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Abstract: The retrieval of soil moisture (SM) using the Global Navigation Satellite System-Reflectometry
(GNSS-R) technique has become a prominent topic in recent years. Although prior research has reached
a spatial resolution of up to 9 km through the Cyclone Global Navigation Satellite System (CYGNSS),
it is insufficient to meet the requirements of higher spatial resolutions for hydrological or agricultural
applications. In this paper, we present an SM downscaling method that fuses CYGNSS and SMAP
SM. This method aims to construct a dataset of CYGNSS observables, auxiliary variables, and SMAP
SM (36 km) products. It then establishes their nonlinear relationship at the same scale and finally
builds a downscale retrieval model of SM using the eXtreme Gradient Boosting (XGBoost) algorithm.
Focusing on the southern United States, the results indicate that the SM downscaling method exhibits
robust performance during both the training and testing processes, enabling the generation of a
CYGNSS SM product with a 1 day/3 km resolution. Compared to existing methods, the spatial
resolution is increased threefold. Furthermore, in situ sites are utilized to validate the downscaled
SM, and spatial correlation analysis is conducted using MODIS EVI and MODIS ET products. The
CYGNSS SM obtained by the downscaling model exhibits favorable correlations. The high temporal
and spatial resolution characteristics of GNSS-R are fully leveraged through the downscaled method
proposed. Furthermore, this work provides a new perspective for enhancing the spatial resolution of
SM retrieval using the GNSS-R technique.

Keywords: GNSS-R; CYGNSS; SMAP; downscaled; soil moisture

1. Introduction

Soil moisture (SM) plays a pivotal role in many natural phenomena and processes.
For instance, it directly affects crop growth and can be a significant factor in natural
disasters such as land degradation, floods, and landslides [1]. These issues have profound
impacts, including on food security and the stability of ecological environments, making
accurate and real-time monitoring of SM particularly important. However, traditional
SM detection methods have notable limitations. These methods primarily rely on direct
measurements from ground detectors or meteorological stations, which means they require
substantial human and material resources and are time-consuming [2]. Moreover, due to
the limitations of these methods, they cannot achieve large-scale, efficient, and low-cost
SM retrieval. For vast areas and complex terrains, their detection performance is severely
limited. Fortunately, the advent of remote sensing technology provides a new avenue
to address this issue. Remote sensing technology can use satellites or drones to monitor
the ground from the air, avoiding the difficulties of ground detection and thus achieving
large-scale SM retrieval [3,4]. In fact, the European Space Agency (ESA) and the National
Aeronautics and Space Administration (NASA) have launched the Soil Moisture and Ocean
Salinity (SMOS) satellite [5] and the Soil Moisture Active Passive (SMAP) mission [6] for
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SM retrieval. Both missions can achieve global SM retrieval with a spatial resolution of
about 40 km, and they can revisit the globe every 2–3 days. However, while remote sensing
technology and related satellite missions such as SMOS and SMAP provide global SM
retrieval capabilities, the resolution of these products is relatively low, making them more
suitable for large-scale applications. For medium- and small-scale applications that require
more detailed observations, such as irrigation management in farmland or flood warnings
in specific areas, these methods may not meet the needs.

The technique of Global Navigation Satellite System-Reflectometry (GNSS-R) rep-
resents a novel type in the field of remote sensing. Its internal L-band signal source is
adequate and exhibits high penetration capabilities for vegetation, soil, snow, etc. It is
capable of all-weather, all-day observation and has excellent potential for SM retrieval [7–9].
GNSS-R receivers are generally installed on the ground or on aircraft. Although they have
an excellent detection accuracy, the monitoring range limits its ability to achieve a wide
range of SM retrieval [10]. CYGNSS was successfully launched in 2016, with a revisit cycle
of 2.8 (median) and 7.2 (average) hours [11], providing ample data for SM retrieval by
GNSS-R technique. Thus, using the GNSS-R technique to retrieve SM has become a hot re-
search topic in recent years. Chew et al. [12] showed that there is a strong linear relationship
between the surface reflectance of CYGNSS and SMAP SM, and a global SM product with
a resolution of 36 km was produced through linear method. Ruf [13] proposed that SMAP
SM can be supplemented by using the relative signal-to-noise ratio (rSNR) of CYGNSS
to SM retrieval. Al-Khaldi et al. [14] considered that vegetation and surface roughness
would affect SM. They proposed a method for CYGNSS SM retrieval through time series.
A global SM product of 0.2◦ × 0.2◦ was finally generated. Considering that the terrain,
vegetation, and surface roughness have an impact on the GNSS signal, the relationship
between the signal and SM is relatively complex and nonlinear. Machine learning has been
frequently used in the study of CYGNSS SM retrieval because of its great advantages in
handling nonlinear situations. Eroglu et al. [15] combined CYGNSS observables with in
situ sites observations, Vegetation Water Content (VWC), Normalized Vegetation Index
(NDVI), and topography features. Finally, a daily SM product with a resolution of 9 km
was generated using the Artificial Neural Network (ANN). Senyurek et al. [16] obtained
the daily SM of the United States with a resolution of 36 km using CYGNSS and in situ
site observations based on machine learning algorithms. The results showed that the
prediction effect of Random Forest (RF) was the best, with an RMSE of 0.052. Jia et al. [17]
pre-classified land cover types and used the eXtreme Gradient Boosting (XGBoost) method
for SM retrieval. Compared with the accuracy of SM retrieval without pre-classification,
there was an improvement, with an RMSE of 0.052.

However, the SM products obtained from the aforementioned microwave remote
sensing data have a coarse resolution, which limits their utility in medium- and small-scale
hydrological and agricultural applications. Zhan et al. [18] first introduced an empirical
polynomial for downscaling, marking an initial exploration of effective strategies to address
this issue. Subsequently, Chauhan et al. [19] improved upon Zhan’s method, enhancing
its performance. In this empirical polynomial downscaling method, high-resolution SM
is expressed as a polynomial function of surface temperature, plant index, and surface
reflectance derived from brightness temperature data. This innovative method provides a
fresh perspective for tackling the downscaling of SM. Piles et al. [20] further optimized this
downscaling polynomial fitting method. Their improvement replaced surface reflectance
in the polynomial equation with coarse-resolution brightness temperature data, making
the method more flexible and efficient in handling practical problems. Moreover, this
polynomial fitting downscaling method has been widely applied in the downscaling of
various SM products, such as SMOS and AMSR-E, and also in various high-resolution
remote sensing image products, such as MODIS and MSG-SEVIRI. This has been confirmed
by many scholars [21–26]. Their research further validates the practicality and broad
application value of this method. In order to retrieve daily SM at a 9 km resolution,
Das et al. [27] downscaled the coarse-resolution (approximately 40 km) SMAP L-band
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brightness temperature data using the high-resolution (1–3 km) L-band Synthetic Aperture
Radar (SAR) backscatter observations. Based on artificial intelligence techniques including
Support Vector Machines, Artificial Neural Networks, and Associated Vector Machines,
Srivastava et al. [28] fused MODIS surface temperature with SMOS SM and enhanced the
spatial resolution of SMOS SM by using downscaling methods. The factor used to represent
the high-resolution state of SM plays a crucial role in determining the accuracy of the
downscaled SM. The downscaled SM has higher accuracy compared to the original coarse-
resolution SMOS and AMSR-E SM, with the R rising from 0.27 to 0.96 [29]. Compared
to the observed data, the accuracy of the downscaled SM has improved relative to the
products of SMOS and AMSR-E [30]. This means that downscaling methods could be
attempted to provide high-resolution SM for products such as SMAP, SMOS, AMSR-E,
and NASA-USDA.

