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Abstract: As a crucial computer vision task, multi-objective semantic segmentation has attracted
widespread attention and research in the field of remote sensing image analysis. This technology has
important application value in fields such as land resource surveys, global change monitoring, urban
planning, and environmental monitoring. However, multi-target semantic segmentation of remote
sensing images faces challenges such as complex surface features, complex spectral features, and a
wide spatial range, resulting in differences in spatial and spectral dimensions among target features.
To fully exploit and utilize spectral feature information, focusing on the information contained
in spatial and spectral dimensions of multi-spectral images, and integrating external information,
this paper constructs the CD-MQANet network structure, where C represents the Channel Creator
module and D represents the Dual-Path Encoder. The Channel Creator module (CCM) mainly
includes two parts: a generator block and a spectral attention module. The generator block aims to
generate spectral channels that can expand different ground target types, while the spectral attention
module can enhance useful spectral information. Dual-Path Encoders include channel encoders
and spatial encoders, intended to fully utilize spectrally enhanced images while maintaining the
spatial information of the original feature map. The decoder of CD-MQANet is a multitasking
decoder composed of four types of attention, enhancing decoding capabilities. The loss function
used in the CD-MQANet consists of three parts, which are generated by the intermediate results
of the CCM, the intermediate results of the decoder, and the final segmentation results and label
calculation. We performed experiments on the Potsdam dataset and the Vaihingen dataset. Compared
to the baseline MQANet model, the CD-MQANet network improved mean F1 and OA by 2.03%
and 2.49%, respectively, on the Potsdam dataset, and improved mean F1 and OA by 1.42% and
1.25%, respectively, on the Vaihingen dataset. The effectiveness of CD-MQANet was also proven
by comparative experiments with other studies. We also conducted a thermographic analysis of
the attention mechanism used in CD-MQANet and analyzed the intermediate results generated by
CCM and LAM. Both modules generated intermediate results that had a significant positive impact
on segmentation.

Keywords: deep learning; remote sensing; semantic segmentation; attention mechanism; multispectral
remote sensing data

1. Introduction

The semantic segmentation of multiple objects in remote sensing images is of great
significance in the field of remote sensing, which provides help for such work as urban
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planning, agricultural monitoring, and satellite navigation [1]. Remote sensing images can
provide information on segmented objects in different aspects, such as spectral latitude and
spatial latitude. Therefore, remote sensing images often contain rich material, geometry, and
spectral reflection information of target objects [2]. On the one hand, these characteristics
make it more difficult for semantic segmentation scholars to deal with remote sensing
image information. On the other hand, they make the semantic segmentation of multi-place
objects based on remote sensing images from multiple perspectives.

In the realm of remote sensing image semantic segmentation, numerous advanced
techniques rooted in deep learning have been developed [3]. Among these, U-Net, initially
proposed by Olaf Ranneberger et al. [4], stands out for its distinctive U-shaped structure
and encoder–decoder concept. U-Net is renowned for its efficiency and high performance,
serving as a foundational model upon which subsequent methods have been built. One
such method is SegNet [5], which employs a specialized decoder architecture incorporating
maximum index information from the encoder. This innovation has yielded exceptional
segmentation results, particularly on cost-effective hardware. Deeplab [6], on the other
hand, focuses on an encoder–decoder architecture that substantially expands the model’s
receptive field. It enhances segmentation precision by introducing advanced components
such as void convolution and spatial feature pyramids. Semantic segmentation often neces-
sitates the extraction of global features. To address this need, researchers have proposed
various methods. Zhou et al. [7] introduced D-Linknet, which aggregates contextual in-
formation using multi-scale expansion rates. Eff-Unet++ [8] adopted the EfficientNet-B4
architecture to replace U-Net’s encoder, along with redesigning the decoder’s jumping
connections and residual components. This adaptation has improved feature extraction
capabilities. For very-high-resolution (VHR) remote sensing images, Qiu et al. [9] devised
a refined U-Net with a specialized thinning jump connection scheme that incorporates
an atrous spatial convolution pyramid pool (ASPP) module and several improved depth
separable convolution (IDSC) modules. Jiao et al. [10] developed Unet-V4, an end-to-end
edge-accurate segmentation network tailored for capturing regions of interest with tight
edges and potential shadow regions with blurred boundaries. References [11–13] introduce
the transformer into U-Net, showcasing the universality of the U-Net structure.

Attention mechanisms have played a pivotal role in effectively distinguishing and
utilizing information, akin to the human visual attention system. SENet [14] represents a
notable application of attention mechanisms in computer vision. SENet introduces an SE
module that predicts weight coefficients for each input channel, establishing a channel-wise
attention module. This approach has delivered promising results, inspiring subsequent
advancements. The integration of attention mechanisms in image segmentation has wit-
nessed significant progress. Models like PSAnet [15] incorporate spatial location-based
attention modules, enabling better utilization of location-based information. The evolu-
tion of attention mechanisms continues, with DANet [16] introducing dual self-attention,
combining spatial and channel self-attention for enhanced global information acquisition.
CBAM [17] presents a lightweight, adaptable attention mechanism, while DA-Roadnet [18]
tailors attention mechanisms to the unique characteristics of road-related imagery. In the
context of multispectral remote sensing images, particularly hyperspectral data, atten-
tion mechanisms have been leveraged to address the challenge of distinguishing between
useful and irrelevant information. In hyperspectral imagery with high spectral but low
spatial resolution, researchers have proposed spectral attention methods based on global
convolution and spectral threshold weights [19]. Multi-scale spectral attention (MSA)
modules have been designed to reduce spectral redundancy and enhance discrimination
capabilities [20]. Furthermore, in multispectral image semantic segmentation, both spa-
tial and spectral resolutions are frequently leveraged. Researchers have innovated by
designing attention mechanisms tailored to spectral and spatial characteristics, effectively
suppressing unnecessary information and focusing on critical details [21–25]. Additionally,
building spatial–spectral bidirectional networks using attention mechanisms has gained
prominence [26,27]. In conclusion, this research underscores the critical role of attention
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mechanisms in advancing the accuracy of multiple object semantic segmentation in remote
sensing imagery. These mechanisms have enabled the efficient extraction and utilization of
information, thereby contributing to the development of sophisticated and high-performing
models for a range of applications in this domain.

