism (DN4AM). DN4AM employs an episodic
training technique for network training and performs evaluations on novel classes to en-
hance few-shot learning. In addition, DN4AM integrates a channel attention mechanism
to craft attention maps that are tailored to scene classes, harnessing global information to
mitigate the influence of unimportant regions. Furthermore, DN4AM employs the scene
class-related attention maps to measure the resemblance of descriptors between query im-
ages and support images. By employing this strategy, DN4AM is able to compute a metric
score for each image-to-class comparison, effectively mitigating the impact of irrelevant
scene-semantic objects and elevating the classification accuracy. However, DN4AM does
not address the challenge of significant intra-class variations and substantial inter-class
similarities in RSI scenes.

In this paper, we propose the discriminative enhanced attention-based deep nearest
neighbor neural network (DEADN4) based on the DN4AM model. While retaining the
advantages of DN4AM, DEADN4 model has three additional advantages. Firstly, incorpo-
rating both local and global information, the DEADN4 model employs the deep local-global
descriptor (DLGD) for classification, enhancing the differentiation between different classes’
descriptors. Secondly, to enhance the intra-class compactness, DEADN4 introduces the
center loss to optimize global information. By using the center loss, it effectively increases
the intra-class compactness by pulling features of the same class towards their centers,
mitigating significant intra-class diversity. Finally, DEADN4 improves the Softmax loss
function in the classification module by incorporating the cosine margin, encouraging
larger inter-class distances between learned features. These advantages contribute to im-
proving the few-shot RSISC results. In Section 2, we delve into the existing research in the
domain. In Section 3, we unveil our proposed method. The outcomes of our experiments
and corresponding discussion are elucidated in Section 4. Lastly, in Section 5, we draw
definitive conclusions based on our findings.

2. Related Work

Deep convolutional neural network (CNN) is capable of extracting abundant semantic
features and distinguishing diverse classes of deep features in the final fully connected layer
of the network, enabling the accurate prediction of test samples. Nevertheless, research
has found that traditional Softmax loss can disperse features belonging to different classes
as much as possible, but it overlooks the intra-class compactness of features, leading to
a deficiency in the discriminability of the learned features. Therefore, many researchers
started studying how more discriminative features could be extracted to further enhance
the performance of CNN. Intuitively, if the close clustering within classes and the distinct
differentiation across classes are maximized simultaneously, the learned features will
have excellent separability and discriminability. Although learning good features is not
easy for many tasks due to significant inter-class differences, considering the powerful
representational capacity of CNN, it is possible to learn features that exhibit both good
separability and strong discriminability. At present, the work related to the discriminative
enhancement of CNN can be roughly divided into two classes: class-center method and
improved loss function. Since our method is based on DN4AM, this section will include a
concise overview of the DN4AM model.

2.1. Class-Center Method

The method of using the class-center usually defines a center for each class, and
then increases the distinguishability of the model’s extracted features by increasing
the intra-class compactness [37–39]. The class-center is defined by researchers, and a
commonly used definition for the class-center is the average of the characteristics found
in training samples belonging to the identical category. Wen et al. [37] believe that
CNN can complete classification tasks by using Softmax loss training until the network
converges. However, an observation can be made that the acquired features through
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the network still exhibit significant intra-class variance, indicating that the network’s
acquired deep features are separable through solely using Softmax loss but lack sufficient
discriminability. Thus, Wen et al. proposed the center loss to augment the distinctiveness
of the acquired features within the neural network, which can be formulated as:

LC =
1
2

N

∑
i=1

∥∥Xi − cyi

∥∥2
2 (1)

where cyi ∈ Rd represents the yith class-center of the deep feature, m denotes the population
size of the current training dataset. The combination of Softmax loss and center loss in
training the CNN achieves exceptional accuracy on various significant face recognition
datasets. The experiments demonstrate that, through the aforementioned joint supervision,
a more robust neural network can be trained, obtaining deep features that aim to achieve
both the dispersion between different classes and the compactness within same class. This
significantly enhances the distinguishability of the extracted features through the deep
learning model.