The aforementioned research demonstrates both the significant advantages of using
GNSS-R technique for SM retrieval and the notable effects of using downscaling methods
to enhance the spatial resolution of SM products. However, no studies have yet used the
downscaling method to improve the spatial resolution of GNSS-R technique. At present,
the spatial resolution achieved by SM retrieval based on spaceborne GNSS-R is limited
(up to 9 km). Spatial downscaling of microwave SM is a crucial strategy. It addresses the
pressing need for higher spatial resolution SM data, which is essential for local hydrological
or agricultural applications. Therefore, this paper proposes a method for constructing a
SM downscaling model. This method aims to fuse the CYGNSS observables and auxiliary
variables with SMAP SM (36 km) products, forming a nonlinear relationship at the same
scale. Finally, a downscaling model will be built based on the XGBoost algorithm to retrieve
SM with a spatial resolution of 3 km. In the end, the SM retrieval using GNSS-R technique
is successfully spatially downscaled, improving the spatial resolution of SM retrieval.

2. Materials and Methods
2.1. Study Area

The study area is located in the southern United States, characterized by diverse
terrains and rich ecosystems. The region experiences a subtropical humid climate, with an
average annual precipitation of approximately 834.45 mm, contributing to the area’s rich
biodiversity and thriving ecosystems. Geographically, the study area exhibits significant
variations in altitude, ranging from −88 m to 4277 m, with an average altitude of 1778 m.
The terrain generally features higher elevations in the west and lower in the east. This
variation in terrain provides excellent conditions for studying the relationship between SM
and environmental factors such as terrain and climate. Ecologically, the primary land cover
types in the study area are grasslands and tropical savannas, collectively accounting for
55% of the total area. Additionally, a considerable portion of the western region is covered
by open shrublands, making up 13% of the total area. The elevation and land cover types
of the study area are shown in Figure 1.
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Figure 1. DEM and land cover type map of the study area. 
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Figure 1. DEM and land cover type map of the study area.

2.2. Cyclone Global Navigation Satellite System

As a component of NASA’s Earth System Science Pathfinder project, the Cyclone
Global Navigation Satellite System (CYGNSS) was launched on 15 December 2016. The
observatories are composed of eight microsatellites. They offer almost uninterrupted
coverage of the Earth due to their orbit inclination of approximately 35◦ to the equator. This
positioning results in an average revisit time of 7 h and a median revisit time of 3 h. This
inclination allows CYGNSS to cover an observational range from 38◦N to 38◦S. Therefore,
we selected the southern part of the United States as the study area (CYGNSS observables
cannot cover the entire US).

The objective of this study is to retrieve SM within a specific region. To achieve this,
we utilized the CYGNSS Level-1 (L1) version 2.1 product, with data sourced from the
Physical Oceanography Distributed Active Archive Center (PO.DAAC, https://podaac.
jpl.nasa.gov/, accessed on 1 April 2023). The primary goal of CYGNSS is to enhance
understanding and prediction of tropical cyclone intensity by leveraging signals from the
Global Navigation Satellite System (GNSS). The core component of this system is the Delay
Doppler Mapping Instrument (DDMI), whose main task is to generate Delay Doppler
Maps (DDMs) [31]. DDMs represent the received surface power of each observed specular
reflection point through a series of time delays and Doppler frequencies, measured on a
bin-by-bin basis. In other words, they provide a two-dimensional representation of the
reflection characteristics of GNSS signals. These characteristics are influenced by factors
such as SM and vegetation cover, and can therefore be used to infer SM. It is important
to note that the DDMI initially measures in uncalibrated “counts”, which have a linear
relationship with the total signal power it processes. The total signal power includes
thermal radiation from the Earth and the DDMI itself, as well as GPS signals scattered from
the land surface. However, during the Level-1A calibration process, each bin in the DDM
converts these raw counts into watts, allowing for a more intuitive understanding and
analysis of the data. The CYGNSS observables used in this paper cover the period from
1 January to 31 December 2019.

https://podaac.jpl.nasa.gov/
https://podaac.jpl.nasa.gov/
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The surface reflectivity can be estimated through a variety of methods with various
coherence and incoherence assumptions using the observables in the L1 data [15,32,33].
In water accumulation areas such as lakes, rivers, and wetlands, low surface roughness
leads to dominant coherent scattering in forward scattering. Even with higher SM, coherent
forward scattering remains strong due to water. However, GPS signals interacting with
vegetation introduce some incoherent components. Higher SM regions show a stronger
signal intensity due to a relatively higher SNR compared to lower SM areas. Thus, in this
paper, we adopted the approach proposed by Rodriguez-Alvarez et al. [32] to calculate
reflectivity, under the assumption that the observed GNSS-R signal is predominantly made
up of coherent reflections. This involves using the BRCS (denoted as ‘brcs’ in CYGNSS L1)
and the range terms to calculate the reflectivity (ΓRL(θi)) as:

ΓRL(θi) = (
4π

λ
)2 Pcoh

RL
(
rst + rsr)2

PtGtGr
(1)

where Pcoh
RL represents the dual base radar coherent receive power. The subscripts R and

L stand for the right circularly polarized GNSS transmit antenna and the left circularly
polarized GNSS-R antenna, respectively. The GNSS signal wavelength is denoted by λ. rst
and rsr refer to the distances from the specular reflection point to the GNSS transmitter and
the GNSS-R receiver, respectively. Pt signifies the peak power of the transmitting GNSS
signal. Gt and Gr are the gains of the transmitting and receiving antennas, respectively.
Lastly, ΓRL(θi) is the surface reflectance at an incidence angle of θi.

Leading Edge Slope (LES) and Trailing Edge Slope (TES) are indicators associated
with coherent or incoherent scattering conditions. An increase in the incoherent reflection
component within the reflected signal typically results in a corresponding increase in
the absolute values of both LES and TES. Following the methodologies presented by
Carreno-Luengo et al. [34] and Rodriguez-Alvarez et al. [32], LES and TES can be calculated
as follows:

LES =
Γm − Γm−3

3∆
(2)

TES =
Γm+3 − Γm

3∆
(3)

where Γm represents the peak reflectivity at the reflection point, Γm−3 is the reflectivity at
the third point before the reflection point, Γm+3 is the reflectivity at the third point after the
reflection point, and ∆ stands for the delay resolution of the Doppler delay map, which is
0.2552 chips.

DDM_SNR is one of the most basic variables in CYGNSS observables. When the
value of SM increases in the same area, the difference between the corresponding values
of DDM_SNR also increases. Therefore, DDM_SNR is added to the model as a factor
affecting the SM retrieval. For SM retrieval in the machine learning framework, the
derived reflectivity, together with LES, TES, and DDM_SNR, are used as the input layer
characteristics of CYGNSS observables.

2.3. Soil Moisture Active Passive Data

The reference products utilized in this study primarily originate from the SMAP
satellite, launched by NASA in 2015. The primary mission of this satellite is to monitor
global surface SM and freeze-thaw states, aiming to gain a deeper understanding and
knowledge of the Earth’s surface water cycle, climate change, ecosystem dynamics, and
the impact of human activities. The SMAP satellite employs an L-band radiometer for
its observations, a device capable of penetrating clouds and most vegetation to directly
measure microwave radiation from the ground, thereby inferring SM and freeze-thaw
states. The SMAP satellite revisits each location every 2–3 days, offering a very short global
coverage cycle. Notably, the SMAP satellite carries out two types of observations: ascending
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(6:00 a.m.) and descending (6:00 p.m.) [35]. This design allows for comparisons and analyses
at different times for the same location, providing more comprehensive information.

The data used in this study is obtained from the National Snow and Ice Data Center
(NSIDC, https://nsidc.org/, accessed on 15 April 2023). We selected the SMAP Level-3
(L3) Radiometer Global Daily 36 km EASE-Grid Soil Moisture (Version 8, SPL3SMP) as the
reference product. This product offers daily estimates of global land surface conditions. The
data derived from SMAP’s L-band are resampled to a global, cylindrical, 36-km Equal-Area
Scalable Earth Grid. The data period is from 1 January to 31 August 2019, providing ample
samples for our study.