However, the construction of both the U-Net structure and self-attention mechanism
depends on the extraction and processing of the internal information of the feature map,
and the combination of input features to obtain the output features. This brings about
the following two problems: Firstly, the output feature completely depends on the quality
of the input feature extraction. If the input feature extraction is poor, the output feature
cannot make up for it. Secondly, the self-attention mechanism is a characteristic dimension
of attention, which cannot be visualized intuitively and has poor interpretability.

In order to improve the accuracy of semantic segmentation, another idea is to introduce
external information. In a convolutional neural network, there are two main ways to
introduce external information. One is to increase the input channel and directly input
the external information into the model. The second is to add the loss function and
introduce the additional loss function during the training of the model to calculate the
distance between the intermediate quantity of the model and the external information.
Y Zhang et al. [28] segmented remote sensing images from the perspective of knowledge
transfer and introduced semantic word vectors to help different styles of data achieve
domain adaptation. The introduction of external information brings additional information
to the model, which helps the model learn more general features. However, the external
information is usually difficult to express and fully integrate into the existing deep learning
model. In order to solve the above problems, Li et al. [29] introduced label information
by building LAM, transformed semantic labels into multi-channel binary semantic labels
through one-hot code transformation, and calculated loss with the feature map. LAM is
different from the self-attention mechanism in that it introduces external label information
to optimize the generation of an attention probability map.

In addition to the improvement of network structure, many scholars have studied
and discussed the remote sensing image data enhancement methods used in semantic
segmentation. In common methods, remote sensing images are generally enhanced in
spatial information, such as image rotation, cropping, scaling, adding noise, or HSV
transformation. References [30–32] introduced transpose, rotation, and other enhancement
operations. In addition to the conventional enhancement operations, reference [33] also
uses enhancement methods such as mixup and cutup to further enhance the data diversity.
However, the above image enhancement methods have such problems: Firstly, the general
remote sensing image data enhancement is often only for the spatial dimension of the
remote sensing image, ignoring the enhancement in the spectral dimension; Secondly,
the parameters of remote sensing image rotation, HSV change, and other enhancement
methods are often preset or randomly generated by random number function, which is
independent of the deep learning network. Based on these problems, the idea is to build
an adaptive and learnable spectral dimension data enhancement method to improve the
robustness and accuracy of the network. This paper uses convolution to construct an
adaptive spectral enhancement method. The original image of four channels is enhanced
to 196 channel images, and the generated spectral enhancement results are constrained
by LAM.

Reducing human–computer interaction is a critical research direction in various as-
pects, including image enhancement and the integration of additional information. How-
ever, there is still room for improvement in the accuracy of current deep learning multi-
object segmentation methods. This limitation is primarily attributed to the insufficient
utilization of spectral dimension information and external data. To enhance the accuracy of
multi-objective semantic segmentation, fully exploit the spectral and spatial information
present in remote sensing images, and integrate external information, we aim to develop
an adaptive spectral enhancement method that enhances the network’s ability to explore
diverse spectral information. Additionally, we adopt a comprehensive strategy of incorpo-
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rating attention mechanisms into all aspects of the network to enhance its segmentation
capabilities for different objects.

The main contributions of this paper are as follows:

1. The Channel Creator module (CCM) is creatively constructed. By imitating the means
of image enhancement, an adaptive spectral enhancement method is introduced.
CCM can expand the number of channels in the feature map and build spectral
attention to give weight to the feature map, stimulate the channels containing useful
information, suppress the channels with useless information, and enhance the ability
of the network to extract and use the channel features.

2. Innovative use of attention mechanism and dense connection to build a two-way
encoder. The Dual-Path Encoder is divided into two parts: channel encoder and spatial
encoder. The channel encoder uses the channel attention mechanism to focus on the
channel information of the feature map. The spatial encoder uses dense connection
and spatial attention mechanism to extract multi-scale features. The two-way encoder
improves the ability of the network to extract features of different scales and channels.

3. We optimized MQANet using the CCM and Dual-Path Encoder and built CD-MQANet.
We also tested CD-MQANet on two public datasets. The experiment shows that
the evaluation metrics of CD-MQANet are greatly improved compared with the
baseline model MQANet, especially for low vegetation and tree types. The atten-
tion mechanism of CD-MQANet and some intermediate results are also visualized
and interpretable.

2. Methods

Li et al. [29] introduced MQANet, a network architecture that primarily focused on
optimizing the decoder part of U-Net. They achieved this by replacing the original decoder
with a multitasking decoder, which incorporated label attention, channel attention, spatial
attention, and edge attention mechanisms. Compared to the traditional U-Net, MQANet
demonstrated a significant improvement in segmentation accuracy. However, MQANet
also exhibited certain shortcomings:

1. MQANet did not address optimization in the encoder part of the network, leading
to a mismatch in the scales of the encoder and decoder components. As a result,
the encoder failed to fully extract information from the original image, indicating a
pressing need to enhance the network’s ability to extract valuable information from
the input image.

2. The contribution of the edge attention mechanism in MQANet towards improving
network accuracy was found to be relatively insignificant, and its implementation
introduced complexity, requiring additional label preprocessing. Consequently, there
is an urgent requirement for more effective attention mechanisms.

Based on the strengths and weaknesses of MQANet, this paper introduces the Channel
Creator module (CCM) and the Dual-Path Encoder module, with a primary focus on
optimizing the encoder part of the network to enhance segmentation accuracy.

