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Abstract: Since the 1970s, certain areas within the Three-Rivers Headwater Region (TRHR) of China
have faced severe land degradation due to the combined effects of climate change and human activi-
ties, leading to restricted ecological service functions and hindering the achievement of sustainable
development goals (SDGs). Land degradation in the TRHR has received widespread attention.
However, the current research mainly focuses on single-dimensional degradation and lacks a compre-
hensive evaluation of patterns and structures, as well as above-ground and underground assessments.
To address this gap, this study employed the SDG indicator 15.3.1 framework, comprehensively
considering fragmentation and habitat quality index based on land cover changes, grassland degra-
dation index, and soil water erosion index. These indexes represent the three land degradation
pathways of landscape degradation, vegetation degradation, and soil erosion. This study assessed
land degradation patterns in the TRHR from 2000 to 2020. Results show that approximately 44.67% of
the TRHR experienced land degradation during this period, mainly in meadow-dominated regions.
Additionally, 5.64% of the regions experienced the superimposition of two or more land degradation
pathways, with the frequent coexistence of soil erosion and grassland degradation, accounting for
4.1% of the affected areas. Landscape degradation affected approximately 2.39% of the regions,
characterized by increased grassland fragmentation or habitat quality degradation. In terms of
grassland degradation, 22.26% of the regions showed medium degradation, while 7.21% and 5.63%
experienced moderate and severe degradation, respectively. Moreover, approximately 13.36% of the
region faced a worsening situation of soil erosion. Approximately 55.34% of the study area underwent
land improvement, with significant enhancements mainly concentrated in the western and eastern
regions. The regrowth of grassland in the western region and the enhancement and homogenization
of grassland productivity in the eastern region played pivotal roles in promoting land improvement.
This study provides critical insights into the land degradation pattern in the TRHR over the past
20 years, offering valuable references for formulating and implementing measures to protect and
construct the ecological security barrier of the plateau.

Keywords: landscape pattern; grassland degradation; soil erosion; land degradation; Three-Rivers
Headwater Region

1. Introduction

Land is the fundamental resource for human survival, providing us with food and
materials while also playing a crucial role in regulating and supporting ecosystem ser-
vices [1]. However, land degradation has become a global issue due to climate change and
human activities [2]. Global assessments indicate that between 1 and 6 billion hectares of
land are currently experiencing degradation [3]. Additionally, the increasing frequency
of extreme events and human overexploitation of natural resources further exacerbate
localized land degradation trends [4,5]. In this context, the Tibetan Plateau, as a critical com-
ponent of the cryosphere, faces an extremely fragile environment [6]. Climate warming has
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accelerated processes of land degradation, such as permafrost thawing, leading to severe
consequences, such as soil nutrient loss, reduction in ecosystem services, and the release of
large amounts of carbon stored in permafrost [7,8]. Therefore, determining and monitoring
specific degradation thresholds and precisely identifying the location, extent, and status of
land degradation in the region are crucial to achieve land degradation neutrality.

The Three-Rivers Headwater Region (TRHR), located in the hinterland of the Tibetan
Plateau, plays a crucial role in various ecosystem services, such as water conservation and
regulation, making it a vital component of the national ecological security barrier [9]. How-
ever, the alpine vegetation coverage in this area is relatively sparse, rendering its ecosystem
fragile and highly susceptible to human disturbances and climate change impacts [10].
Since the 1970s, certain areas of the TRHR have encountered numerous land degradation
issues, including grassland desertification, wetland loss, permafrost thawing, and soil
erosion [11–14]. These land degradation issues limit the ecological service functions of
the TRHR, thus posing constraints on the achievement of sustainable development goals
(SDGs) [15]. The combined effects of livestock grazing and climate change pose substan-
tially high risks of degradation in this area [16]. In recent years, the application of remote
sensing technology has promoted land degradation assessments over large areas [17]. Schol-
ars have conducted assessments of specific aspects including landscape patterns [18,19],
soil erosion [20], grassland degradation [21], and black soil beaches [22]. While some
comprehensive assessments of salinization, desertification, and soil erosion have been
carried out [15], these studies have not fully captured the comprehensive changes in land
cover, vegetation, and soil parameters. Additionally, the use of cross-sectional assessment
methods fails to capture the long-term trends of land degradation. Therefore, it remains
crucial to comprehensively monitor the current status of land degradation in the TRHR for
effective and sustainable ecosystem management.

The United Nations Convention to Combat Desertification (UNCCD) utilized the
three sub-indicators of sustainable development goal (SDG) indicator 15.3.1 to evaluate
land degradation, including land cover (indicator: land cover type), land productivity
(indicator: net primary productivity, NPP), and carbon stock (indicator: soil organic car-
bon, SOC), which are widely accepted for monitoring global land degradation [4,23].
However, selecting suitable indicators to assess local land degradation when applied to
specific regions is crucial due to the spatial heterogeneity of land degradation and data
limitations [5,24]. Considering that solely using the actual land cover degradation area
might overlook its impact on the surrounding land, this study utilizes the fragmenta-
tion and habitat quality index based on land use change to comprehensively evaluate
the degradation of landscape structure and quality in the TRHR [25]. Land productivity
sub-indicators are based on the concept that the loss of vegetation yield in productive
land may lead to land degradation and vice versa [26]. Due to challenges in accurately
estimating net primary productivity (NPP) from remote sensing data, vegetation indexes
(such as the normalized difference vegetation index (NDVI)) are often used as substitutes
for NPP, as they exhibit a high correlation and indication ability with NPP [27]. The SOC
indicator is often underrepresented in many regions due to difficulties in accessing suffi-
cient large-scale SOC data [28]. As an alternative to SOC, soil erosion assessment indexes
provide a successful representation of changes in land capacity [29].