The original format of the SMAP product is HDF5. In this study, we use the HEG
tool (HDFEOS To GeoTIFF Conversion Tool) to convert it into an easily processed Geotiff
data format.

2.4. International Soil Moisture Network

In this paper, the in situ SM observations from the ISMN sites [36] are used to validate
the CYGNSS SM data predicted by the downscaling model. Globally, the ISMN has set up
more than 50 SM monitoring networks that are either operational or experimental. These
networks provide a unified in situ SM database on a global scale, with a standardized data
format and pre-processing quality flags [37]. The majority of sites that offer time and space
co-located with CYGNSS observables are located in North America. Consequently, we
selected 78 available sites within the spatial coverage of CYGNSS for our study (Figure 2).
These sites primarily belong to the Soil Climate Analysis Network (SCAN), the U.S. Climate
Reference Network (USCRN), and the Snow Telemetry Network (SNOTEL). The hourly SM
data from the ISMN was processed by filtering it with the provided quality mark (marked
with a “G” for “good”) and subsequently converting it into daily averages. The surface
SM data utilized was at a depth of 5 cm, aligning with the penetration depth of L-band
microwave signals. For a comprehensive overview of ISMN, readers can refer to [36,38].
The ISMN dataset can be accessed publicly (http://ismn.geo.tuwien.ac.at, accessed on
20 April 2023).
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2.5. Auxiliary Data

According to existing research, SM is influenced by additional variables in addition
to rainfall, including elevation, land cover type, annual accumulated days, Normalized
Difference Vegetation Index (NDVI), and latitude and longitude information of satellite sam-
pling points [31,39]. These factors are typically used as auxiliary variables in downscaling
methods [40–43].

Topography, as a significant non-living factor, greatly influences the variability of
soil hydrothermal resources. The differences in elevation directly impact the spatial re-
distribution of solar radiation and rainfall. Therefore, in our downscaling model, we
incorporated altitude as the topographic variable. The source of altitude data is the Shuttle
Radar Topography Mission (SRTM) [44]. The influence on SM varies with different types

https://nsidc.org/
http://ismn.geo.tuwien.ac.at
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of land cover, as they have different effects on the storage and release of moisture. The
land cover type data used in this paper is based on the International Geosphere Biosphere
Programme (IGBP) [45] land cover map derived from the MODIS. NDVI is widely used to
assess vegetation growth, drought conditions, and ecological environments. Since NDVI
exhibits a high sensitivity to factors such as vegetative cover and SM content, it is also
used for retrieving SM and vegetation covering [46]. The NDVI product is calculated
from the daily 250 m product provided by MODIS (MOD09GQ). The precipitation plays a
significant role in vegetation growth and has a strong impact on SM. Precipitation affects
SM as it comes into contact with the soil, and there is a positive correlation between SM
and precipitation. Therefore, we include precipitation as an input variable in the model.
The daily average precipitation in the study area is obtained through the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS) project. Table 1 summarizes the
fundamental characteristics of the auxiliary variables used in this paper.

Table 1. Overview of data utilized for the downscaling process in this paper.

Datasets Variables
Temporal

Resolution (Day)
Spatial

Resolution
Time

MOD09GQ NDVI 1 250 m 1 January–31 December 2019

MCD12Q1 Land cover - 500 m 2019

SRTM DEM - 30 m 2019

CHIRPS Precipitation 1 0.5◦ 1 January–31 December 2019

- Lon, Lat 1 - 1 January–31 December 2019

- Doy 1 - 1 January–31 December 2019

3. Soil Moisture Downscaling Framework
3.1. Random Forest (RF)

Ho et al. [47] first proposed the concept of Random Forest (RF) in 1998; then,
Breiman et al. [48] systematically developed it in 2001. RF is a collective model constructed
on the foundation of decision trees. It is implemented through the Bagging concept of
ensemble learning, aiming to solve the problem of overfitting that is common in single
decision tree algorithms. The decision tree is a fundamental component. Due to its
significant advantages in handling high-dimensional feature data and large datasets, RF
is widely used in multivariate regression problems. Compared with ordinary decision
trees, RF makes some improvements in the process of building decision trees. During the
generation of a regular decision tree, the optimal feature among all sample features on the
node is used. However, the RF algorithm randomly selects a certain number of attribute
features when generating a decision tree, and then picks the optimal feature from these
randomly selected features to construct the decision tree. The decision trees built using RF
have different structures. They will not lead to overfitting due to the addition of more trees,
but instead produce a limited value of generalization error. This approach not only reduces
fitting errors but also avoids repetitive learning, which helps to enhance the predictive
performance of the final model and improve its generalization ability.

The process of the random forest algorithm is: (1) Performing n random sam-
plings on the training dataset, each time taking m samples, to obtain a subset of data
Sn = {(x1, y1), (x2, y2), (x3, y3), · · · , (xm, ym)} containing m samples. (2) Using these sub-
datasets to train n weak prediction models fn(x) separately. (3) When training decision tree
model nodes, a subset of feature samples is selected from all samples. Then, the optimal
feature for splitting the decision tree is chosen from this randomly selected subset of feature
samples. (4) The results of the various weak prediction models are consolidated according
to the specific problem at hand. For regression functions, the final output is the arithmetic
average of all the weak prediction models.
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3.2. eXtreme Gradient Boosting (XGBoost)

The eXtreme Gradient Boosting (XGBoost) method, proposed by Chen et al. [49], is
also an ensemble learning method based on gradient boosting machines. Similar to RF,
XGBoost is a learner based on Classification and Regression Trees (CART). It implements
ensemble learning of multiple CART trees by optimizing the traditional Gradient Boosting
Decision Tree (GBDT). It can be used to solve various machine learning problems, including
classification and regression. While each tree in the RF algorithm is trained in parallel,
the decision trees in XGBoost are not mutually independent. The construction process
of the XGBoost model is as follows: First, an initial tree is built using the training set
for model training, which results in residuals between the model’s predicted and actual
values. Then, during each iteration, a tree is added to fit the residuals from the model’s
previous prediction until the model’s learning process is terminated. Ultimately, this forms
an iterative residual tree collection, an ensemble of numerous tree models. The predicted
value can be calculated as follows:

ŷi =
K

∑
k=1

fk(xi) (4)

where ŷi represents the final model prediction value, K represents all the built CART trees,
xi represents the features of the i sample, and fk(xi) represents the prediction value of the
k tree. The objective function calculation formula for XGBoost is shown in Equation (5):

Obj =
m

∑
i=1

l(ŷi, yi) +
K

∑
k=1

Ω( fk) (5)

where m represents the total amount of sample data imported into the k tree. The first term
is the loss function, which measures the error between the true value yi and the predicted
value ŷi. The second term is the regularization term, used to control the model’s complexity
and prevent overfitting. The complexity of each tree is defined as:

Ω( f ) = γT +
1
2

λ||w||2 (6)

where γ represents the difficulty of node splitting, T represents the number of leaf nodes,
λ is the L2 regularization coefficient to prevent overfitting, and w is the modulus of the leaf
node vector.