2.2. Improved Loss Function

The loss function is a pivotal area of study in machine learning, greatly influencing the
development and enhancement of various machine learning techniques. For classification
and recognition tasks, the deep CNN is employed to extract critical information from face
images, ensuring that samples within the same class exhibit similarity whereas samples
belonging to different classes display pronounced dissimilarity. Softmax loss is commonly
used to solve multi-class classification problems, which are widely adopted in practical
scenarios like image recognition, face recognition, and semantic segmentation. Although
the Softmax loss function is concise and has probabilistic semantics, making it one of the
frequently employed elements in CNN models, some scholars argue that it does not overtly
advocate for compactness within the same class and distinctiveness between different
classes [40,41]. In order to tackle this problem, based on their work [40,41], the loss function
of Softmax can be modified as follows:

Ls =
1
N

N

∑
i
− log

es
(

cos
(

θyi ,i

)
−Mm

)
es
(

cos
(

θyi ,i

)
−Mm

)
+ ∑j 6=yi

es cos(θj,i)
(2)

where N is the quantity belonging to the training samples, yi is the class information of the
ith sample, θj,i denotes the deviation angle between the weight vector of the jth class and
the ith sample, Mm ≥ 0 is a constant employed to regulate the cosine margin, s is a fixed
value. In this way, the Softmax loss is formulated in terms of cosine, and the cosine margin
is utilized to maximize the distance between features in the cosine decision space. As a
result, the objective of reducing variability within classes while increasing dissimilarity
between classes has been successfully accomplished.

2.3. DN4AM

DN4AM is a model designed to address the problem of few-shot RSISCs. It
consists of two main parts: attention-based deep embedding module fψ(·) and the
metric module fϕ(·).

The fψ(·) module is responsible for capturing the deep local descriptor (DLD) within
images and generating attention maps that are closely associated with scene classes. For
each input image X, fψ(X) represents a feature map of size h×w× d1, which can be seen as
containing h× w DLD of dimension d1. The DLD captures the features in different regions
of the image.
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Additionally, the fψ(·) module incorporates a class-relevant attention learning module.
This module partitions the DLD into relevant and irrelevant parts to the scene classification.
The primary purpose of this is to minimize the impact of ambient noise and prioritize the
characteristics associated with the scene class.

Finally, in the fϕ(·) module, the class of a query image is determined by comparing
the similarity between the DLDs of the query and support images.

In summary, DN4AM utilizes the fψ(·) module to learn the features about scene
classes in images. The fϕ(·) module then compares the similarities between query and
support images’ DLDs to perform few-shot RSISC. This approach provides more accurate
classification results while reducing interference from background noise.

3. Methods
3.1. Architecture

DN4AM improves the network by addressing the issue of interference from irrelevant
background noise in few-shot scene classification, but it overlooks intra-class compactness.
Our method, which builds upon the foundation of DN4AM, is proposed to tackle the
aforementioned problem. The diagram of our method is illustrated in Figure 2. To acquire
more stronger features, our method integrates local and global information and performs
classification using DLGD. Additionally, the center loss is introduced to optimize global
information and increase intra-class compactness. This effectively brings the features
within the same class closer to their centers, overcoming significant intra-class diversity.
Furthermore, improvements are made to the Softmax loss function in the classification
module by incorporating cosine margins, which encourage larger class separability in
learned features. Under the shared oversight of the center loss and modified Softmax loss,
our method is capable of extracting more discriminative features.

Figure 2. Diagram of DAEDN4 for few-shot RSISC.

Our method utilizes ResNet18 as the fψ(·) module, which is presented in Figure 3.
Specifically, the product of the second convolutional block of ResNet18 is used as the DLD.
It then goes through two more convolutional blocks, average pooling, 1× 1 convolution
operation, and finally obtains the global information. The global information is then merged
with the DLD to obtain the DLGD. A class-relevant attention learning module, proposed
in DN4AM, is added after the second convolutional block. For the classification module,
the hyperparameter k of k-nearest neighbor method [42] is set to 3. The support dataset S
and query dataset Q are passed into our method. The fψ(x) module yields DLGD for the
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support images and the query images. Finally, the fϕ(·) module is employed to calculate
the resemblance between the query image and the support image.

Figure 3. The architecture of the attention-based deep embedding module.