To gain a more comprehensive understanding of land degradation in the TRHR, this
study considers the unique characteristics of the alpine ecosystem in this area and employs
various land degradation indicators for regional improvement and application. Specifically,
based on the calculation framework of SDG 15.3.1, this study utilizes the fragmentation
and habitat quality index based on land cover changes, the grassland degradation in-
dex, and the soil water erosion index to, respectively, characterize the three pathways of
landscape degradation, vegetation degradation, and soil erosion. Additionally, this study
emphasizes the analysis of indicator trends and states, evaluating land degradation in
the TRHR from 2000 to 2020, rather than solely focusing on a single time snapshot. This
provides a deeper understanding of the trend and evolution of land degradation in the
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study area and lays a solid research foundation for the sustainable development of alpine
ecosystems. The objectives of this study are as follows: (1) to quantify the spatial patterns
of landscape degradation, vegetation degradation, and soil erosion intensification in the
TRHR from 2000 to 2020 by combining the trends of sub-indicators and changes relative
to the baseline period and (2) to comprehensively assess the spatial distribution of land
improvement or degradation in the TRHR from 2000 to 2020, considering all three land
degradation pathways.

2. Materials and Methods
2.1. Study Area

The TRHR (31◦39′–36◦12′N, 89◦45′–102◦23′E, Figure 1) is located in the hinterland of
the Tibetan Plateau, with a series of mountains with an altitude of more than 4000 m. The
TRHR covers a total area of 36.63 × 104 km2 and includes 20 administrative counties in
Guoluo, Yushu, Hainan and Huangnan Tibetan Autonomous Prefectures, and Tanggula
Mountain Town in Geermu City (Figure 1).
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Figure 1. Location, land use, and grassland types in the Three-Rivers Headwater Region.

2.2. Data

Table 1 presents the descriptions and sources of various data used in this study. All
raster data were standardized to a resolution of 500 m using ArcGIS 10.5.
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Table 1. Basic information regarding the data sets used in this research.

Data Type Data Use Data Format Data Source

Precipitation Rainfall erodibility Grid, 500 m resolution,
from 2000 to 2020.

National Climate Center of the China Meteorological
Administration (http://data.cma.cn/, accessed on 1

September 2022). 500 m resolution grid is interpolated
using the professional meteorological interpolation

software ANUSPLINA-version 4.4
(http://fennerschool.anu.edu.au/files/anusplin44.pdf,

accessed on 1 September 2022)

Land use
Fragmentation index,

habitat quality, and soil
erosion

Grid, 30 m resolution,
2000, 2005, 2010, 2015,

and 2020

Resource and Environment Center of Chinese Academy of
Sciences (http://www.resdc.cn, accessed on 1 September

2022)

Digital elevation model
(DEM) Soil erosion Grid, 500 m resolution,

2020

Resource and Environment Center of Chinese Academy of
Sciences (http://www.resdc.cn, accessed on 1 September

2022)

NDVI Habitat quality,
grassland degradation

Grid, 500 m resolution,
16-day scale from 2000

to 2020.

MOD13A1 (https://modis.gsfc.nasa.gov/data/, accessed
on 1 September 2022)

Road Habitat quality,
grassland degradation

Shapefile, 2000
and 2015

Geographic Data Platform, School of Urban and
Environmental Sciences, Peking University

(http://geodata.pku.edu.cn, accessed on 1 September 2022)

Eco-function zones of the
TRHR Habitat quality Shapefile

The data are converted into vector format using the
eco-function zones map of the Three-River-Source National

Park of China.

Soil properties (The fraction
of sand, silt, and clay. The

content of soil organic
carbon.)

Water conservation and
soil erosion

Grid, 30 arc second,
1995

Harmonized world soil database (HWSD) v1.2 (http:
//www.fao.org/soils-portal/soil-survey/soil-maps-and-

databases/harmonized-world-soil-database-v12/en/,
accessed on 1 September 2022)

Soil depth Water conservation Grid, 1 km resolution,
1990

Soil Data Center, National Earth System Science Data
Sharing Infrastructure, National Science and Technology
Infrastructure of China (http://soil.geodata.cn, accessed

on 1 September 2022)

2.3. Methods
2.3.1. Land Degradation Intensity Classification and Overlay Analysis of
Degradation Pathways
Land Degradation Intensity Classification

This study adhered to the calculation framework of SDG 15.3.1, utilizing the frag-
mentation and habitat quality indexes based on land use change, as well as the grassland
degradation and water erosion indexes, to assess three land degradation pathways, which
include landscape structure and quality degradation, vegetation degradation, and soil
erosion (Table 2). SDG indicator 15.3.1 considers the loss of land cover types as the primary
manifestation of land degradation [23]. Land use change affects the landscape pattern
and habitat quality of ecosystems [30]. Specifically, land use changes can promote the
formation of new edges or modify existing edges, resulting in landscape fragmentation
and fundamentally affecting the structure and function of ecosystems [31]. The landscape
fragmentation index can characterize not only the reduction in land cover area but also the
degree of connectivity between remaining patches [32]. The decline in habitat quality based
on land use reflects the loss of ecosystem service capacity provided by the landscape [33,34].
Therefore, the level of landscape degradation can be comprehensively reflected from the
perspectives of structure and function by combining landscape fragmentation and habitat
quality indexes. SDG indicator 15.3.1 recommends using the decreasing trend of NPP to
measure vegetation degradation [23]. However, accurately estimating NPP through remote
sensing data is more challenging than estimating NDVI [4]. NDVI has been applied in
previous studies to assess vegetation degradation and has demonstrated a strong corre-
lation with NPP [27]. In this study, we followed the approach of Li et al. [21] to assess
grassland degradation in the study area using NDVI and considering its spatial heterogene-
ity in terms of status and trends. The third aspect of SDG indicator 15.3.1 focuses on the
reduction in soil organic carbon (SOC). However, the SOC indicator is underrepresented in