3.3. Light Gradient Boosting Machine (LGBM)

Developed by Microsoft Research in 2017, Light Gradient Boosting Machine (LGBM)
stands as one of the most effective and advanced machine learning algorithms [50]. LGBM
has evolved from the boosting regression algorithms. It employs a histogram-based algo-
rithm, storing continuous features into discrete bins. The use of a histogram-based method
accelerates the training speed and reduces memory usage. Additionally, LGBM utilizes the
leaf-wise tree growth algorithm. The growth process involves choosing the leaf with the
highest delta loss. This contrasts with many boosting algorithms (such as XGBoost) that
use a level-wise approach. Although a level-based approach ensures a consistent number
of leaves at each level, the leaf-wise strategy leads to a different number of leaves at each
respective level. This approach helps LGBM achieve lower loss. The main process of the
LGBM algorithm is shown in Equation (7):

Fn(x) = α0 f0(x) + α1 f1(x) + · · ·+ αn fn(x) (7)

where the classifier begins with n decision trees, and the weight assigned to the training
samples is 1

n . The weak classifier f (x) and its weight α are determined. The process
continues, with the classifier adjusting the weights until it arrives at the final classifier,
denoted as Fn(x). In summary, the main goal of the LGBM algorithm is to improve training
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efficiency and accuracy through feature parallelization and a histogram-based decision
tree algorithm. It also uses gradient boosting methods to continuously optimize the model,
thereby achieving better classification and regression results.

3.4. Genetic Algorithm, Back Propagation (GA-BP)

The Back Propagation (BP) neural network, a classic model in ANN (Artificial Neural
Networks), was first proposed by Hecht-Nielsen et al. [51]. This network comprises
an input layer, hidden layers, and an output layer, with neurons connecting each layer.
The output of a neuron depends on its input values, activation function, and threshold.
The BP neural network consists of two steps: forward propagation of information and
backward propagation of errors. Although the BP neural network has excellent self-
learning, adaptability, and self-organization capabilities and can effectively handle non-
linear problems, it has some limitations: Firstly, in order to reduce error and improve
accuracy, an appropriate number of neurons in the hidden layer need to be selected.
However, there is a lack of a clear method for this selection. Secondly, the BP neural
network randomly generates initial weights and thresholds. This results in adaptive and
global approximation processes that are time-consuming, thereby slowing the network’s
convergence rate. Lastly, the use of gradient descent by the BP neural network can often
lead to it becoming trapped in local minima.

The Genetic Algorithm (GA) is a global optimization probabilistic search method based
on the principles of biological inheritance and evolution [52]. The GA mainly includes
three operations: (1) Selection operation: The probability of an individual entering the next
generation population is determined based on the fitness value. The higher the fitness,
the greater the chance of inheritance. (2) Crossover operation: This is a key part of the
algorithm. Two individuals are selected from the population, and a portion of their genes
are exchanged to produce more optimal individuals in the new generation. (3) Mutation
operation: An individual is randomly selected from the population, and a mutation is
performed at a certain locus of its chromosome to produce a more optimal individual.
Combining crossover and mutation operations can achieve optimal search performance.
The GA has the characteristics of global search and parallel computation, but it lacks
learning ability. The application of GA can optimize the BP neural network. This combines
the GA’s global search traits with the BP’s learning and non-linear mapping abilities. As a
result, the network’s output accuracy improves.

3.5. Performance Metrics and Evaluation

The performance of models and the retrieval accuracy of downscaled SM are evaluated
in this paper using three indicators: Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and correlation coefficient (R). MAE is calculated as the average of the absolute
differences between each observation and the mean. This method circumvents the issue of
error cancellation, thereby providing a more accurate representation of the actual prediction
error magnitude. RMSE is commonly used as a standard to measure the prediction results
of machine learning models. The R can be used to measure the degree of correlation
between two variables. The calculation formulas for the three indicators are as follows:

MAE =
1
n

n

∑
i=1
|Xi −Yi| (8)

RMSE =∈
√

1
n

n

∑
i=1

(Xi −Yi)2 (9)

R(X, Y) =
Cov(X, Y)√
Var[X]Var[Y]

(10)

where n represents the amount of data used for modeling, X is the reference value of SM,
and Y is the retrieved value of SM. These three values are crucial for us to evaluate the
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prediction accuracy of the model. Among them, X is the known true value, and Y is the
value predicted by our models. To more accurately evaluate the performance of the model,
we introduce several key statistical indicators. Among them, Cov(X, Y) represents the
covariance of X and Y, which describes the degree of joint variation of X and Y. At the same
time, Var[X] is the variance of X, and Var[Y] is the variance of Y. These two indicators
describe the range of variation of X and Y, respectively. These three indicators jointly
evaluate the performance and prediction accuracy of the model. Covariance describes the
correlation between the model’s predicted values and the true values, while variance shows
the dispersion of the data. The changes in these data directly affect the predictive ability of
the model.

3.6. Downscaling Process

This study employed four ML techniques, including RF, XGBoost, LGBM, and GA-BP,
to downscale CYNGSS SM retrieval to 3 km, respectively. Each of the proposed downscaling
methods operates on a common principle: they create a statistical link between CYGNSS,
geospatial variables (such as elevation and land cover type), land-surface variables (such as
NDVI and precipitation), and SMAP SM at a coarse resolution of 36 km. In addition, SMAP
SM was used as the reference value of SM, predicted by the downscaling model. Finally,
the output covariates of the input variables were linked by using the following equation:

SM = f (ρ1, ρ2, ρ3, . . . , ρn) + ε (11)

where SM represents the downscaled SM data, which is determined by the regression
function of the machine learning models (RF, XGBoost, LGBM, and GA-BP), ε is the model
retrieval error, ρ1, ρ2, ρ3, . . . , ρn represent the input covariates (i.e., SNR, SR, LES, TES, NDVI,
DEM, land cover type, and precipitation). The total number of predictors is represented
by n. The steps of the downscaling method mentioned above can be briefly summarized
as follows:

1. Aggregation: The training procedure is carried out on the 36-km grid of SMAP SM.
To maintain consistency with the spatial resolution of SMAP SM, the high-resolution
CYGNSS observables and auxiliary variables (i.e., predictive factors) are aggregated to
a 36 km scale using a simple arithmetic averaging method. It is worth noting that the
theoretical resolution of the CYGNSS dataset used in this study is 7 × 0.5 km, while
the SMAP product resolution is 36 km. This means that multiple CYGNSS observation
points inevitably exist within the same SMAP grid. To address this, we average the
CYGNSS sample points within the SMAP grid during the spatial matching process.
Figure 3 presents the daily count of CYGNSS sampling points within the study area,
as well as the counts after matching with SMAP. Specifically, from January to August,
the counts correspond to the match with SMAP’s 36-km grid; from September to
December, the counts result from matching with the resampled 3-km grid of SMAP.

2. Model building: The aggregated data is divided into 70% for training and 30% for
testing. SMAP SM is used as the response variable, and CYGNSS observables and
auxiliary variables are used as input variables to train the four models: RF, XGBoost,
LGBM, and GA-BP.

3. Resampling: The CYGNSS observables and auxiliary variables are resampled to a
high resolution of 3 km using the nearest neighbor method. Subsequently, a spatial
connection is established between them.

4. Model application: The resampled 3-km high-resolution CYGNSS observables and
auxiliary variables were input to the downscaling models to obtain the downscaled
CYNGSS SM with a spatial resolution of 3 km.

5. Model evaluation: Once the most optimal downscaling models were determined
based on the lowest RMSE as a benchmark, these models were then evaluated for
accuracy using the testing set. Then, the 3-km downscaled SM obtained was validated
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using in situ data. Spatial analysis of the downscaled CYGNSS SM is conducted using
MODIS EVI and MODIS EV products.
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Figure 3. Daily sampling counts of CYGNSS and their corresponding matched counts with SMAP.