3.2. Attention-Based Deep Embedding Module
3.2.1. Deep Local-Global Descriptor

The CNN has an essentially hierarchical structure that can capture scene information
from different levels of convolution operations. The convolution operation of the shallow
layer can only obtain basic attributes, which are mainly descriptions of local information,
including the edges and textures of the target. Low-level feature maps are further subjected
to multiple convolution pooling operations, which can obtain more abstract sophisticated
attributes. Sophisticated attributes hold rich semantic information and can efficiently
summarize the features of various objects.

DN4AM directly calculates the distance between the descriptors of the query image
and the entire class of the support image by learning the DLD of the image, effectively
reducing quantization errors. However, due to limited samples, each descriptor only
contains limited information, and this model lacks the utilization of global information.
The Softmax loss function used during network training scatters features belonging to
different classes as much as possible to ensure correct classification. However, it does not
impose any constraints on intra-class compactness.

To ensure model robustness, our method proposes an efficient method to appending
image global pooling information for each DLD. To obtain the global information of the
image, our method further extracts the local features and uses global pooling, and the
resulting feature map size is compressed from h× w× d to 1× 1× d1, where d1 < d. In
this paper, we design d = 256 and d1 = 128. This yields a set of h× w DLGDs of (d + d1)
dimensions. The image’s global information acts like an effective pointer, allowing each
DLD with global information to have a greater differentiation from the DLDs.

3.2.2. Feature Extraction

Using ResNet18 as the fψ(x) module for extracting DLGD, the resulting deep features
fψ(X) after the fψ(·) module is a tensor of size h× w× d, representing a collection of m
d-dimensional DLGDs, which can be described as follows:

fψ(X) = [x1, x2, . . . , xm] ∈ Rd×m (3)

where the dimensions of the extracted feature map are represented by w, h, and d, respec-
tively, corresponding to its width, height, and channel count, m = h× w, m is the whole
quantity of descriptors in the set, and xi denotes the ith DLGD.
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The fψ(·) module is composed of the deep local embedding module and the deep
global embedding module. The deep local embedding module is responsible for obtaining
the DLD, while the deep global embedding module is responsible for extracting the deep
global descriptor (DGD). Consequently, the DLGD can be divided into two parts: the DLD
and the DGD.

The DLDs are considered a collection of m d1-dimensional deep descriptors and can
be represented as:

fψ1(X) = [x11, x21, . . . , xm1] ∈ Rd1×m (4)

The DGD can be represented as follows:

fψ2(X) =
[

xg1, xg2, . . . , xgd2

]
∈ Rd2×1 (5)

where d1 + d2 = d. For m d1-dimensional DLDs, each of them is followed by a d2-
dimensional DGD directly. This process produces the DLGDs.

3.2.3. Attention Mechanism

To introduce an attention technique into the fψ(x) module, we differentiate the DLDs
into relevant and irrelevant parts to the scene. This is accomplished by constructing a
feature map for each pixel in the feature map obtained from the fψ(x) module. Specifically,
we employ a combination of the squeeze-and-excitation (SE) [43] network as the base
module and utilize a non-local attention mechanism, which can be performed as follows:

amb = σ

(
Wz2 δ

(
Wz1

m

∑
i=1

fk(xi1)⊗ fg(xi1)

))
(6)

where σ and δ, respectively, denote the ReLU activation function and the Sigmoid activation
function; Wz1 and Wz2 are both FC weights used for downsampling and upsampling the
dimensions of the feature map; m denotes the total number of pixels in the feature map,
fg(xi1) = Wg · xi1, where Wg is the weight vector, and ⊗ represents matrix multiplication.
Similarly, fk(xi1) = So f tmax(Wk · xi1), where Wk represents the feature weight.

By using Equation (6), we can obtain the weight vector [am1, am2, . . . , amd1] for each
channel. In this case, d1 represents the channel count in the feature map, and amb determines
the relevance of the bth channel to the scene class. If it is relevant, amb = 1; otherwise,
amb = 0. By utilizing the feature channel weight vector, we can derive an attention feature
map that correlates with the respective class, as shown below:

Ml(x) = Sigmoid
(
∑ ambxi1

)
(7)

In this way, we sum up the channels that are relevant to the scene to obtain more
comprehensive information. This accumulation helps capture richer details. Then, we
apply the Sigmoid function to acquire the attention feature map where each pixel position
indicates its relevance to the scene class.