2.1. Architecture of CD-MQANet

To fully exploit and utilize spectral feature information and focus on the informa-
tion contained in multispectral images from both spatial and spectral dimensions, we
constructed CD-MQANet, where “C” represents the Channel Creator module, and “D”
represents the Dual-Path Encoder.

The network structure of CD-MQANet is shown in Figure 1. First of all, in order to
save the information of the feature map as much as possible and reduce the size of the
feature map, we first send the original image to the stem block. The structure of the stem
block is one layer of 3 × 3 convolution (stride size is 2), two layers of 3 × 3 convolution
(stride size is 1), and one layer of average pooling. The main purpose of stem block is to
perform a preliminary feature extraction on the original image and reduce the size of the
feature map to 1/4 of the original size, saving the calculation cost. After passing through
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stem block, the original image will become a 16-channel feature map, which will enter
two different branches. One of the branches will enter the Channel Creator module (CCM).
The CCM mainly includes two parts: spectral generator and spectral attention module.
The spectral generator aims to generate spectral channels that can expand the spectral
characteristics of different types of ground objects. Each type will generate 32-channel
feature maps according to the original category, and then the generated feature maps will
calculate loss with the labels of this type of ground objects to constrain the generation
of feature maps. The main task of the spectral attention module is to generate a spectral
threshold, enhance useful spectral channels, and suppress useless spectral channels. The
spectral-enhanced feature map will enter the Dual-Path Encoder together with the original
feature map extracted by stem block. The spectral-enhanced feature map will enter the
channel feature extraction branch of the Dual-Path Encoder, and the original feature map
will enter the spatial feature extraction branch of the Dual-Path Encoder. The features
extracted by the two-way encoder will be sent to the multi-head attention decoder for
decoding after fusion. Finally, the overall loss of the network will consist of three parts:
the Lossci generated by G-map and label, Lossatt generated by LAM in decoder part, and
Lossseg generated by prediction results and label calculation.
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Figure 1. Architecture of CD-MQANet.

2.2. Channel Creator Module

Figure 2 shows the structure of the Channel Creator module (CCM). The CCM mainly
consists of two parts. The first part is composed of N generator blocks (n is the type of
objects in the remote sensing image), and the second part is spectral attention. The CCM
hopes to generate the corresponding enhanced spectral channels according to different
types of objects through the generator block and suppress the generated useless information
and enhance the useful information through spectral attention.
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Generator block has such an idea. In fact, multispectral images are superimposed by
gray images of multiple bands in the channel direction. The main difference between gray
images of different bands is that the gray values of different pixels are different. Therefore,
we consider generating different bands through the change in gray values. The generate
operation can be defined as the equation:

F(x) = (αx + β)γ (1)

where x represents the original feature map and α, β, γ are three parameters. It should
be noted that, the three parameters in F(x) can be optimized by back propagation. The
generator block first generates a new layer for each layer of the input feature map according
to the F(x) transform, and then performs two times of double convolution to obtain the
feature map after spectral enhancement for this kind of ground object. In order to constrain
the bands generated by the generator, we also convolute the generated bands to 1 channel
and calculate the cross-entropy loss with the label of this category object. Generator block
is constructed to enhance the channel information of different types of objects by using the
above methods and make the enhanced information relatively reliable by calculating loss.

The generator block of the n classes feature map will generate 2 × n times the number
of channels of the original feature map. Although we have used the loss function to
constrain the spectral enhancement, we still cannot guarantee that such a large number
of spectral channels all contain useful information. In order to solve this problem, we
constructed spectral attention. Spectral attention hopes to generate a spectral threshold
weight from the global information of the feature map to screen the spectral channels,
gain the channels with effective information, and suppress the channels with invalid or
even interfering information. Spectral attention consists of a max pooling, a global 2-D
convolution layer, and two 1-D convolution layers. In order to reduce the amount of
calculation, spectral attention first pools the maximum value of the feature map, and then
performs 2-D global convolution, that is, the size of the convolution kernel is consistent
with the H and W of the feature map. After global convolution, the feature map will become
one-dimensional, which corresponds to the thresholds of different spectral channels. After
two one-dimensional convolutions, the spectral threshold is multiplied by the feature map
of input spectral attention to obtain the constrained feature map.

2.3. Dual-Path Encoder

The Dual-Path Encoder is mainly composed of two parts. The first part is the channel
encoder including the channel attention and double conv, and the second part is the
spatial encoder including the spatial attention mechanism and dense block. The Dual-Path
Encoder hopes to explore the channel dimension feature information to a greater extent
on the basis of the feature map after spectral expansion and retain the spatial dimension
feature information of the original feature map. Based on this idea, the input of each branch
of the Dual-Path Encoder is also different: the input of the channel encoder is the output
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result of the CCM. The input of the spatial encoder is the original feature map output by
stem block.

The channel encoder receives the spectral-enhanced feature map output by the CCM,
so we use the structure of superimposed three-layer double convolution and channel
attention module on this branch to further extract and enhance the channel information.
The structure of the channel attention module is shown in Figure 3. In CAM, the input
feature map passes through two branches, one of which will be used as Q and K to generate
C× C attention probability map. In the other branch, it is used as V. Among them, V, Q,
and K represent value features, query features, and key features, respectively; C, H, and
W, respectively, represent the channel, height, and width of the feature map. The overall
structure of cam can be expressed by the following Equations (2) and (3):

Att = so f tmax
(

Q(C×HW)·K(HW×C)

)
(2)

Fout =
(

Att·V(C×HW)