The experimental process is based on the assumption that the spatial scale relationship
among SMAP SM, CYGNSS observables, and auxiliary variables maintains consistency. In
other words, the relationship models established at a coarse resolution are still applicable
at a high resolution [39,53,54]. The above experimental process is shown in Figure 4.
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4. Results
4.1. Models Evaluation

Following the methodologies outlined in Section 3, this paper constructs four CYGNSS
SM downscaling models and adjusts the hyperparameters for the RF, XGBoost, LGBM, and
GA-BP models. Hyperparameters are parameters given in advance in neural networks or
machine learning to control the learning process of the model. The appropriate selection of
hyperparameters is crucial for the predictive performance of the model and can also prevent
the occurrence of overfitting or underfitting. The common hyperparametric methods are
Grid search, Random search, and Bayesian optimization. This paper uses the Grid Search
method for hyperparameter adjustment. Although Grid Search requires a longer runtime
compared to the other two hyperparameter selection methods, it is a more exhaustive
search method that ensures the best hyperparameter combination is found within the given
parameter range. The final hyperparameter adjustment results are shown in Table 2.
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Table 2. Results of hyperparameter adjustment for the four models.

Model Hyperparameters

GA-BP popu = 50, learning_rate = 0.001, epochs = 100, n_hidden layer = 10

RF n_estimators = 100, max_depth = 6, max_leaf_nodes = None,
min_samples_leaf = 1, min_samples_split = 2

XGBoost booster = tree, max_depth = 8, min_child_weight = 1, leaing_rate = 0.25,
n_estimators = 100, subsample = 0.9, colsaple_bytree = 0.6, gamma = 0

LGBM
learning_rate = 0.09, n_estimators = 100,
min_samples_gain = 0.1, max_depth = 6,

num_leaves = 50, subsample = 0.8, colsample bytree = 0.8

Through this process, we found the best combination of hyperparameters for each
model to ensure that the CYGNSS SM downscaling models have high predictive perfor-
mance. In the subsequent analysis, we will use these optimal hyperparameter combinations
to train the model and evaluate its performance. To preliminarily assess the performance
of the four models, this paper uses the method of ten-fold cross-validation for comparative
analysis. The dataset uses SMAP SM (36 km) as the reference value, and four CYGNSS
parameters, including SR, SNR, LES, and TES, as well as the auxiliary variables described in
Section 2. This paper selects the coarse resolution data (36 km) from January to August 2019
to construct the downscaling model, yielding a total of 303,354 samples. For the prediction
dataset, we use high-resolution data (3 km) from September to December, which provides
a total of 4,123,129 samples. The ten-fold cross-validation accuracy of the four models and
the running time of the models are shown in Table 3 and Figure 5.

Table 3. Summary of the overall accuracy of the ten-fold cross-validation of the four models.

Name Time
t/s

Model Training Model Testing
RMSE MAE R RMSE MAE R

cm3/cm3 cm3/cm3 - cm3/cm3 cm3/cm3 -

GA-BP 46.16 0.071 0.055 0.834 0.072 0.055 0.831

RF 5712.91 0.011 0.007 0.996 0.031 0.021 0.969

XGBoost 25.90 0.037 0.027 0.958 0.038 0.028 0.955

LGBM 6.85 0.045 0.033 0.937 0.045 0.034 0.935

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 26 
 

 

described in Section 2. This paper selects the coarse resolution data (36 km) from January 

to August 2019 to construct the downscaling model, yielding a total of 303,354 samples. 

For the prediction dataset, we use high-resolution data (3 km) from September to Decem-

ber, which provides a total of 4,123,129 samples. The ten-fold cross-validation accuracy of 

the four models and the running time of the models are shown in Table 3 and Figure 5. 

Table 3. Summary of the overall accuracy of the ten-fold cross-validation of the four models. 

Name 
Time 
𝒕/𝒔 

Model Training Model Testing 

RMSE MAE R RMSE MAE R 

𝐜𝐦𝟑/𝐜𝐦𝟑 𝐜𝐦𝟑/𝐜𝐦𝟑 - 𝐜𝐦𝟑/𝐜𝐦𝟑 𝐜𝐦𝟑/𝐜𝐦𝟑 - 

GA-BP 46.16 0.071 0.055 0.834 0.072 0.055 0.831 

RF 5712.91 0.011 0.007 0.996 0.031 0.021 0.969 

XGBoost 25.90 0.037 0.027 0.958 0.038 0.028 0.955 

LGBM 6.85 0.045 0.033 0.937 0.045 0.034 0.935 

 

Figure 5. Summary of the accuracy of the ten-fold cross-validation of the four models. (a) RMSE; (b) 

MAE; (c) R. 

Table 3 and Figure 5 present the accuracy of the ten-fold cross-validation of the four 

models and their execution times. In terms of execution time, the RF model took the long-

est, reaching 5712.91 s. This could be due to the fact that the RF model needs to generate 

a large number of decision trees during the training process and carry out complex voting 

and averaging operations, thus taking a longer time. The execution time of the GA-BP 

model was 46.16 s, significantly shorter than the RF model. However, the predictive per-

formance of the GA-BP model was not satisfactory, with an RMSE of 0.072, an MAE of 

0.055, and an R of 0.831. These metrics indicate that the GA-BP model has relatively low 

accuracy and stability in predicting SM. The XGBoost model had a shorter execution time 

of 25.9 s. Its predictive performance was relatively good, with an RMSE of 0.038, an MAE 

of 0.028, and an R of 0.955. These metrics indicate that the XGBoost model has high accu-

racy and stability in predicting SM. The LGBM model had the shortest execution time, 

only 6.85 s, although its predictive performance was not as good as the RF and XGBoost 

models, with an RMSE of 0.045, an MAE of 0.034, and an R of 0.935. Nevertheless, these 

metrics still indicate that the LGBM model has acceptable predictive performance. There-

fore, considering both execution time and predictive performance, the LGBM model per-

forms best in terms of time efficiency, but its predictive performance is slightly worse than 

the RF and XGBoost models. Although the RF model takes the longest time, it has the best 

predictive performance. The XGBoost model performs well in both execution time and 

predictive performance. Although the GA-BP model has a shorter execution time, it has 

the worst predictive performance. 

Figure 6 presents the performance of the downscaling models XGBoost, RF, LGBM, 

and GA-BP, which were constructed based on CYGNSS and auxiliary variables. The 

CYGNSS SM predictions at a coarser resolution (36 km) were compared with the SMAP 

SM predictions at the same resolution using the scatter plots for each model. It can be seen 

that the XGBoost and RF models perform well, exhibiting strong consistency between the 

Figure 5. Summary of the accuracy of the ten-fold cross-validation of the four models. (a) RMSE;
(b) MAE; (c) R.

Table 3 and Figure 5 present the accuracy of the ten-fold cross-validation of the four
models and their execution times. In terms of execution time, the RF model took the longest,
reaching 5712.91 s. This could be due to the fact that the RF model needs to generate a large
number of decision trees during the training process and carry out complex voting and
averaging operations, thus taking a longer time. The execution time of the GA-BP model
was 46.16 s, significantly shorter than the RF model. However, the predictive performance
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of the GA-BP model was not satisfactory, with an RMSE of 0.072, an MAE of 0.055, and
an R of 0.831. These metrics indicate that the GA-BP model has relatively low accuracy
and stability in predicting SM. The XGBoost model had a shorter execution time of 25.9 s.
Its predictive performance was relatively good, with an RMSE of 0.038, an MAE of 0.028,
and an R of 0.955. These metrics indicate that the XGBoost model has high accuracy and
stability in predicting SM. The LGBM model had the shortest execution time, only 6.85 s,
although its predictive performance was not as good as the RF and XGBoost models,
with an RMSE of 0.045, an MAE of 0.034, and an R of 0.935. Nevertheless, these metrics
still indicate that the LGBM model has acceptable predictive performance. Therefore,
considering both execution time and predictive performance, the LGBM model performs
best in terms of time efficiency, but its predictive performance is slightly worse than the
RF and XGBoost models. Although the RF model takes the longest time, it has the best
predictive performance. The XGBoost model performs well in both execution time and
predictive performance. Although the GA-BP model has a shorter execution time, it has
the worst predictive performance.