3.3. Metric Module

Through the fψ(·) module, each query image will generate m DLGDs. For each DLD

xi1, we find k nearest neighbors x̂j
i1

∣∣∣k
j=1

from a specific class c. The resemblance between

the corresponding xi and x̂j
i is computed as follows:

fϕ( fψ(q), c) =
m

∑
i=1

Ml(xi1)
k

∑
j=1

cos
(

xi, x̂j
i

)
cos(xi, x̂i) =

x>i x̂i

‖xi‖ · ‖x̂i‖

(8)
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where fϕ( fψ(q), c) denotes the resemblance between a specific query image q and class c,
xi denotes the ith DLGD of the query image q, while xi1 denotes the ith DLD, m denotes
the total number of DLDs. For each DLD xi1, based on the nearest neighbor method, we

can acquire its k nearest neighbors x̂j
i1

∣∣∣k
j=1

in class c. xj
i1 denotes the jth nearest neighbor

of xi1 in class c, and xj
i denotes the corresponding DLGD of xj

i1. The symbol x̂j
i1 denotes

the transpose of xj
i1, cos() denotes the cosine resemblance between two vectors, and

Ml(xi1) denotes the responsiveness of the attention feature map at position xi1. k is a
predetermined hyperparameter.

3.4. Loss Function
3.4.1. Center Loss

Through the above operation, the global feature representation can be obtained, but
the feature is not the optimal class representative feature, and it needs to be continuously
optimized in the subsequent training stage. Therefore, our method introduces center loss,
and optimizes the network’s parameters by back propagating the loss, so as to optimize the
global feature. The center loss learns the deep feature of each class, called the class-center,
and minimizes the distance between the deep feature of the sample and its corresponding
class-center, which can be expressed as:

Lc =
1
2

C

∑
i=1

K

∑
j=1

∥∥ fij − fci
∥∥2

2 (9)

where C denotes the class count, K denotes the sample count of each class in the support
set, fij denotes the global feature of the jth sample in the ith class of the support set, while
fci represents the samples’ average global feature in the ith class of the support set.

3.4.2. Class Loss

The cutting-edge few-shot learning models typically incorporate the fψ(·) module
and fϕ(·) module, which are commonly implemented using deep CNN, whereas the fϕ(·)
module employs Euclidean distance [37], cosine distance [35], and NBNN [44]. All of these
models employ the Softmax loss to accelerate the convergence rate. DN4AM calculates
the probability of the predicted class based on the similarity between the query image and
each class, employing the Softmax loss function in the same manner. The objective of the
Softmax loss is to enhance the posterior probability of the correct class by maximizing it,
thereby separating the features of different classes. Therefore, models trained with Softmax
loss struggle to gain a deeper understanding of distinctive features, leading to less than
ideal results in RSISC tasks with high intra-class diversity and inter-class similarity.

During the testing phase, the score for the class to which a query image belongs
is typically computed as a weighted sum of the cosine distances between descriptors.
This indicates that the norm of the DLD does not contribute to the scoring function, and
the posterior probability solely depends on the cosine values of the angles. In order
to enhance both correct classification emphasis and discriminative feature learning,
this paper adopts a similar approach to the improved loss function of Softmax and
introduces a cosine margin on the classification boundary. fϕ( fψ(q), c) is computed
by the weighted sum of the cosine similarity between the descriptor and the nearest
neighbor. If a distance of M is added for the similarity of each descriptor cos(xi, x̂i), each
descriptor has k nearest neighbors, and an image has m descriptors, then the additional
distance for the increase in similarity between the query image qj to class ci is mkM. The
advanced loss function is structured as shown below:

Ls =
1

C× N

C

∑
i=1

N

∑
j=1
− log pij =

1
C× N

C

∑
i=1

N

∑
j=1
− log

e fϕ( fψ(qj),ci)−mk×M

e fϕ( fψ(qj),ci)−mk×M + ∑t 6=i e fϕ( fψ(qj),ct)
(10)
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where pij denotes the likelihood of the query image being accurately classified, C denotes
class count in the support set, N denotes the sample count in each class in the query set,
and M is the margin added to the similarity cos(xi, x̂i) of the descriptor.