)
.reshape(C × H × W) + Input(C×H×W) (3)

where subscript represents the shape of corresponding graph, Fout represents the weight
chart of the last output, Input(C×H×W) represents the original feature map of input channel
self-attention, reshape(C × H × W) represents changes to the characteristic diagram shape
of (C × H × W).
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The main function of the spatial encoder is to retain the original feature map informa-
tion and extract more spatial information at the same time. Therefore, the structure of the
channel encoder is three-layer spatial block that contains dense block and spatial attention
mechanism. The structure of the spatial block is shown in Figure 4. In the dense block, the
structure of the first n layers is set to BN-relu-conv (1 × 1) -bn-relu-conv (3 × 3, stride = 1).
After that, an additional three-layer dilated convolution is added, and the structure of
the three-layer dilated convolution is set as: BN-relu-conv (1 × 1) -bn-relu-Dconv (3 × 3,
stride = 2, or 4, or 8). After passing through a dense block, the number of channels in the
characteristic graph will increase by (n + 3)× K layers. Among them, K is called growth
rate. Dense block encourages feature reuse, sends the feature map extracted from the previ-
ous convolution layer to the subsequent convolution layer for operation, and introduces
three-layer dilated convolution to enhance the receptive field of the network. The spatial
encoder hopes to use the combination of ordinary convolution and dilated convolution to
improve the ability of the network to obtain local and global spatial information and use
the mechanism of feature reuse to improve the ability of the network to obtain and use
spatial information at different scales.
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Figure 4. Spatial block.

In PAM, the input characteristic graph passes through two branches, one of which
will be generated as Q and K (H × W) × (H × W) Attention probability map. In the other
branch, it is used as v. Among them, V, Q, and K represent value features, query features,
and key features, respectively; C. H and W, respectively, represent the channel, height,
and width of the feature map. The spatial encoder combines the dense block and spatial
attention to fully extract the spatial feature information of different scales in the feature
map while maintaining the original feature information, so as to improve the ability of the
network to extract local and global spatial features.

2.4. Multi-Task Decoder and Label Attention

Self-attention mechanism helps to improve the accuracy of large-scale goals. However,
there are some similarities in color features and texture features between some ground object
types. For example, some leafless trees are very similar to low vegetation, which is easy to
cause misjudgment of the network. In order to reduce the miscarriage of justice between
similar objects, it is necessary to find the causes of miscarriage of justice. After analyzing
the structure of the network model, it is found that in the traditional encoder–decoder
structure, a decoder generates multiple outputs through the softmax function. However,
the characteristics of different categories differ greatly, and each category will contribute
to the parameter update during training, but the parameter optimization directions of
different categories may be different, resulting in competition and mutual restriction
between categories. In order to solve this problem, this paper introduces multitask learning,
which transforms a multi-classification semantic segmentation problem into a multi-binary
classification semantic segmentation problem, so as to avoid the competition between
different categories of parameters.

Aiming at the problem of multi-classification feature extraction in this paper, the de-
coder part of the multitask learning model is modified, and a multi-decoder quadruple at-
tention model based on multitasking is constructed, which transforms a multi-classification
semantic segmentation problem into a multi-binary classification semantic segmentation
problem. Each category constructs a decoder separately. The decoder is composed of multi-
ple attention modules, and each decoder only focuses on the corresponding category, there
is no need to consider the characteristics of other categories, thus reducing the competitive
relationship between categories. We construct the decoder to echo the attention mechanism
used by the encoder: in the encoder, the spatial, channel, and spectral dimensions are
weighted with attention, and we hope to build a similar weighting mechanism in the
decoder. In order to introduce the external label information, it is necessary to construct
additional attention mechanism, so as to form a quadruple attention decoder together with
the first three attention.

In addition, another important way to solve the problem of misjudgment is to in-
troduce external information. This paper chooses to use the method of introducing label
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attention to build the external information acquisition module of the network. In the
common attention mechanism, the attention probability map can be expressed as a two-
dimensional matrix, while in the label attention mechanism, in order to introduce additional
semantic information, the attention probability map is expressed as a multi-channel two-
dimensional matrix, and the number of channels is consistent with the number of semantic
categories. Because the final task is to complete the semantic segmentation of the image,
each semantic channel pays attention to different information, and the information that
each channel pays most attention to is the area covered by the channel’s feature types.
Therefore, when the attention probability map is more similar to the semantic labels, the
final semantic classification results can also be more similar to the labels. The semantic label
is transformed into a multi-channel binary semantic label from a single-channel gray-scale
semantic label through one-hot code transformation. The number of channels is the same
as the number of categories. The two-dimensional matrix and the attention map are kept
the same size through down-sampling, and the loss function of the generated attention
probability map and the real down-sampling label can be calculated.

Based on the above ideas, combined with the attention mechanism, the following
modules can be constructed, as shown in Figure 5 structure of LAM. As the number of
channels in the attention probability map increases, the attention probability map is no
longer obtained by the multiplication of Q and K points, but by the direct convolution of
input features. Similarly, the calculation method of the output result is also changed. The
final output result is obtained by convolution of the attention output and the original input.
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2.5. Loss Function

General deep learning segmentation methods often only calculate the loss for the
segmentation results and labels and use this loss to update the parameters of the deep
learning network. Unlike general deep learning multi-object segmentation models, the
final loss of this article consists of three parts: the G-map generated by the CCM and the
loss 1 calculated by the single class object label, the loss 2 calculated by the LAM and label
unique heat code, and the final segmentation result and the loss 3 calculated by the label.
The calculation method is as Equations (4)–(7):

Lossci = CrossEntropyLoss(GMAPi, Labeli) (4)
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Lossci = CrossEntropyLoss(GMAPi, Labeli) (5)

Lossseg = CrossEntropyLoss(predict, Label) (6)

Losstotal =
n

∑
i=0

Lossci + Lossatt + Lossseg (7)

It can be seen from the above formula that the cross-entropy loss is used in the loss
function constructed by each part. Among them, GMAPi stands for GMap, label generated
by class i figure CCM, Labeli stands for the label of class i figure. Att-map is the attention
map generated by LAM. Labelonehot is the one-hot form of the label.