Figure 6 presents the performance of the downscaling models XGBoost, RF, LGBM,
and GA-BP, which were constructed based on CYGNSS and auxiliary variables. The
CYGNSS SM predictions at a coarser resolution (36 km) were compared with the SMAP
SM predictions at the same resolution using the scatter plots for each model. It can be seen
that the XGBoost and RF models perform well, exhibiting strong consistency between the
CYGNSS SM and SMAP SM in both the training and testing set. The R for the training
set is 0.95 and 0.99, respectively, while, for the testing set, they are both 0.95. However,
the GA-BP model shows less satisfactory retrieval results, with an R of 0.84 for both the
training and testing set. When comparing the RMSE of the models mentioned, XGBoost
and RF models clearly outperform, with an RMSE of 0.038 and 0.012 for the training set,
and 0.039 and 0.033 for the testing set. In contrast, the GA-BP and LGBM models show a
higher RMSE, with 0.069 and 0.045 for the training set, and 0.070 for both in the testing set.
The RF model exhibits the lowest MAE, with 0.008 for the training set and 0.022 for the
testing set. However, the GA-BP and LGBM models show a higher MAE, with 0.054 and
0.033 for the training set, and 0.054 and 0.055 for the testing set, respectively.

The results indicate that the downscaling models built on RF and XGBoost outperform
the models constructed using LGBM and GA-BP. Overall, the RF and XGBoost downscaling
models demonstrate superior correlation and less error compared to the other models. This
may be due to the robustness and unpredictable nature of the RF and XGBoost algorithms.
When dealing with numerous variables at once, these techniques are intended to avoid
overfitting. However, compared to the RF model, the XGBoost model achieves high
accuracy with less time. Therefore, we mainly focus on downscaled SM from XGBoost
model in the following sections.

Figure 7 presents the importance scores for various variables in retrieving outcomes
with the XGBoost model. Among all input variables, the greatest impact on both the
36 km and 3 km resolution is seen with land cover and DEM. In particular, NDVI has a
more substantial influence at the 36 km resolution, while its effect diminishes at the 3 km
resolution. Conversely, influence of DDM_SNR is relatively low at the 36 km scale, but
shows an increase at the 3 km resolution.



Remote Sens. 2023, 15, 4576 14 of 24

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 26 
 

 

CYGNSS SM and SMAP SM in both the training and testing set. The R for the training set 

is 0.95 and 0.99, respectively, while, for the testing set, they are both 0.95. However, the 

GA-BP model shows less satisfactory retrieval results, with an R of 0.84 for both the train-

ing and testing set. When comparing the RMSE of the models mentioned, XGBoost and 

RF models clearly outperform, with an RMSE of 0.038 and 0.012 for the training set, and 

0.039 and 0.033 for the testing set. In contrast, the GA-BP and LGBM models show a higher 

RMSE, with 0.069 and 0.045 for the training set, and 0.070 for both in the testing set. The 

RF model exhibits the lowest MAE, with 0.008 for the training set and 0.022 for the testing 

set. However, the GA-BP and LGBM models show a higher MAE, with 0.054 and 0.033 for 

the training set, and 0.054 and 0.055 for the testing set, respectively. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 26 
 

 

 

Figure 6. The retrieval accuracy of the four models in the training and testing datasets. 

The results indicate that the downscaling models built on RF and XGBoost outper-

form the models constructed using LGBM and GA-BP. Overall, the RF and XGBoost 

downscaling models demonstrate superior correlation and less error compared to the 

other models. This may be due to the robustness and unpredictable nature of the RF and 

XGBoost algorithms. When dealing with numerous variables at once, these techniques are 

intended to avoid overfitting. However, compared to the RF model, the XGBoost model 

achieves high accuracy with less time. Therefore, we mainly focus on downscaled SM 

from XGBoost model in the following sections. 

Figure 7 presents the importance scores for various variables in retrieving outcomes 

with the XGBoost model. Among all input variables, the greatest impact on both the 36 

km and 3 km resolution is seen with land cover and DEM. In particular, NDVI has a more 

substantial influence at the 36 km resolution, while its effect diminishes at the 3 km reso-

lution. Conversely, influence of DDM_SNR is relatively low at the 36 km scale, but shows 

an increase at the 3 km resolution. 

Figure 6. The retrieval accuracy of the four models in the training and testing datasets.



Remote Sens. 2023, 15, 4576 15 of 24

1 
 

 

Figure 7. Variables’ importance scores at (a) 36 km and (b) 3 km of XGBoost model.

4.2. Assessing the Accuracy of Downscaled Soil Moisture Using In Situ Observations

In the study area, we utilized the spatial coverage of CYGNSS and selected 78 sites from
the ISMN with ground-based observation data as our research subjects from 1 September
to 31 December 2019. These sites mainly come from SCAN, USCRN, and SNOTEL. Given
the utilization of SMAP SM as a reference for the downscaling model in this study, it is
essential to ensure the credibility of the assessment between downscaled SM and in situ SM
observations. To achieve this, we initiated accuracy statistics for SMAP SM and in situ SM
observations. Furthermore, to conduct a comprehensive time series analysis, we randomly
selected four in situ sites for comparative evaluation with SMAP SM.

Table 4 delineates the comparison between in situ SM observations and corresponding
SMAP SM. Analysis reveals that, out of all the in situ sites, 48 exhibit an MAE below 0.6,
while 58 showcase an RMSE below 0.7. Additionally, 50 sites demonstrate an R exceeding
0.7. The respective average values for MAE, RMSE, and R stand at 0.051, 0.062, and 0.813.
Overall, the majority of in situ sites exhibit commendable accuracy, thereby validating the
reliability of the downscaling model constructed with SMAP SM as a reference. Figure 8
further illustrates the time series comparison of in situ SM observations and SMAP SM
for randomly selected four in situ sites, with the time frame matching the dates of the
downscaling model’s prediction set. Of note is the 2–3-day revisit period of the SMAP
satellite, which inhibits the guarantee of simultaneous coverage for each in situ site within
the study area. Despite this limitation, the temporal variation of in situ SM observations (the
blue line) closely aligns with that of SMAP SM (the red line). This alignment underscores
SMAP SM’s capability to capture the temporal dynamics of in situ SM, thereby validating
the rationale for utilizing in situ SM observations in the downscaled SM assessment. To
provide a quantitative assessment of the downscaled SM from the XGBoost model, Table 5
includes the accuracy statistical data for the downscaled SM and in situ SM observations.

According to the data analysis results in Table 5, for the total of 78 sites we studied,
62% of the sites, or about 49 sites, have an R greater than 0.600. This value is quite high,
indicating that the downscaling model for these sites have good predictive performance.
Similarly, we have 54% of sites, about 43, with an RMSE less than 0.070, which also indicates
that these sites have a small retrieval error. Further, 53% of sites, or about 42 sites, have
an MAE less than 0.060, indicating that our model has a high accuracy of retrieval for
these sites. Overall, the average R, RMSE, and MAE of all sites are 0.712, 0.065, and 0.058,
respectively, demonstrating the excellent performance of our model overall. However,
we also found that the type of land cover may affect the accuracy of site validation. To
gain a deeper understanding of this issue, we conducted further analysis. After analysis,
we concluded that the downscaled SM for most sites using the XGBoost model is reliable
compared to the in situ SM observations. However, the validation accuracy of a few sites
is relatively poor. To better understand the accuracy of the downscaling model, we also
considered the type of land cover at the site location, as shown in Figure 9. This means that
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the type of land cover at the site location may affect the accuracy of the model. Through
further research and model adjustment, we hope to better predict and understand this
impact to optimize our model accuracy.

Table 4. Accuracy statistics for SMAP SM and in situ SM observations.