3.4.3. Total Loss

The overall loss function of the network is stated below:

L = Ls + λLc (11)

where L denotes the overall loss, which represents the sum of Ls and Lc, λ is a constant
used to adjust the weight of Lc.

4. Experiment and Discussion
4.1. Dataset Description

To validate the effectiveness of our method, three commonly used datasets are ap-
plied in this paper, including NWPU-RESISC45 [45], UC Merced [46] and WHU-RS19 [47]
datasets. For ease of comparison, the three datasets are partitioned in the same way as
DLA-MatchNet [18].

4.1.1. NWPU-RESISC45 Dataset

The NWPU-RESISC45 dataset is released by Northwestern Polytechnical University,
China. This dataset encompasses 31,500 images, which are collected from Google Earth.
These images cover over 100 nations and territories. Google Earth’s maps are displayed on
a 3D globe that is composed of a satellite image, aerial image, and geographic information
systems. This dataset encompasses different kinds of weather, imaging conditions, scales,
seasons, and illumination conditions. Most of the scene classes exhibit resolutions within
the range of 30–0.2 m, and the spectral bands include red, green, and blue. As displayed in
Figure 4, this dataset consists of 45 scene classes, each of which contains 700 images with
256× 256 size. In the experimental section, this dataset is divided into training, validation,
and testing datasets, consisting of 25, 10, and 10 classes, respectively.

4.1.2. UC Merced Dataset

The UC Merced dataset was introduced in 2010, derived from the United States
Geological Survey National Map, covering various regions of the USA. It is an RGB
dataset with an image resolution of 0.3 m. It includes 21 scene classes, and each class
comprises 100 land use images with a size of 256× 256 pixels, as depicted in Figure 5.
For experimentation purposes, the dataset was divided into training, validation, and
testing datasets containing 10, 6, and 5 classes, respectively.

4.1.3. WHU-RS19 Dataset

The WHU-RS19 dataset, provided by Wuhan University of China, is derived from
Google Earth. It has a resolution of 0.5 m and captures images in the red, green, and
blue spectral bands. Figure 6 showcases this dataset, which encompasses 19 distinct scene
classes. Each class comprises at least 50 samples sized at 600× 600 pixels. In total, there
are 1005 scene images included in this dataset. For experimental purposes, the dataset is
divided, allocating 9 classes for training, 5 classes for validation, and 5 classes for testing.

4.2. Experimental Setting
4.2.1. Experimental Software and Hardware Environment

Table 1 gives detailed information on the software environment and hardware envi-
ronment utilized in this experiment.
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Figure 4. NWPU-RESISC45 dataset consists of 45 scene classes, each of which contains 700 images
with 256× 256 size.

Figure 5. UC Merced dataset which consists of 21 scene classes, each of which contains 100 land use
images with a size of 256× 256.

4.2.2. Experimental Design

We conducted experiments to address the 5-way 1-shot and 5-way 5-shot tasks on
NWPU-RESISC45, UC Merced, and WHU-RS19 datasets. To compare the performance,
we evaluated our method against five renowned few-shot learning techniques: Match-
ingNet [35], RelationNet [48], MAML [49], Meta-SGD [50], DLA-MatchNet [18], DN4 [44]
and DN4AM [36]. Given that our approach is based on the DN4AM architecture, we
compared it to DN4AM using the same embedding network to ensure a fair comparison.
The classification results are assessed using the average accuracy of the top-1, and the 95%
confidence intervals (CI) [36] are provided.
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Figure 6. WHU-RS19 dataset which consists of 19 scene classes, each of which contains at least 50
samples with a size of 600× 600.

Table 1. The software and hardware environments utilized in the experiment.