http://data.cma.cn/
http://fennerschool.anu.edu.au/files/anusplin44.pdf
http://www.resdc.cn
http://www.resdc.cn
https://modis.gsfc.nasa.gov/data/
http://geodata.pku.edu.cn
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://soil.geodata.cn
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most regions [28]. Significant uncertainties currently exist, and consistent time series data
regarding the reliability and accuracy of SOC product data in plateau areas are lacking,
increasing the difficulty of assessments through SOC [35]. As an alternative indicator to
SOC, soil erosion assessment indicators can successfully represent changes in land capabil-
ity [29]. The soil water erosion index was selected in this study to evaluate soil erosion in
the TRHR [15].

Table 2. Division of land degradation intensity.

Degradation Pathways Evaluation Index Land Degradation Intensity 1 Classification Method

Landscape degradation
(structure and quality)

Fragmentation index

Apparent improvement
Compared with the images in 2000 and 2020,
the relative percentage of the fragmentation

index decreased by more than 20%

Slight improvement
Compared with the two images, the relative

percentage of the fragmentation index
decreased by 10–20%

Slight degradation
Compared with the two images, the relative

percentage of the fragmentation index
increased by 10–20%

Moderate degradation
Compared with the two images, the relative

percentage of the fragmentation index
increased by 20–50%

Severe degradation

Compared with the two images, the relative
percentage of the fragmentation index

increased by more than 50% or the grassland
patches disappeared completely

Habitat quality

Apparent improvement

The habitat quality demonstrated a positive
trend, with the change period increasing by

over 20% compared to the average value
during the baseline period

Slight improvement

The habitat quality demonstrated a positive
trend, with the change period increasing by

10–20% compared to the average value
during the baseline period

Slight degradation

The habitat quality exhibited a declining
trend, with the change period decreasing by

10–20% compared to the average value
during the baseline period

Medium degradation

The habitat quality exhibited a declining
trend, with the change period decreasing by

20–50% compared to the average value
during the baseline period

Severe degradation

The habitat quality exhibited a declining
trend, with the change period decreasing by

over 50% compared to the average value
during the baseline period

Vegetation degradation Grassland degradation

Apparent improvement NDVI increased and spatial heterogeneity
decreased simultaneously

Slight improvement NDVI and spatial heterogeneity increased
(regions with NDVI < 0.2)

Slight degradation NDVI and spatial heterogeneity increased
(regions with NDVI > 0.2)

Medium degradation NDVI decreased and spatial heterogeneity
increased

Severe degradation NDVI and spatial heterogeneity decreased
simultaneously (regions with NDVI > 0.2)



Remote Sens. 2023, 15, 4521 6 of 22

Table 2. Cont.

Degradation Pathways Evaluation Index Land Degradation Intensity 1 Classification Method

Soil erosion Soil water erosion

Apparent improvement
The change rate of erosion modulus for
multiple years is below −0.5 t/hm2/a

Slight improvement
The change rate of erosion modulus for
multiple years ranges between −0.5 and

−0.05 t/hm2/a

Slight degradation
The change rate of erosion modulus for
multiple years ranges between 0.05 and

0.2 t/hm2/a

Medium degradation
The change rate of erosion modulus for
multiple years ranges between 0.2 and

0.5 t/hm2/a

Severe degradation
The change rate of erosion modulus for

multiple years is above 0.5 t/hm2/a
1 Values ranging from slight degradation to slight improvement can be classified as a stable state.

This research mainly focused on the fragmentation of alpine grasslands in the TRHR,
a vital component covering over 70% of the area. The intensification of fragmentation
and degradation of habitat quality was determined by comparing the change period
(2011–2020) with the baseline period (2000–2010). The classification of habitat quality
degradation also considered the changing trends over five time sections (every five years
from 2000 to 2020). The work of Li et al. [21] (Section 2.3.3) was used as a reference when
categorizing the intensity of grassland degradation. Furthermore, the threshold from
Liu et al. [36] concerning the changing trend of the soil erosion modulus was integrated to
assess the extent of soil erosion aggravation in the study area.

Overlay Analysis of Degradation Pathways

This study follows the principle of “One Out, All Out” in SDG 15.3, which means
that if any sub-indicators in a land unit show degradation, then the land unit will be
classified as degraded. However, this study proposes to further classify the intensity of
land degradation by considering the trend and state change of sub-indicators. The trend
refers to the rate of sub-indicator value changes in a land unit calculated using the least
squares method from 2000 to 2020. The state refers to the change ratio of the change
period (2011–2020) compared to the average value of the baseline period (2000–2010). The
degradation degree of a land unit is determined on the basis of the most severe degradation
state observed among all sub-indicators (slight < medium < severe). Conversely, the land
improvement status is defined on the basis of the highest level of improvement observed
among all sub-indicators (slight < apparent).