3. Experiments

In order to verify the reliability and effectiveness of the method proposed in this
paper, this paper focuses on two publicly available ISPRS remote sensing image semantic
segmentation datasets. The hardware and software conditions used in this paper are shown
in Table 1.

Table 1. Hardware and software conditions.

System Windows 10

GPU NVIDIA GeForce RTX 3090 Ti

CPU Intel(R) Core (TM) i7-10700 CPU @ 2.90 GHz 2.90 GHz

DL Framework Pytorch V1.11.0

Compiler Python V3.9.12

Optimizer AdamW

Learning Rate 0.002

Batch Size 2

3.1. Datasets

The dataset is from the International Society for Photogrammetry and Remote Sensing
(ISPRS). The dataset is widely used in the field of remote sensing image feature extraction.
The dataset contains remote sensing images of two regions, Potsdam, a large city in
Germany, and Vaihingen, a small village. The original image and annotation examples are
shown in Figure 6.

The Potsdam dataset [34] contains 38 high-resolution orthophoto images with a spatial
resolution of 0.05 m, and each image size is 6000 × 6000 pixels. The dataset provides
four bands of data (r-g-b-ir). All four bands are used in this paper. In order to facili-
tate the training of the deep learning model, the original large image is segmented into
a 1024 × 1024 small image. The dataset label contains six types of features: buildings,
impervious ground, low vegetation, trees, vehicles, and background. In Potsdam dataset,
the size of the training set and the test set are 864 and 504, respectively.

The Vaihingen dataset [35] contains 33 high-resolution orthophoto images with a
spatial resolution of 0.09 m, and each image is about 2500 in size × 2500 pixels. The dataset
provides three bands (r-g-ir). This paper uses the data of all three bands, and the data
processing method is consistent with the Potsdam dataset. Similarly, the dataset label
includes six types of ground objects: buildings, impervious ground, low vegetation, trees,
vehicles, and background. In Vaihingen dataset, the size of the training set and the test set
are 234 and 63, respectively.
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3.2. Metrics

In order to verify the effectiveness of the model, a general evaluation index is needed
to quantify the accuracy performance of the model. In the task of remote sensing image
multi-class feature extraction and recognition, the prediction result is the pixel-by-pixel
classification of the original image, which belongs to the semantic segmentation task in
computer vision. Therefore, this paper selects two common semantic segmentation evalua-
tion indicators, F1 score and OA (overall accuracy), to measure the quality of the prediction
result. In the binary classification problem, the prediction results can be divided into four
categories according to whether the prediction is correct or not and the corresponding
real value. All classification results are divided into four categories: true case (TP), false
positive case (FP), true negative case (TN), and false negative case (FN). Thus, two concepts
of precision and recall are introduced, as shown in the following Equations (8) and (9):

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

The precision ratio represents the proportion of all predicted results that are correct in
the positive example, and the recall ratio represents the proportion of all real results that
are correct in the collation. The two are a pair of contradictory measures, and F1 score is
the harmonic index of precision ratio and recall ratio:

F1 =
2 × precision × recall

precision + recall
(10)

For the multi-category semantic segmentation problem, the F1 between each category
and its background can be calculated, respectively, and then the final multi-category F1
score can be obtained by averaging the F1 scores of each single category. Generally, the F1
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score only calculates all foreground categories, ignoring the background. Therefore, this
paper only calculates F1 scores for each foreground category.

F1mean = ∑N−1
i F1i/N (11)

Compared with F1, the calculation method of OA is simpler. OA means the ratio of all
correctly predicted pixels to the total pixels. The specific formula is as Equation (12):

OA =
TP + TN

TP + TN + FP + FN
(12)

4. Results

In order to verify the reliability and effectiveness of the method proposed in this paper,
ablation experiments will be carried out on the Potsdam dataset and Vaihingen dataset, and
comparative experiments will be carried out with the methods proposed in other articles.
The ablation experiment will take MQANet as the baseline model and explore the effect of
different modules.

4.1. Ablation Study
4.1.1. Experiments Results on Potsdam Datasets

This section will show the effects of different methods on the Potsdam dataset, in
which MQANet is the benchmark model, C-MQANet is the model with CCM, D-MQANet
is the model with the Dual-Path Encoder, and CD-MQANet is the model with both modules.
Table 2 shows the experimental results.

Table 2. Experimental results of Potsdam dataset.

Method
Per-Class F1-Scores (%)