Hardware environment
CPU Intel(R) Core(TM) i7-7800X CPU @ 3.50 GHz 32 GB

GPU NVIDIA Geforce RTX 2080Ti 11 GB

Software environment

OS Linux Ubuntu 18.04 LTS

Programming language Python 3.6

Deep learning framework Pytorch 1.4.0

CUDA Cuda 10.0

The input image is reduced to a size of 224× 224 in a stochastic way, and enhanced
with the common image enhancement methods. The classification module employs a
nearest neighbors search approach with a predetermined value of 3 for the number of
neighbors considered. The hyperparameter M in Equation (10) is adjusted to 0.01. During
the training phase, the model is trained based on the episodic training method. A total of
300,000 episodes are constructed in the training dataset. In the 5-way 1-shot task, every
episode will consist of 5 support images and 75 query images. In the case of the 5-way
5-shot task, each episode will contain 25 support images and 50 query images. We employ
the Adam [51] method for model training, initializing the learning rate to 0.0001. The
learning rate is decayed every 100,000 episodes. To expedite testing, we construct a total of
600 episodes in the validation dataset. After 10,000 episodes of training, one experiment
is conducted on the validation dataset. The average accuracy of top-1 is set as the current
network’s training result, and the model with the highest performance is saved as the final
model. In the testing period, we randomly generate a set of 600 episodes from the testing
dataset and calculate the average top-1 accuracy. This process is repeated five times, and
the mean of the five testing accuracies is considered the final testing accuracy, along with
presenting the 95% CI.

4.3. Experimental Results

Comparative results of multiple methods on the three datasets are presented in
Tables 2–4, with the best-performing results highlighted in bold numbers. Our method
consistently outperforms other methods in terms of accuracy on all three datasets, as
demonstrated by the experimental results presented in Tables 2–4. Regardless of the type
of task, our method consistently achieves the highest accuracy. These results highlight the
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superior classification performance of our method, effectively enhancing the accuracy of
few-shot RSISC.

Table 2. Comparative results of multiple methods experimenting with the NWPU-RESISC45 dataset.

Method 5-Way 1-Shot 5-Way 5-Shot

MatchingNet 54.46% ± 0.77% 67.87% ± 0.59%

RelationNet 58.61% ± 0.83% 78.63% ± 0.52%

MAML 37.36% ± 0.69% 45.94% ± 0.68%

Meta-SGD 60.63% ± 0.90% 75.75% ± 0.65%

DLA-MatchNet 68.80% ± 0.70% 81.63% ± 0.46%

DN4 66.39% ± 0.86% 83.24% ± 0.87%

DN4AM 70.75% ± 0.81% 86.79% ± 0.51%

Our method 73.56% ± 0.83% 87.28% ± 0.50%

Table 3. Comparative results of multiple methods experimenting with the UC Merced dataset.

Method 5-Way 1-Shot 5-Way 5-Shot

MatchingNet 46.16% ± 0.71% 66.73% ± 0.56%

RelationNet 48.89% ± 0.73% 64.10% ± 0.54%

MAML 43.65% ± 0.68% 58.43% ± 0.64%

Meta-SGD 50.52% ± 2.61% 60.82% ± 2.00%

DLA-MatchNet 53.76% ± 0.62% 63.01% ± 0.51%

DN4 57.25% ± 1.01 79.74% ± 0.78%

DN4AM 65.49% ± 0.72% 85.73% ± 0.47%

Our method 67.27% ± 0.74% 87.69% ± 0.44%

Table 4. Comparative results of multiple methods experimenting with the WHU-RS19 dataset.