Evaluation Index Ranges Number of In Situ Site Average Value

MAE

<0.04 38

0.051
0.04–0.06 10
0.06–0.08 20

>0.08 10

RMSE

<0.06 48

0.062
0.06–0.07 10
0.07–0.08 11

>0.08 9

R

<0.60 22

0.813
0.60–0.70 6
0.70–0.80 10

>0.80 40
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As seen in Figure 9, in the 78 in situ sites, 22 are located in grassland areas. Among
these grassland sites, 14 have an R value less than 0.600, 13 have an RMSE less than 0.060,
and 14 have an MAE less than 0.06. For the 21 sites situated in farmland areas, 18 have
an R value less than 0.600, 10 have an RMSE less than 0.060, and 11 have an MAE less
than 0.060. Of the 12 savanna sites, 7 have an R value less than 0.600, 3 have an RMSE less
than 0.060, and 4 have an MAE less than 0.060. In the woody savannas, there are 13 sites,
with 8 having an R value less than 0.600, 6 with an RMSE less than 0.060, and 4 with an
MAE less than 0.060. Lastly, in the open shrublands, there are 4 sites. Two of these have
an R value less than 0.600, all 4 have an RMSE less than 0.060, and 3 have an MAE less
than 0.060. For the land cover types of deciduous broadleaf forests, mixed forests, closed
shrublands, and cropland/natural vegetation mosaics, the number of sites are 3, 1, 1, and 1,
respectively. Correspondingly, the sites with an R greater than 0.600 are 2, 0, 1, and 0. Sites
with an RMSE less than 0.060 are found to be 0, 1, 1, and 1, while those with an MAE less
than 0.060 are also 0, 1, 1, and 1.

This study primarily investigates the accuracy of downscaled SM models obtained
through the application of the XGBoost model across nine different land cover types. The
results indicate that sites located in grasslands and farmlands exhibit higher accuracy. This
may be attributed to the fact that SM retrieval based on GNSS-R technology tends to be
more accurate in flat areas than in areas with significant surface undulations or tree cover.
Additionally, grasslands and farmlands are common land use types; hence, we have more
sites for observation and validation. Conversely, the other seven land cover types have
fewer sites, leading to a lack of sufficient validation data, which could be a significant factor
affecting accuracy. Furthermore, we believe that other potential factors might influence the
accuracy of SM retrieval. For instance, the varying soil properties and complexities across
different regions could impact model performance. Highly heterogeneous soils or areas
with significant rock content could lead to inaccurate predictions. Changes in precipitation
and meteorological conditions might also affect the accuracy of the model. Prolonged
droughts or consistent rainfall could potentially lead to decreased model performance
during specific periods. The quality of GNSS-R technology data, the calibration process,
and observational errors could impact model accuracy to some extent. Additionally, if
there are changes in land use or land cover types in the study area during the observation
period, this could affect the training and validation data, consequently influencing the
model’s accuracy. However, despite lower accuracy in some areas, it is evident from our
results (Figure 9 and Table 5) that the downscaled SM model constructed in this study
generally achieves satisfactory results. This suggests that our method exhibits adaptability
and robustness, providing high accuracy in most scenarios.

4.3. Graphical Assessment of Spatial Distribution of Downscaled Soil Moisture

After the downscaled SM was validated using in situ sites, we proceeded to conduct a
spatial analysis to evaluate the effectiveness of the downscaling approaches. The down-
scaled SM from the XGBoost model was visually compared with high-resolution MODIS
EVI and MODIS ET products. The Enhanced Vegetation Index (EVI) is an indicator used
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to assess and monitor the health and growth status of vegetation [55]. When SM is low,
vegetation may be constrained by water availability, leading to slowed or stressed plant
growth. This may manifest as lower EVI values. Conversely, when SM is high, plants may
have ample water supply, promoting growth and resulting in higher greenness and ele-
vated EVI. Evapotranspiration (ET) refers to the sum of evaporation from the land surface
and transpiration from plants [56]. When SM is high, there is ample water supply in the
soil, and plant roots can absorb sufficient water for transpiration, thereby promoting the ET
process. Higher SM typically results in higher ET. Conversely, when SM is low, the water
supply in the soil decreases and plants face water limitations, leading to reduced plant
transpiration. Lower SM typically results in lower ET. Therefore, examining the variations
in EVI and ET within the study area can indirectly reflect changes in SM.

The following sections compare the relationships among the downscaled SM, EVI,
and ET for four periods: 9–14, 10–16, 11–17, and 12–19. We processed the downscaled SM
from the XGBoost model using simple Kriging interpolation, and then conducted a spatial
analysis with MODIS EVI and MODIS ET products.

As seen in Figure 10, the EVI values in the central and eastern of the study area are
relatively high, while those in the northwest and southwest are lower. This is related to the
vegetation cover in the study area and is consistent with the geographical characteristics of
the study area described in Section 2.1. Compared with the downscaled SM and EVI at the
same time, we can observe that areas in the study region with higher SM also have higher
EVI values, such as the sides of the Central Valley in the middle and the Appalachian
Mountains in the east. Conversely, areas with lower SM also have lower EVI values, such
as in the western regions of Oklahoma and Salt Lake City. It can be proved that there is a
correlation between SM and EVI. As seen in Figure 10(a-1), on September 14, the SM values
in the Homochitto National Forest, the Sabine National Forest in the south-central study
area, and the southeastern region are relatively high. Comparing this with Figure 10(a-3) at
the same time, we can see that the ET values in these areas are also high. The same pattern
can be observed when comparing Figure 10(b-1) with Figure 10(b-3), Figure 10(c-1) with
Figure 10(c-3), and Figure 10(d-1) with Figure 10(d-3). SM, as one of the main sources of
water for ET, may lead to higher ET in areas with higher SM. However, it is worth noting
that there are some discrepancies in the spatial distribution of downscaled SM, EVI, and
ET in some areas in the south-central study area (areas within the red box in Figure 10).
Because the downscaling model is established at a 36 km grid scale, some extreme values
are smoothed during the spatial aggregation process. As a result, the training samples
selected in the model construction process are all smooth data, with fewer extreme values.
This is not unique to our study, as all existing downscaling methods necessitate calibration
with coarse-resolution data initially, making the aggregation of high-resolution predictors
inevitable [26]. The result is that the downscaled SM has some mistakes.

Overall, the spatial distribution and temporal variation of the downscaled SM product
generated in this paper are relatively consistent with EVI and ET, both of which have a cer-
tain correlation with SM. Therefore, this indirectly verifies the accuracy of the downscaled
SM for the retrieval of SM in the study area.
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5. Discussion

A key advantage of this study is the downscaling of CYGNSS based on the XGBoost
model using L-band passive microwave SM (i.e., SMAP SM) and auxiliary variables.
Instead, most previous studies downscale satellite SM products (AMSR-E, SMOS, and
SMAP, etc.) based on optical data [39,53,54,57]. Another advantage is that it improves upon
previous research that used CYGNSS to retrieve SM with a maximum spatial resolution of
9 km. Through the method of downscaling, this study has increased the spatial resolution
of SM retrieval using CYNGSS to 3 km. Furthermore, the downscaled SM can more
finely represent the spatial distribution changes in SM, offering substantial potential for
applications such as irrigation planning in agriculture.

The noteworthy limitations of this study may present opportunities for improving
the spatial downscaling of satellite SM outputs with coarse resolution. First, CYGNSS
observables are collected at pseudo-random positions, with irregular spatial and temporal
resolution. This is different from conventional remote sensing technologies, which have
repeatable swaths and consistent local collection times. As a result, mapping CYGNSS
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observables regularly in space presents a challenge in terms of assigning appropriate spa-
tial grid sizes. The spatial resolution of CYGNSS observations can vary greatly, ranging
from the first Fresnel zone with coherent reflections (0.5 km) to the scintillation zone with
incoherent reflections (i.e., dozens of km). Traditional methods of mapping using regular
spatial grids and integral time-step cannot fully account for this complexity in the spa-
tiotemporal resolution of CYGNSS signals [58]. However, a transformation procedure is
needed in order to match CYGNSS observables with other remote sensing and model-
ing data. This conversion process can introduce inaccuracies into the reflectivity, which
could have implications, not just for this study, but for all similar research endeavors as
well [12,17,59,60].