Mean F1 (%) OA (%)
Imp. Surf. Building Low Veg. Tree Car

U-Net 87.91 91.31 81.76 82.72 88.91 86.52 85.48

MQANet (baseline) [29] 91.34 95.40 84.80 85.67 90.78 89.35 89.05

C-MQANet 90.03 95.34 87.01 87.25 90.83 90.05 89.82

D-MQANet 92.11 95.87 85.81 84.12 90.97 90.57 90.70

CD-MQANet 92.30 96.56 87.69 87.39 91.08 91.38 91.54

As shown in Table 2, compared with the baseline, the indicators of CD-MQANet
have achieved the best results. Among them, the F1-Score of Low Veg and Tree has
improved significantly, and the F1-Score of other types has improved to some extent.
Finally, the mean F1 and OA increased by 2.03% and 2.49%, respectively, compared with
the baseline model. When we focus on the effect of the CCM, we find that the CCM has
significantly improved the segmentation accuracy of Low Veg and Tree objects, but it has
made little contribution to the segmentation accuracy of other objects and may even provide
negative contributions. This may be because the spectral features of Low Veg and Tree in
multispectral images, especially in the near-infrared band, are quite different from those
of other ground objects. The spectral enhancement mechanism amplifies this difference
and enhances the ability of the network to use spectral information. However, due to
the lack of spatial information mining, the segmentation ability of features with small
spectral differences (such as impervious surfaces and buildings) is poor. However, thanks
to the high extraction accuracy of Low Veg and Tree features, C-MQANet has made some
improvement compared with the baseline model in terms of mean F1 and OA. The Dual-
Path Encoder has improved the extraction accuracy of each category. Thanks to the equal
attention to channel and spatial information, as well as the acquisition and utilization of
multi-scale information, D-MQANet has improved to a certain extent in each category. The
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improvement of impervious surfaces and Low Veg is more obvious, while the improvement
of the car category is lower. Finally, D-MQANet has improved to a certain extent compared
with the mean F1 and OA of the baseline model. CD-MQANet combines the advantages of
the two improved modules to maintain the extraction accuracy of plant-like features (Low
Veg and Tree) and improve the extraction ability of other types of features to a certain extent.
Compared with MQANet, the extraction accuracy of all types of features in CD-MQANet
has been improved, and the categories with the greatest improvement are Low Veg and
Tree. However, it is worth mentioning that the three improved models have no obvious
improvement in vehicle extraction compared with the baseline model. This may be because
the pixels of vehicle-type features in remote sensing images are relatively small. Figure 7
can more intuitively illustrate these situations.
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In general, the introduction of CCM can significantly reduce the missed detection
and false detection of Low Veg and Tree objects’ features, which is mainly because CCM
enhances the network’s ability to mine and utilize channel information. The network model
with a Dual-Path Encoder has a relatively balanced ability to extract features of different
scales. Especially, as shown in the third line of images, D-MQANet and CD-MQANet have
fewer holes when extracting large-scale features. CD-MQANet has the advantages of both
improvements. It improves the detection accuracy of Low Veg and Tree features while
maintaining the abbreviation ability of other features. There are fewer false detections and
missing detections.

4.1.2. Experiment Results on Vaihingen Datasets

This section will show the effects of different methods on the Vaihingen dataset, of
which MQANet is the benchmark model, C-MQANet is the model of introducing CCM,
D-MQANet is the model of introducing Dual-Path Encoder, and CD-MQANet is the model
of introducing CCM at the same time. Table 3 shows the experimental results.
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Table 3. Experimental results of Vaihingen dataset.

Method
Per-Class F1-Scores (%)

Mean F1 (%) OA (%)
Imp. Surf. Building Low Veg. Tree Car

U-Net 84.45 87.32 69.77 83.16 63.12 77.56 81.27

MQANet (baseline) [29] 88.78 91.99 77.30 85.51 73.17 84.61 87.60

C-MQANet 88.52 91.63 81.42 86.63 73.33 85.01 87.97

D-MQANet 90.15 93.44 79.88 86.14 72.68 85.36 88.14

CD-MQANet 90.45 92.68 81.67 86.59 73.86 85.86 89.02

The test results on the Vaihingen dataset are similar to those on the Potsdam dataset.
The improvements of the CCM and Dual-Path Encoder have improved in the mean F1
and OA. Among them, the CCM has significantly improved the segmentation accuracy of
Low Veg and Tree features, for C-MQANet has the highest segmentation accuracy in the
Tree category. Similar to previous experiments, the C-MQANet model has a certain decline
in the segmentation accuracy of Imp. Surf and building. Compared with the baseline
model, D-MQANet has improved the segmentation accuracy of all types of features, and
D-MQANet has the highest segmentation accuracy of building-type features. Finally, CD-
MQANet integrated the advantages of the two improvements and achieved the highest
mean F1 and OA, which increased by 1.25% and 1.42%, respectively, compared with the
benchmark model. In order to more intuitively show the accuracy changes in the network
model, Figure 8 shows the feature segmentation of the Vaihingen dataset.
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Figure 8 shows the extraction results of different methods on the Vaihingen dataset.
Unlike the Potsdam dataset, the Vaihingen dataset contains only three bands of G, B, and
NiR, so the original image is displayed as a false color image. Compared with other
networks, CD-MQANet maintains the segmentation ability of small-scale objects (such as
vehicles) at first and has a strong segmentation ability for large-scale objects at the same
time: specifically, there are fewer internal holes in the extraction results. In addition, the
most significant improvement of CD-MQANet is that CD-MQANet has a strong ability to
exclude some backgrounds that are prone to misclassification.
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4.2. Comparative Experiment with Other Methods

Additionally, to validate the effectiveness of our proposed optimal model, MQANet,
on existing datasets, we conducted comparative experiments with other methods. In the
comparison process, we still used two commonly used evaluation metrics, namely the
average F1 value and overall accuracy (OA). In comparative studies, we examined various
recent methods, including but not limited to the following:

1. The latest CRMS [36] network adopts a multi-scale residual module for optimal feature
extraction, and its performance in the field of image segmentation deserves attention.

2. These methods include CBAMNet [17] and SENet [14], which introduce a self-attention
mechanism to facilitate weighted fusion of information between different spatial loca-
tions and channels in the network, thereby enhancing feature expression capabilities.

3. Deeplabv3 + [37], as a new network with a spatial feature pyramid structure, can
better capture features at different scales and semantic levels in images to improve
segmentation performance.

By comparing with these existing methods, we can more comprehensively evaluate
the superiority of MQANet in the task of multi-target semantic segmentation of remote
sensing images. We conducted experiments on two publicly available datasets, and through
comparative results, MQANet achieved significant improvements in both average F1 value
and OA. These comparative experiments further verify the effectiveness and practicality of
the proposed method.

In order to verify the effectiveness of the method proposed in this paper, this paper
also conducted comparative experiments with some classic or cutting-edge research results,
and the experimental results are shown in Table 4. Experiments show that on the basis
of MQANet, the CD-MQANet network introduces a spectral enhancement mechanism
and a two-way encoder mechanism, which improves the overall segmentation accuracy of
the network.