Method 5-Way 1-Shot 5-Way 5-Shot

MatchingNet 60.60% ± 0.68% 82.99% ± 0.40%

RelationNet 60.54% ± 0.71% 76.24% ± 0.34%

MAML 46.72% ± 0.55% 79.88% ± 0.41%

Meta-SGD 51.54% ± 2.31% 61.74% ± 2.02%

DLA-MatchNet 68.27% ± 1.83% 79.89% ± 0.33%

DN4 82.14% ± 0.80% 96.02% ± 0.33%

DN4AM 85.05% ± 0.52% 96.94% ± 0.21%

Our method 86.89% ± 0.57% 97.63% ± 0.19%

4.4. Discussion

To validate the advantage of the DLGD and the Softmax loss function with an added
cosine margin, this chapter conducted ablation experiments on the NWPU-RESISC45
dataset. As demonstrated in Table 5, the result of models with different modules on the
NWPU-RESISC45 dataset is presented, with bold numbers indicating the best results. In the
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ablation experiments, the evaluation metric employed is the average top-1 accuracy, and
the network architecture from DN4AM, which utilizes ResNet18 as the backbone network,
is chosen as the baseline model. To uphold fairness, a strict adherence to consistency is
maintained throughout all experimental data and parameter configurations. From Table 5, it
is observed that both the DLGD and the cosine margin contribute to improved classification
performance, particularly for the classification result of the 5-way 1-shot task, providing
evidence of the effectiveness of this method.

Table 5. Performance comparison of models with different modules on the NWPU-RESISC45 dataset.

Model 5-Way 1-Shot 5-Way 5-Shot

Baseline model 70.75% 86.79%

Baseline model + DLGD 71.27% 86.83%

Baseline model + DLGD + cosine margin 73.56% 87.28%

This section also explores the value of the hyperparameter M. M represents the
magnitude of the additional margin added, playing an integral part in the calculation of the
loss function. In this section, the 5-way 5-shot task is performed on the NWPU-RESISC45
dataset while varying the value of M. The outcomes are depicted in Table 6, with bold
numbers indicating the optimal outcomes. It is evident that, when there is no margin in the
loss function (M = 0), this leads to the poor performance of the model. As M increases,
the model’s accuracy steadily improves on the dataset and reaches saturation at M = 0.01.
This proves the performance of margin M, indicating that appropriately boosting margin
M can significantly improve the discriminability of model learning features.

Table 6. Performance comparison of models with different M margin on the NWPU-RESISC45 dataset.

Model M = 0 M = 0.005 M = 0.01 M = 0.015 M = 0.02

Our Method 86.83% 87.11% 87.28% 86.28% 84.62%

Furthermore, thanks to the powerful feature extraction capability, measurement mech-
anism, and episodic training approach of our method, we can handle the classification for
the class which is not in the dataset. For example, if there are some images belonging to a
class that is not present in the training set and needs to be classified, we can select these
images along with other images from classes in the training set to form a support set and
query set for classification. Features can be extracted separately from the support set and
query set using the network of our method. Then, based on the similarity between the
extracted features of the samples in the support set and query set, the samples in the query
set can be classified. Features extracted from samples belonging to the class not present in
the training set usually exhibit significant differences from the ones extracted from samples
belonging to classes in the training set. Therefore, samples from classes not present in the
training set will still be classified into their own respective class.

5. Conclusions

This paper introduces a novel method called DEADN4 as a means of tackling the
problem of RSISC. Since our method is derived from DN4AM, it retains the advantages of
DN4AM while also introducing new benefits. In order to effectively mitigate the influence
of background noise regions on classification results, our method incorporates episodic
training and attention mechanisms similar to DN4AM method. To significantly improve the
compactness of intra-class features, our method uses center loss. Furthermore, by utilizing
DLGD, our method greatly enhances the feature differentiation between different classes.
Lastly, the Softmax loss in our method is modified, resulting in a further improvement in
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the dissimilarity between features from different classes. Experimental results demonstrate
the excellent performance of our method in few-shot RSISC tasks.
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Symbol Explanation

N population size of dataset
C class count
c a specific class
X image sample
y class information
θ deviation angle
Mm constant
s constant
cos cosine
Lc center loss
Ls class loss
fψ(X) DLGD
fψ1(X) DLD
fψ2(X) DGD
h height of feature map
w width of feature map
d dimension of DLGD
d1 dimension of DLD
d2 dimension of DGD
m population size of DLD
x DLGD
xi1 the ith DLD
xgi the ith element of DGD
Wz1 FC weight
Wz2 FC weight
Wg weight vector
Wk feature weight
σ ReLU activation function
δ Sigmoid activation function
fg convolution function
fk Softmax function
⊗ matrix multiplication
am weight of feature channel
fϕ(·) metric module
k number of nearest neighbors
xj

i the jth nearest neighbor of xi

x̂j
i1 transpose of xj

i1
‖·‖ module of vector
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