Second, during the model building process, the input CYGNSS observables and
auxiliary variable are aggregated from high resolution to 36-km coarse resolution using a
simple arithmetic averaging method. Furthermore, the SMAP SM encapsulates an average
representation of SM, which is spread across a spatial resolution of 36 km. The average SM
represents the SM of the whole region, and most of the information is ignored due to the
coarse resolution. Hence, the training samples chosen during the model building process
are smooth data with minimal extreme values. Models built from these samples invariably
influence the downscaled SM. The scale discrepancy between the input data for model
training and the SMAP products somewhat constrains the selection of suitable data during
the regression model construction process. If a large amount of training data is necessary,
choosing a research area that is large enough to assure the collection of enough training
samples becomes crucial. During the application of the downscaling model, due to the
increased heterogeneity and richer data representation at a 3 km resolution, there might
be extreme values that were not encountered during model training. This corresponded
with the results of Wakigari et al. [54]. Therefore, in practical applications, the downscaled
SM has some inevitable errors. These errors are not randomly generated, but are closely
related to the variance of SM in our training samples. In other words, the greater the
degree of variation or dispersion of SM in the training samples, the greater the retrieval
error may be. This is because a large variance means that the SM values in the dataset
have greater changes, which may lead to more errors in the model’s predictions. At the
same time, the results of the downscaling process are significantly affected by the number
and representativeness of the training samples. A sufficient number of training samples
can provide more comprehensive information, helping the model to better learn and
understand the characteristics of the data. The degree of representativeness of the samples
directly affects the generalization ability of the model. If the samples can fully represent
the characteristics of the entire data, then the model’s retrieval results on unknown data
will be more accurate.

Third, we used in situ SM observations, which are direct measurements from specific
locations. However, these data may introduce some uncertainties when validating our
downscaled SM model, mainly due to scale discrepancies. In our model, the downscaled
SM represents an average SM value over a 3 km × 3 km area, which is a broader spatial
average than in situ measurements. However, due to geographical conditions and human
activities, there may be significant variations in SM within this area. For instance, if a
location is under irrigation, it could lead to the recorded SM value at this point being much
higher than the area’s average. This scale discrepancy could pose some issues during the
validation phase. For example, if a site is located in an irrigation area, its SM measurement
might be significantly higher than the average SM of the area, leading to a large deviation
between the SM measurement and the model retrieval at this site during model validation.
This deviation is not a problem with the model, but is caused by spatial scale differences.

Fourth, the input optical data NDVI is inevitably affected by clouds during the model
construction and model application. This also leads to the downscaled SM exhibiting
optical properties. Factors such as cloud cover can impact the downscaled SM, leading to
the occurrence of null values [39]. The presence of clouds may influence the availability
of downscaled SM at the corresponding location. Furthermore, the 3 km resolution may
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present challenges, potentially leading to the presence of missing values in the downscaled
SM due to its inability to cover all processed pixels. To address this issue, we adopted
an approach similar to that described by Wei Shangguan et al. [53] to fill these gaps.
Specifically, we performed Kriging interpolation on the 3-km downscaled CYGNSS SM.
However, it is important to acknowledge that the utilization of interpolation unavoidably
introduces certain errors. Thus, some inconsistencies will present themselves during the
validation stage.

Fifth, we utilized only four auxiliary variables, namely rainfall, land cover type, DEM,
and NDVI. It is crucial to adequately consider the spatial scale of CYGNSS observation data,
SM reference data, and auxiliary variables for the accuracy of SM retrieval. Factors such as
soil type (sand, loam, clay, etc.) affect soil water absorption and the capacity to minimize
water loss, as well as surface temperature variations and water evaporation caused by
wind speed. As discussed by Volkan Senyurek [16], soil texture features are considered
to have the greatest impact on retrieval SM among auxiliary inputs. In summary, while
the method proposed in this paper has achieved a commendable accuracy in SM retrieval,
there is room for improvement by considering a wider range of auxiliary factors. This has
the potential to further enhance the accuracy of SM retrieval using GNSS-R.

Sixth, in assessing the spatial distribution of downscaled SM, this paper has not yet
considered the influence of a variety of factors on plant growth and ET. These factors
include light conditions, temperature, soil texture, and carbon dioxide concentration, all
of which may have an impact on the accuracy of MODIS EVI and MODIS ET products,
as changes in these factors may result in changes in vegetation activity and ET. There are
limitations in using these products to assess the spatial distribution of downscaled SM.
Considering that these factors may add to the complexity of the assessment, future research
could attempt to integrate these factors to obtain more accurate downscaled SM estimates.

Seventh, in the process of evaluating the spatial distribution of downscaled SM, we
employed the Kriging interpolation method. However, the Kriging interpolation method
might not be optimal, as it measures SM with limited physical significance and could result
in spatial heterogeneity. Therefore, in future research, it is essential to compare different
interpolation methods and investigate their impact on downscaled SM. Selecting the most
suitable interpolation method will facilitate the assessment of the spatial distribution of
downscaled SM.

Finally, there are some limitations concerning the geographical scope of our study
area and the duration of the data utilized. When validating the downscaled SM using
in situ sites, we observed that, aside from grasslands and farmlands, the availability of
in situ sites for other land cover types was limited. This paucity of data can hinder a
comprehensive validation. By expanding the study area, the number of in situ sites for
other land cover types would increase, thereby augmenting the validation dataset and
enhancing the accuracy and reliability of our model performance assessment. In this study,
the SM downscaling model was constructed using data from January to August 2019, while
data from September to December was used for SM retrieval. This may introduce seasonal
biases into the constructed downscaling model, leading to certain inaccuracies. Extending
the data period for a year or even longer could mitigate such seasonal effects, thus boosting
the reliability of the downscaling approach.

6. Conclusions

In this paper, we propose a downscaling method for CYGNSS SM based on the
XGBoost algorithm, using high-resolution CYGNSS observables and auxiliary variables as
input data to improve the spatial resolution of GNSS-R technique retrieval of SM to 3 km.
The method selects common downscaled variables such as DEM, land cover, NDVI, and
rainfall. We enhance and improve the polynomial-based downscaling regression model
by incorporating parameters of SR, SNR, LES, and TES from CYGNSS. Experiments were
conducted using data covering the southern United States, and the results were validated
by 78 in situ sites. The results show that the downscaled SM achieves R, RMSE, and MAE
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of 0.712, 0.068, and 0.058, respectively, compared with the in situ SM observations. Spatial
analysis using MODIS EVI and MODIS ET products shows that the spatial distribution and
temporal variation of the downscaled CYGNSS SM products are more consistent with the
EVI and ET products. The feasibility of the method is proved. Additionally, we discuss a
number of problems that came up throughout the downscaling and validation process.

Overall, the findings of this study offer valuable insights for enhancing SM downscal-
ing methods. This is crucial for advancing high-resolution SM retrieval. In future research,
it will be key to develop gap-filling methods to address missing remote sensing data and
refine the downscaling model. Additionally, researchers could consider using satellite
SM products from various sources (e.g., SMAP, SMOS, AMSR-E, NASA-USDA, etc.) as
reference values for downscaling models. This could aid in determining the most efficient
downscaled SM products that are best suited to the particular conditions of the selected
study area. Additionally, future research could consider a gradual downscaling approach
(for instance, downsizing from 36 km to 9 km, followed by a reduction from 9 km to 3 km),
as opposed to an immediate downscaling from 36 km to 3 km.
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