2.3.2. Landscape Structure and Quality Degradation
Fragmentation Index

The high fragmentation index of grassland patches indicates severe degradation of
the grassland ecosystem. Moreover, as the patches become fragmented, the large original
patches gradually break up into numerous small patches, leading to an increased proportion
of patch edge area per unit area. The reticular fragmentation index (RFI) can be utilized as
a measure to adequately describe the fragmentation level within the ecosystem [37]:

RFI =
(PSB + ED)

2
(1)

ED =
TE
A

(2)

The RFI is expressed as a percentage (%). The RFI is calculated based on the basis of
land use change statistics for a 500 m × 500 m grid. This index considers the proportion
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of non-grassland area (PSB), the perimeter (m) of each grassland patch (TE), the total area
of grassland (A) in square meters (m2), and the proportion of edge area (ED). The TE is
determined by measuring the grass edges observed within each 500 m × 500 m grid, as
outlined by Fischer et al. [38].

Habitat Quality

This study assessed habitat quality at five-year intervals, specifically in 2000, 2005,
2010, 2015, and 2020. The calculation of habitat quality involved the integration of the mean
value of NDVI during the growing season, along with the outcomes generated using the
InVEST Habitat Quality model [39]:

Qx = Qi ×MNDVI (3)

where Qi represents the habitat quality of grid x, which is evaluated using the InVEST
habitat quality model, and MNDVI represents the average NDVI of grid x during the
growing season.

When calculating habitat quality using the InVEST model, the overall threat level to
the habitat type is considered.

Qi = Ht

(
1−

(
Dz

xt
Dz

xt + Kz

))
(4)

where Ht is habitat suitability, and K corresponds to the half-saturation constant, typically
assigned a value of 0.05. The parameter z represents a scale parameter that reflects spatial
heterogeneity in the analysis. Additionally, Dxj represents the total threat level of grid cell
x under a specific land type. The habitat quality output score generated using the InVEST
model ranges from 0 to 1, with high scores indicating high habitat quality [40].

Rural settlements, croplands, main roads, and railways were selected as threat sources
in this study. The Qinghai–Tibet Railway, which was completed and opened for traffic
in July 2006, passes through the TRHR. Therefore, starting in 2005, this study considered
the impact of the railway on the habitat quality in the TRHR. The influence distance and
weight of threat factors, habitat suitability, and relative sensitivity to different threat sources
were based on previous research [41–44], and the parameters were adjusted in accordance
with the field survey data in the study area (Table 3). Additionally, the TRHR was divided
into core protection, ecological conservation and restoration, and traditional utilization
areas in 2016; the accessibility layer of threat sources was considered when calculating
habitat quality in 2020, and the actual threats to the reserve were revised. As per the
recommendations of the model manual, accessibility values of 0.2, 0.8, and 1 were set
for the core protection area, ecological conservation and restoration area, and traditional
utilization area, respectively.

Table 3. Threat factors and related coefficients and sensitivity of habitat types to each threat factor.

Threat Rural Settlements Cropland Main Road Railway

Maximum influence distance 5 3 10 10
Weight 0.2 0.2 0.3 0.3

Distance–decay function Index Linear Linear Index

Land Use Habitat Type Habitat Suitability

Agriculture Cropland 0.3 0.7 0 0.6 0.65

Forest

Forest 1 0.9 0.8 0.8 0.85
Shrub forest 0.85 0.8 0.7 0.7 0.75

Sparse woodland 0.9 0.9 0.8 0.8 0.85
Other woodlands 0.8 0.9 0.8 0.8 0.85
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Table 3. Cont.

Threat Rural Settlements Cropland Main Road Railway

Grassland
Highly covered grassland 0.8 0.8 0.7 0.7 0.75

Medium-covered grassland 0.75 0.8 0.7 0.7 0.75
Low-coverage grassland 0.7 0.8 0.7 0.7 0.75

Waterbody
Rivers, lakes, reservoirs, and beaches 0.7 0.9 0.8 0.8 0.85

Permanent glacier 0 0 0 0 0
Tideland 0.1 0 0.3 0.3 0.35

Built-up area Rural settlements 0 0 0 0 0
Other construction land 0 0 0 0 0

Unutilized land Sand, bare land, etc. 0.2 0.6 0.5 0.5 0.55

2.3.3. Grassland Degradation

Li et al. [21] classified the degree of grassland degradation into five states based
on different vegetation change trends and variations in spatial heterogeneity. The first
state signifies an increase in NDVI and a decrease in spatial heterogeneity, indicating
enhanced productivity, homogeneity, and improved growth conditions of the grassland.
This state is defined as “apparent improvement”. In the second state, areas with sparse
or no vegetation (NDVI < 0.2) experience an increase in NDVI and spatial heterogeneity,
indicating vegetation regeneration. This state is defined as “slight improvement”. The
third state occurs in vegetation growth areas (NDVI > 0.2), where the increase in NDVI is
attributed to invasive species, leading to increased vegetation greenness and subsequent
spatial heterogeneity. This state is defined as “slight degradation”. The fourth state involves
a decrease in NDVI and an increase in spatial heterogeneity, representing a “medium
degradation” of the grassland. In areas with sparse vegetation and low vegetation coverage
(NDVI < 0.2), when NDVI and spatial heterogeneity decrease simultaneously, it indicates a
transition from a patchy stage to a bare land stage, defined as “severe degradation”.

In this study, the median NDVI for each month from May to September of a year was
used as the annual NDVI value. A 3 × 3 moving window (1500 m × 1500 m) was applied
to calculate the coefficient of variation (CV) of the NDVI, excluding the influence of rivers
and roads on the NDVI to reduce spatial heterogeneity. Refer to the research of Li et al. [21]
for a detailed calculation process.