Table 4. Experimental results of different methods.

Method
Potsdam Dataset Vaihingen Dataset

Mean F1 (%) OA (%) Mean F1 (%) OA (%)

CBAMNet [17] 86.04 85.14 83.77 86.47

Deeplabv3+ [37] 88.01 87.06 83.77 85.71

SENet [14] 87.97 87.63 82.85 85.26

CRMS [36] 89.02 88.92 83.25 86.40

EFCNet [38] 80.17 81.77 81.87 85.46

DSPCANet [39] 87.19 90.13 84.46 87.32

MQANet 89.35 89.05 84.61 87.60

CD-MQANet 91.38 91.54 85.86 89.02

In addition, we calculated the number of parameters constituted by each network. In
order to show the results more intuitively, we draw Figures 9 and 10.

In both Figures 9 and 10, the vertical axis represents the model parameter size and the
inference time of the model, while the horizontal axis represents the ACC results obtained
by the model on the Potsdam dataset. In addition to the networks mentioned in Table 4,
both Figures 9 and 10 also include C-MQANet and D-MQANet in the analysis. The results
indicate that the introduction of CCM slightly increases the number of parameters, but
significantly improves the accuracy of the model, mainly due to the smaller number of
convolutions used by CCM and the smaller number of parameters that need to be updated
by the introduced generate operation.
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Figure 10. The inference time and ACC of each network.

The number of parameters introduced by the Dual-Path module and the increase
in computation time are both significant, mainly due to the large number of parameters
introduced by the CAM and PAM attention modules. However, the introduction of the
Dual-Path module and the CCM module significantly improved the accuracy of the model.

5. Discussion
5.1. Analysis of Training Set Size and Image Scale

In order to test the dependence of the method on the data volume of the training
set, we fixed the test set and gradually reduced the number of images contained in the
training set. Based on this, we conducted training and testing, and the results are shown in
Figure 11. In addition, we conducted quantitative experiments and analysis on the impact
of the size of the images used on accuracy and divided the size of the images used into
128 × 128, 256 × 256, 512 × 512, and 1024 × 1024 in four sizes.
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Figure 11. Overall classification accuracies influenced by different training ratios and image scales on
Potsdam dataset.

Since the network is not designed for small sample datasets, the testing accuracy
gradually decreases as expected after reducing the number of images in the training set.
However, it is worth noting that our method still maintains an accuracy of more than 85%
when the training set is reduced to half, and the testing accuracy does not differ significantly
when the training set is reduced to 40%. In addition, for different image sizes, when using
all the training set data, the impact of changes in image size on accuracy is not significant,
but larger images (such as 1024 × 1024) still achieved the highest testing accuracy. This
is mainly because the continuity of features in large-scale images is strong, resulting in
richer features. Therefore, when GPU resources are relatively abundant, using large-scale
images to train and test networks can achieve high accuracy. However, due to the small
impact of image scale on the model proposed in this article, when GPU resources are scarce,
downsampling or slicing of images can be used to reduce graphics memory overhead. We
also conducted a similar experiment on the Vaihingen dataset, and the results are shown in
Figure 12.
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Figure 12. Overall classification accuracies influenced by different training ratios and image scales on
Vaihingen dataset.
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The experimental results on the Vaihingen dataset are basically consistent with those
on the Potsdam dataset, but the difference is that when the training set is reduced by
30% −50%, the test accuracy increases with the reduction of the training set. The main
reason may be that when the original large image is clipped to a 1024 × 1024 image, part of
the image in the edge region contains a part of black edges. In the process of reducing the
training set, this part of the image is exactly eliminated, and some interference is eliminated
to some extent, which improves the data quality of the training data and slightly improves
the accuracy.

In addition, in order to study the impact of batch size on accuracy, we also changed the
batch size when the image size was 128 × 128, as shown in Figure 13. In Figure 13, 128 ∗ n
represents the batch size set to n. What is more, we also introduced 1024 × 1024 images for
comparison. The experimental results show that increasing the size of the batch size can
increase the accuracy, especially when the proportion of the training set is 5–20%. However,
it is worth noting that although the batch size is increased to 16, its accuracy cannot exceed
1024 × 1024 images when the training set is 100%. This is mainly because the continuity of
features in 1024 × 1024 images is better.
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Figure 13. Overall classification accuracies influenced by different training ratios and batch sizes on
Potsdam dataset.

5.2. Class Activation Mapping

In order to further improve the reliability of the method proposed in this paper, this
paper also analyzes the interpretability of the proposed network and the prediction results
of the network, as shown in Figure 14.

In Figure 14, there are mainly three areas that need to be focused on. These three areas
show how the attention mechanism can correct the classification errors of different types
of objects.

Area 1: In U-Net and MQANet, some buildings are wrongly classified as background,
but in CD-MQANet, the attention mechanism gives this part a greater weight. Thanks to
the role of attention mechanism, CD-MQANet classifies this part as buildings.

Area 2: In this part in U-Net and MQANet, the impervious surface and background
are wrongly divided into buildings, but the attention mechanism correctly gives a higher
weight to the impervious surface class to a certain extent, making CD-MQANet divide the
background and impervious surface.

Area 3: Due to the similarity between low vegetation and trees, the U-Net network
mistakenly identified low vegetation as trees, but attention to the attention mechanism of
trees and low vegetation can be found that in the tree category, attention does not give a
weight here, but in the Low Veg category, attention gives a higher weight, so this part is
correctly corrected as low vegetation.



Remote Sens. 2023, 15, 4520 19 of 23
Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 22 
 

 

 

Figure 14. Visualization of attention map. 

To sum up, the quadruple attention mechanism introduced in this paper can better 

distinguish similar features and correct the misclassified features to a certain extent. 