2.3.4. Soil Water Erosion

Based on the RUSLE model, the soil erosion intensity affected by rainfall in the TRHR
is evaluated using the following calculation formula:

S = R×K× LS×C× P (5)

where S represents the soil erosion modulus per unit area (t/hm2/a), R stands for the
rainfall erodibility factor (MJ·mm/(t·hm2·a), K is the soil erodibility factor (t·h/(MJ·mm)),
and LandS represent the slope length factor and the slope gradient factor, respectively.C is
the vegetation coverage and management factor (ranging between 0 and 1), and P is the
soil erosion control practice factor (ranging between 0 and 1).

In this study, the R factor for each station in the TRHR is calculated every half month,
and the elevation is used as a covariate to interpolation covariate for the entire region. The
formula for calculating the R factor for half a month is as follows:

R = α
15

∑
j=1

Dj
β (6)

α = 21.586β−7.1891 (7)
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β = 0.8363 +
18.144

Pd12
+

24.455
Py12

(8)

where R represents the rainfall erosivity factor for a period of half a month. Pd12 refers
to the average daily precipitation over multiple years but only considers the dates with
rainfall greater than 12 mm. By contrast, the precipitation on days with rainfall lower than
12 mm is considered 0. Finally, Py12 represents the multi-year average of the cumulative
value of rainfall with daily rainfall greater than 12 mm. The R factors for half a month are
accumulated in this study to obtain the R factors for the entire year.

The monthly NDVI value, obtained using the maximum synthesis method, was used
to calculate the vegetation coverage and management factor, denoted as C. This factor
represents the impact of vegetation growth on soil erosion:

C =


1, f = 0

0.6508− 0.3436lg( f ), 0 ≤ f ≤ 78.3
0, f > 78.3

(9)

The formula for calculating vegetation coverage (f ) is as follows:

f =
NDVI − NDVIsoil

NDVImax − NDVIsoil
(10)

The variable NDVIsoil represents the NDVI value of bare soil pixels, while NDVImax
represents the value of pure vegetation pixels. In this study, the monthly NDVI data for the
study area were used to approximate the sum of ideal states for vegetation coverage calcu-
lation. The maximum synthesis method was employed to obtain the monthly vegetation
coverage values.

The gradient of the study area is generated using the slope tool provided by ArcGIS.
This gradient is then further processed to obtain the gradient factor (S) for the study area:

S =


10.8× sin(θ) + 0.03, θ < 9%

16.8× sin(θ)− 0.5, 9% ≤ θ ≤ 18%
21.91× sin(θ)− 0.96, θ > 18%

(11)

where θ is the slope.

L =
λ

22.13

m
(12)

m =
γ

(1 + γ)
(13)

γ =
sin(θ)/0.0896

3 ∗ sin(θ)0.8 + 0.56
(14)

where L represents the slope length (m) and the parameters γ and m are dimensionless
constants according to the percent slope θ, where θ is the slope.

In this study, the soil erodibility factor was calculated using the EPIC model [45]:

K =

{
0.2 + 0.3exp

[
−0.0256SAN

(
1− SIL

100

)]}(
SIL

CLA+SIL

)0.3

×
(

1− 0.25C
C+exp(3.72−2.95C)

)
×
(

1− 0.7SNI
SNI+exp(−5.51+22.9SNI)

) (15)

where SAN, CLA, and C are the sand content (%), clay content (%), and soil organic
carbon content (%), respectively. The calculated K factor is multiplied by 0.1317 to facilitate
conversion into international units (t·h/(MJ·mm)).
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The P factor for soil and water conservation measures is defined as the ratio of soil
loss after implementing conservation measures to soil loss without any measures. Previous
research results were utilized in this study as a reference when assigning P factor values [11].
Specifically, cropland, forest, other woodland, grassland, built-up land, and unused land
were assigned P factor values of 0.4, 1, 0.7, 1, 0, and 1, respectively.

Soil erosion is commonly categorized into six different grades based on its intensity
(Table 4) according to the Standards of SL 190–2007 for the Classification and Gradation of
Soil Erosion promulgated by the Ministry of Water Resources (China).

Table 4. The gradation and classification of soil water erosion intensity.

Classification Water Erosion Intensity (t/hm2/a)

micro <10
mild 10–25

moderate 25–50
strong 50–80

extreme 80–150
severe >150

2.3.5. Total Research Approach

In this study, the first step involves determining the multi-year status of degradation
indicators (RFI, habitat quality, grassland degradation index, and soil water erosion). This
step is followed by assessing the land degradation intensity via analysis of the trends
and state changes over multiple years. Landscape degradation is assessed by combining
changes in landscape structure and quality. Finally, the land degradation pattern in the
TRHR from 2000 to 2020 is obtained (Figure 2) by overlaying landscape degradation,
vegetation degradation, and soil erosion in the land degradation pathways.
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3. Results
3.1. Superimposition of Three Degradation Pathways

Three main degradation pathways were overlapped to analyze the multidimensional
existence of land degradation pathways: landscape (L) degradation, vegetation (V) degra-
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dation, and soil erosion (S) intensification. Their spatial distribution patterns in the TRHR
were also analyzed. The analysis results revealed that land improvement from 2000 to
2020 was the main trend in the TRHR, with the improvement areas mainly distributed in
the western and northeastern parts of the study area (Figure 3c). Notably, apparent land
improvement was observed in Zhiduo County, Tanggula Mountain Town, Maduo County,
Dari County, and Zeku County (as indicated in Figure 3b). Simultaneous improvement
in “EV” was mainly observed in the western and southeastern parts of the study area.
Simultaneous improvement in “LV” mainly occurred in the northern part of the study area.
The area with simultaneous improvement in all three aspects (LEV) was relatively small,
accounting for only 1.79% of the total area (Table 5). The regrowth of grassland in the
western region and the improvement and homogenization of grassland productivity in the
eastern region played pivotal roles in promoting land improvement in the TRHR.

Table 5. Proportion of land degradation types and intensity (%).

Types of Land Degradation Slight Degradation Medium
Degradation Severe Degradation Area Proportion of Land

Degradation Types

LEV 0.01 0.23 0.32 0.56
LE 0.03 0.02 0.16 0.21
LV 0.04 0.29 0.44 0.77
L 0.11 0.08 0.65 0.84

EV 1 1.27 1.83 4.1
E 3.63 2.26 2.6 8.49
V 20.16 5.49 4.04 29.69

Area proportion of land
degradation intensity 24.98 9.64 10.04 \

Types of Land Improvement Slight Improvement Apparent
Improvement Proportion of Land Improvement Types

LEV 0.60 1.19 1.79
LV 1.26 5.78 7.04
EV 1.11 6.29 7.40
V 10.68 28.43 39.11

Proportion of land improvement 13.65 41.69 \

Land degradation accounts for 44.66% (Table 5), mainly concentrated in the meadow-
dominated areas of the study area. The majority of the study area exhibits slight degrada-
tion, covering 24.98% of the total area. An overlap of two or more types of land degradation
is observed in 5.64% of the regions, with 4.1% attributed to “EV” degradation, mainly
occurring in the central and northeastern parts of the study area (Figure 3a). This finding
indicates a certain correlation between grassland degradation and soil erosion. Further-
more, simultaneous “LEV” degradation mainly occurs in the central part of the study area,
covering a relatively small area, accounting for only 0.56% of the total area.

3.2. Different Pathways of Land Degradation
3.2.1. Landscape Structure and Quality Degradation

The reduction in grassland patches serves as a key indicator of land degradation. The
comparison and analysis of the RFI from 2000 to 2020 reveal that the fragmentation of grass-
land in the TRHR exhibits significant spatial differentiation (Figure 4). The fragmentation
and degradation of grasslands in the TRHR are primarily caused by the expansion of water
bodies, the intensification of grassland desertification, and the expansion of cultivated land.
In the region shown in Figure 4a, the grassland is encroached upon by sandy land and
water bodies, leading to an exacerbation of fragmentation. In the region shown in Figure 4b,
grassland fragmentation is also intensifying due to land desertification in specific areas. In
the region shown in Figure 4c, abundant water and heat resources increase its suitability
for agricultural development, resulting in the encroachment of cultivated land onto some
grassland areas. The fragmentation phenomenon has further escalated since 2000, with an
intensified total area of 5.05 × 103 km2. Among these areas, 2.1 × 103 km2 of grassland
patches have disappeared. Conversely, the fragmentation of 6.56 × 103 km2 of grassland
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ecosystem has improved, as indicated by a decreased RFI index of 0.1–0.2. A significant
improvement in the RFI index, which decreases by more than 0.2, is observed in an area of
2.5 × 104 km2. Notably, in the central region of the TRHR, encompassing counties such as
Qumalai, Chengduo, Maduo, Xinghai, and others, the improvement in fragmentation is
particularly evident.
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Figure 4. Degree of grassland fragmentation in the Three-Rivers Headwater Region from 2000 to
2020 ((a–c) represent an amplified presentation of grassland fragmentation within three subareas of
the research area. T1 and T2 represent land use in 2000 and 2020, respectively).

The habitat quality in the TRHR exhibits a spatial pattern with high and low quality in
the east and west, respectively. From 2000 to 2020, the habitat quality remained relatively
stable (Figure 5). A slight improvement in habitat quality was observed in the northern
part of the TRHR, while a noticeable enhancement in habitat quality was found in the
northeastern part of the study area. However, at the junction of Qumalai County and
Zhiduo County, the habitat quality experienced a slight decrease, covering an area of
3.06 × 103 km2. Moderate degradation was mainly observed in the north of Qumalai
County, demonstrating a degradation area of only 0.91 × 103 km2.
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Figure 5. (a) Spatial distribution of the habitat quality in the Three-Rivers Headwater Region;
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to 2020.

3.2.2. Vegetation Degradation

NDVI exhibits comparable spatial distribution patterns (Figure 6a,b). The median
NDVI value for the growing season from May to September was 0.88. In the western region,
including Tanggula Mountain Town and Zhiduo County, the NDVI during the vegetation
growing season remained relatively low, ranging from 0.1 to 0.2. Overall, the vegetation
index in the TRHR displays spatial variation, with values decreasing from southeast
to northwest.
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The spatial heterogeneity of grassland cover represented by NDVI in a 1500 × 1500 m
grid was analyzed using a 3 × 3 pixel moving window. The degradation level in 2020 was
classified (Figure 6b) on the basis of the change trend of vegetation indexes. The combina-
tion of increased NDVI and increased spatial heterogeneity indicated slight degradation,
while that of decreased NDVI and increased spatial heterogeneity indicated medium degra-
dation. The degradation classification framework revealed that 22.26% of the study area
was in a state of slight degradation, while 7.21% and 5.63% were in states of medium and
severe degradation, respectively (Table 6). These degraded areas were mainly distributed in
meadow-dominated regions. Observing the change trend of NDVI, approximately 48.34%
of the study areas demonstrated an increasing trend in NDVI and a decreasing trend in
spatial heterogeneity, indicating an improvement in the productivity and homogenization
of grassland. In sparse vegetation areas with NDVI values less than 0.2, approximately
16.56% of the study areas exhibited signs of grassland regrowth, which was characterized
by an increase in NDVI and spatial heterogeneity, particularly in the western part of the
study area.