5.3. Analysis of CCM and LAM 

In the CCM and LAM modules, some intermediate results are generated, and loss is 

calculated with the label to constrain the network. In this section, these results will be 

analyzed. Figure 15 shows the result of the convolution and binarization of the feature 

map generated by CCM and LAM. Of them, the G-map is generated from the CCM, and 

the Att-map is generated from the LAM. 

It can be seen from the G-map in Figure 15 that the feature map generated by the 

CCM module conforms to our design expectation, that is, it generates a series of channels. 

The feature map composed of these channels should highlight some features of the 

ground object. Therefore, when transformed into a binary image, it should be similar to 

the label image and the last prediction result image. The feature map generated by the 

CCM helps the network model segment all kinds of features to a certain extent. The main 

performance is that the generated binary map initially has the contours of all kinds of 

features, especially the low vegetation and tree categories. Due to the large gap between 

its spectral characteristics and other features, its approximate contours are roughly di-

vided. However, because the CCM only extracts shallow and simple features, it is easy to 

cause the problem that similar features will be divided into the same category. However, 

LAM is applied to the decoder part of the network. Because the network has carried out 

deep convolution on the characteristic graph, these problems are less, as shown in the Att-

Map in Figure 15. 

LAM is a part of the CD-MQANet decoder. When the feature map is transmitted 

here, the information in it has been deeply extracted. Therefore, the results generated by 

LAM are also more compatible with the label than the CCM. At the same time, this can be 

seen in Figure 15, which shows the intermediate result maps of different types of features 

generated by CCM and LAM. It also more intuitionistically shows that the LAM module 

uses an additional loss function to introduce label information to constrain the feature 

map and assist the network model in extracting features. 

Figure 14. Visualization of attention map.

To sum up, the quadruple attention mechanism introduced in this paper can better
distinguish similar features and correct the misclassified features to a certain extent.

5.3. Analysis of CCM and LAM

In the CCM and LAM modules, some intermediate results are generated, and loss
is calculated with the label to constrain the network. In this section, these results will be
analyzed. Figure 15 shows the result of the convolution and binarization of the feature map
generated by CCM and LAM. Of them, the G-map is generated from the CCM, and the
Att-map is generated from the LAM.

It can be seen from the G-map in Figure 15 that the feature map generated by the CCM
module conforms to our design expectation, that is, it generates a series of channels. The
feature map composed of these channels should highlight some features of the ground
object. Therefore, when transformed into a binary image, it should be similar to the
label image and the last prediction result image. The feature map generated by the CCM
helps the network model segment all kinds of features to a certain extent. The main
performance is that the generated binary map initially has the contours of all kinds of
features, especially the low vegetation and tree categories. Due to the large gap between its
spectral characteristics and other features, its approximate contours are roughly divided.
However, because the CCM only extracts shallow and simple features, it is easy to cause
the problem that similar features will be divided into the same category. However, LAM
is applied to the decoder part of the network. Because the network has carried out deep
convolution on the characteristic graph, these problems are less, as shown in the Att-Map
in Figure 15.

LAM is a part of the CD-MQANet decoder. When the feature map is transmitted
here, the information in it has been deeply extracted. Therefore, the results generated by
LAM are also more compatible with the label than the CCM. At the same time, this can be
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seen in Figure 15, which shows the intermediate result maps of different types of features
generated by CCM and LAM. It also more intuitionistically shows that the LAM module
uses an additional loss function to introduce label information to constrain the feature map
and assist the network model in extracting features.
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6. Conclusions

To enhance the accuracy of multi-objective semantic segmentation in remote sensing
images, we proposed CD-MQANet. To fully exploit the distinctions in channel information
among different features, we introduced the CCM module. CCM aims to establish an
adaptive channel dimension augmentation method that combines traditional digital image
processing techniques and convolutions. This enhancement enhances the network’s capac-
ity to discover channel dimension features and information. Additionally, we constructed
a spectral attention mechanism within CCM, employing global convolution to generate
spectral threshold weights. This mechanism enhances valuable spectral information while
suppressing irrelevant spectral data.

Furthermore, we designed a Dual-Path Encoder to balance the extraction of channel
and spatial information. The Dual-Path Encoder comprises a channel encoder and a spatial
encoder. The channel encoder utilizes the channel attention mechanism to further extract
channel information from feature maps. The spatial encoder employs dense connections
and spatial attention to enhance the network’s ability to utilize multi-scale spatial features,
improving the network’s capability to capture spatial information at various scales. This
Dual-Path Encoder enhances the network’s ability to extract and utilize information from
the different scales and dimensions of feature maps.

Based on these two modules, we constructed CD-MQANet, and experimental results
demonstrated its superiority. We used two datasets to verify the model’s accuracy. In
the Vaihingen dataset, CD-MQANet outperformed the baseline MQANet by increasing
mean F1 and OA by 2.03% and 2.49%, respectively. In the Potsdam dataset, CD-MQANet
improved mean F1 and OA by 1.25% and 1.42%, respectively, compared to the baseline
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MQANet. Extensive experiments showed that CD-MQANet surpassed other methods in
terms of evaluation metrics on the Vaihingen and Potsdam datasets. These results highlight
the substantial accuracy improvements of the proposed model (CD-MQANet) in both F1
and OA metrics. The CCM and Dual-Path Encoder contribute significantly to the semantic
segmentation of remote sensing images. We also generated an attention heatmap and
analyzed the role of the attention mechanism in the network. The results demonstrated
that the introduced attention mechanism correctly focuses on different terrain objects and
to some extent corrects misclassified terrain objects. Finally, we analyzed the intermediate
results generated by CCM and LAM, showcasing their interpretability by calculating loss
with labels.

However, it should be noted that CD-MQANet, as proposed in this article, is designed
for classifying remote sensing images of six types of land objects and may lack universality
across datasets. Additionally, the loss function used by CCM is simply determined as
cross-entropy. In future research, we plan to explore more effective loss functions.
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