Table 6. Grassland degradation status in the Three-Rivers Headwater Region based on NDVI.

Severe Degradation Medium Degradation Slight Degradation Slight Improvement Apparent Improvement

5.63% 7.21% 22.26% 16.56% 48.34%
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3.2.3. Soil Erosion

The average annual soil erosion amount in the TRHR from 2000 to 2020 was
3.3 × 108 t/a, with a soil erosion modulus of 8.76 t/hm2/a. The TRHR is mainly character-
ized by its slight and mild erosion, accounting for 90.55% of the total area (Table 7). Areas
with a soil erosion intensity greater than 50 t/hm2/a represented 4.34% of the total area
and were primarily concentrated in high-altitude regions (Figure 7a).

Table 7. Area percentage of soil erosion intensity classification in different periods and area percentage
of soil erosion intensity intensification/amelioration (%).

Classification Micro Mild Moderate Strong Extreme Severe

2000–2010 80.53 9.89 5.22 2.35 1.69 0.32
2011–2020 80.86 9.69 5.03 2.28 1.74 0.40
2000–2020 80.76 9.79 5.11 2.3 1.69 0.35

Degree of soil erosion
intensification/amelioration

Apparent
improvement

Slight
improvement

Stable
condition

Slight
degradation

Medium
degradation

Severe
degradation

2000–2020 4.86 8.28 73.50 5.99 3.51 3.86Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 23 
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The areas of slight, moderate, and severe erosion in the TRHR have all increased from
the 2000s to the 2010s. The area of slight erosion has increased by 0.33%, reaching 80.86%
(Table 7). However, the proportions of mild, moderate, and severe erosion have decreased,
leading to a total reduction in proportion of 0.46%. Over the 20-year period, the average
annual soil erosion modulus increased at a rate of 0.03 t/hm2/a. Approximately 73.5%
of the TRHR experienced a stable soil erosion modulus during this period (Figure 7b).
However, 13.36% of the area showed intensified erosion, with 5.99%, 3.51%, and 3.86%
classified as slight, medium, and severe erosion intensification, respectively. The regions
with intensified erosion were mainly concentrated in the central and northeastern parts of
the study area.

4. Discussion
4.1. Comparison of Land Degradation Assessment Results with Previous Studies

The spatial distribution of fragmentation degradation was obtained by dividing the
degree of fragmentation by an interval of 0.1, which demonstrated the stability of the
threshold used in this study. The evaluation results of habitat quality were compared
with previous studies, and these results revealed that the spatial distribution of habitat
quality assessed in this study aligned with that of Hou et al. [44]. Li et al. [21] reported that
desertification, severe degradation, medium degradation, and slight degradation occurred
in 2%, 8%, 34%, and 21% of the TRHR, respectively, which were generally consistent with
the findings. However, the current research indicated that the medium degradation area
accounted for 7.21% of the study area, which differed significantly from Li et al. [21]. This
discrepancy may be attributed to the extension of the research period to 2020 compared
to Li et al., as well as the increase in NDVI, leading to reduced spatial heterogeneity in
areas with moderate degradation. By contrast, Wu et al. [46] evaluated the TRHR using the
RUSLE model and found that 90.59% and 5.1% of the regions showed slight and severe
erosion, respectively. Meanwhile, the increase rate of the soil erosion modulus from 2000 to
2020 was 0.2 t/hm 2/a [46], which was consistent with the findings of the current study.
Hence, a superposition analysis of land degradation in the TRHR can be further conducted
on the basis of the three degradation pathways.

In this study, we also compared our research results with those obtained from other
methods applied in the same region. Kang et al. [47] evaluated the land degradation trends
in China from 1985 to 2015 based on the NDVI and NPP. The land degradation area in
the central part of the TRHR revealed by their study is consistent with the core areas of
land degradation D1 (Figure 8) in the current study. Additionally, the northern part of the
TRHR is facing challenges from sandstorms and desertification, making it susceptible to
erosion [48]. The current study shows that the co-occurrence of soil erosion and grassland
degradation is more prevalent in the northern part of the region. Furthermore, a study
by Yang et al. [15]—where they utilized NDVI, albedo, and land surface temperature to
characterize soil and vegetation degradation in the study area—identified evident land
degradation in the north-central and southeast regions of the TRHR, which is largely
consistent with the current findings.
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Figure 8. Driving factors of land degradation in the Three-Rivers Headwater Region. (a,b) Transfor-
mation of other land types into grassland or grassland into other types. (c) Multi-year variation trend
of NDVI. (d) Spatial heterogeneity of NDVI. (e) Vegetation coverage. (f) Rainfall erodibility. D1–D3:
core areas of land degradation. (D1–D3 are the core areas of land degradation in the Three-Rivers
Headwater Region).

4.2. Driving Forces of Land Degradation

Human activities are the primary driving force behind land degradation in the TRHR.
Despite the low population density, the distribution of the population shows distinct
spatial variations (Figure 8a,b). The population is concentrated in the central-southern and
eastern parts, where water and thermal conditions are highly favorable for agricultural
production and grazing. Overgrazing and the increased frequency of fires can exacerbate
disturbances, leading to reduced vegetation cover and an elevated risk of soil erosion and
desertification [49]. Over the past two decades, approximately 5.24 × 103 km2 of grassland
has been lost in the TRHR due to desertification and conversion for cultivation purposes.
Moreover, the Chinese government has implemented two phases of ecological protection
and construction projects in the TRHR since 2000. These projects are aimed at mitigating
land degradation and include measures such as restoring degraded grassland (resulting in
a 1.98 × 104 km2 increase in grassland area between 2000 and 2020), harnessing black soil
beaches, and protecting biodiversity. Driven by these projects, the ecological environment
in the TRHR has been significantly improved.

Human activities intensify the impact of climate change, exacerbating land degrada-
tion. Reductions in vegetation index or vegetation cover have been observed in the core
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areas of land degradation D1 and D3, which are areas where two or more types of land
degradation occur simultaneously, and the severity of degradation is medium to severe.
These reductions in vegetation are concerning because they contribute to an increased
risk of soil erosion (Figure 8c,e). The increase in spatial heterogeneity (D2) indicates the
fragmentation of vegetation and the development of bare soil patches, which in turn ac-
celerate the expansion of bare land [50] (Figure 8d). Rainfall erodibility has increased in
the TRHR in the last 20 years (Figure 8f). Future climate change is expected to exacer-
bate rainfall erosivity, thus increasing the vulnerability of plateau areas to soil and land
degradation. Consequently, these changes will have detrimental effects on the distinctive
biodiversity of the region and its ecosystems [11,51]. Furthermore, plateaus face multiple
threats, including atmospheric and soil drought, as well as extreme climate events such as
exceptionally low or high temperatures. These factors heighten the risk of ecosystem loss
and land degradation [52].

4.3. Limitations and Future Work

In addition to the landscape patterns examined in this study, including grassland
degradation and soil erosion, other factors contributing to plateau land degradation include
wind erosion, freeze–thaw erosion, and desertification. The Tibetan Plateau experiences
approximately 150–300 days of temperature fluctuations of approximately 0 ◦C yearly,
leading to frequent freezing and thawing processes [53]. The region above 4500 m above
sea level in the TRHR covers 58.46% of the total area and is particularly susceptible to
freeze–thaw erosion [54]. Moreover, inadequate precipitation and frequent strong winds
increase the susceptibility of the region to desertification [12]. In future studies on land
degradation, considering the intensity of freeze–thaw erosion and wind erosion in the
study area is crucial.

The TRHR is situated in the transitional zone between seasonally frozen soil and dis-
continuous and continuous permafrost regions. Based on soil freezing depth observations
since the 1960s, a continuous and accelerated decline in freezing depth and duration is
observed in the TRHR [55]. Projections indicate that the permafrost area in this region will
decrease by 24–28% by 2050 [13]. These changes not only impact the spatial distribution,
thermal state, active layer thickness, freeze–thaw state, and snow depth of permafrost but
also influence vegetation growth and the capacity of the ecosystem for carbon absorption
by altering soil hydrology and nutrients [56]. Moreover, the thawing of permafrost on
the plateau will release soil organic carbon into the atmosphere, further contributing to
climate warming [57] and adding to the uncertainty of land degradation. In future research,
considerable attention should be given to understanding the consequences of permafrost
thawing and its effects on land degradation.

5. Conclusions

This study followed the calculation framework of SDG 15.3.1 and utilized various
indexes, such as the fragmentation and habitat quality indexes based on land use change,
as well as the grassland degradation and water erosion indexes, to assess three distinct
pathways of land degradation. These pathways include the degradation of landscape
structure and quality, vegetation degradation, and soil erosion. The study determined the
extent of land degradation or improvement over time by analyzing the trends of these
indicators. Furthermore, the study provided a quantitative analysis of the spatial patterns
of land degradation in the TRHR by considering and integrating the three degradation
pathways. The main findings of this study are as follows:

(1) The TRHR exhibits the superimposition of different land degradation pathways.
Approximately 5.64% of the regions experience the simultaneous presence of two or
more land degradation pathways. However, the superposition of all three degradation
paths is observed in only 0.56% of the areas. Notably, the most frequent superposition
is between soil erosion and grassland degradation, which accounts for 4.1% of the
total area. These findings emphasize the complex nature of land degradation in the



Remote Sens. 2023, 15, 4521 20 of 22

region and highlight the need for holistic management approaches to address the
multiple drivers and impacts of degradation;

(2) Land degradation in the TRHR is primarily concentrated in the meadow areas. From
the perspective of landscape degradation, approximately 2.39% of the study areas
exhibit signs of degradation. Based on the classification framework of vegetation
degradation, 22.26% of the study areas experienced slight degradation, while 7.21%
and 5.63% showed medium and severe degradation, respectively. The soil erosion
modulus increased at an average annual rate of 0.03 t/hm2/a over the 20-year period,
with 5.99%, 3.51%, and 3.86% of the total area experiencing slight, medium, and severe
soil erosion intensification, respectively. These areas are mainly concentrated in the
central and northeastern parts of the study area. Implementing robust ecological
protection projects in future work is crucial to preventing further land degradation in
the TRHR;

(3) During the period from 2000 to 2020, the most significant trend observed in the
TRHR was land improvement, accounting for 55.34% of the entire region. These land
improvement areas were primarily distributed in the western and eastern parts of
the region. The regrowth of grassland in the western areas and the improvement and
homogenization of grassland productivity in the eastern areas played crucial roles in
promoting land improvement.
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