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Abstract: The detection of small infrared targets with dense distributions and large-scale variations
is an extremely challenging problem. This paper proposes a multi-stage, multi-scale local feature
fusion method for infrared small target detection to address this problem. The method is based
on multi-stage and multi-scale local feature fusion. Firstly, considering the significant variation
in target sizes, ResNet-18 is utilized to extract image features at different stages. Then, for each
stage, multi-scale feature pyramids are employed to obtain corresponding multi-scale local features.
Secondly, to enhance the detection rate of densely distributed targets, the multi-stage and multi-scale
features are progressively fused and concatenated to form the final fusion results. Finally, the fusion
results are fed into the target detector for detection. The experimental results for the SIRST and MDFA
demonstrate that the proposed method effectively improves the performance of infrared small target
detection. The proposed method achieved mIoU values of 63.43% and 46.29% on two datasets, along
with F-measure values of 77.62% and 63.28%, respectively.

Keywords: infrared small target; multi-scale local feature pyramid; multi-scale feature fusion

1. Introduction

Object detection is a crucial technique in computer vision [1], which involves identi-
fying and localizing the objects of interest in an image. Object detection is a fundamental
task in computer vision, serving as the foundation for many advanced visual tasks such
as autonomous driving [2], pedestrian detection [3], and face recognition [4]. These tasks
rely on object detection to determine the positions of objects within images or videos.
Object detection is a pivotal step in image understanding, enabling computers to recog-
nize and comprehend the presence, location, and shape of various objects. It stands as a
core challenge within the field of computer vision, playing a vital role across a diverse
range of applications. Moreover, with ongoing technological advancements, the research
on object detection continues to be a prominent and evolving focus within the field of
computer vision.

Traditional object detection algorithms typically involve image preprocessing, candi-
date region generation, feature extraction, feature classification, bounding box adjustment,
and postprocessing processes. The purpose of image preprocessing is to preprocess the
input image in order to enhance the effectiveness during the subsequent processing. This
involves tasks such as image scaling, grayscale conversion, contrast enhancement, noise
removal, and so on. Object candidate region generation is the process of generating a set
of candidate regions in an image that potentially contain the target objects. The common
method is the sliding windows method. The generated candidate regions can be bounding
boxes of different sizes and shapes or image regions. Feature extraction involves extracting
features from each candidate region. The traditional feature extraction methods include the
use of color histograms, texture features, shape features, edge features, and so on. These
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features can be used to describe the visual attributes of candidate regions. Feature classifica-
tion involves using a classifier to categorize each candidate region and determine whether
it contains the target object. The commonly used classifiers include support vector machine
(SVM) [5], AdaBoost [6], and random forest [7] classifiers. The bounding box adjustment is
typically performed on candidate regions classified as targets to more accurately enclose
the target object. This involves adjusting the position, size, and shape of the bounding
box. The postprocessing is performed on the results of the classification and bounding box
adjustment phases. This includes removing overlapping candidate boxes, filtering and
sorting the results based on certain rules or criteria, and ultimately generating the final
output of the object detection results.

Due to the advantages of all-weather detection, covert detection, and long-distance
detection offered by infrared imaging systems [8], infrared small target detection technol-
ogy has been widely applied in fields such as early warning, guidance, and surveillance
systems [9,10]. However, there are several challenges in practical applications. Firstly, due
to the long imaging distance, infrared small targets usually occupy only a small number of
pixels in the image. Secondly, the energy loss occurs during the propagation process, result-
ing in relatively low grayscale values for infrared targets. These two factors result in a lack
of shape, texture, and color information for infrared small targets [11]. Additionally, the
detection results of infrared small targets are easily affected by complex backgrounds and
random noise. These aforementioned issues make infrared small target detection a challeng-
ing task. Therefore, researching infrared small target detection methods with high detection
rates and low false alarm rates holds significant research value and application prospects.

Traditional infrared small target detection methods are typically constrained by manu-
ally designed feature extraction methods. Manually designed feature extraction algorithms
come with several limitations. They are unable to fully capture the rich features of targets.
As the target features and backgrounds change, manually designed feature extraction meth-
ods become ineffective. Additionally, due to noise and the influence of strong background
edges, manually designed feature extraction methods often erroneously focus on noise and
strong background edges. These manually designed methods also lack practicality, as they
need to be adjusted when the application scenario changes. Therefore, novel approaches
are required. To overcome these limitations, researchers have in recent years turned to
advanced techniques and started exploring the use of generic object detectors for infrared
small target detection. However, they have encountered challenges due to the weak features
of infrared small targets and their vulnerability to complex backgrounds. As a result, di-
rectly applying generic object detectors for infrared small target detection has proven to be
ineffective. As shown in Figure 1, there are often issues such as imprecise bounding boxes,
target losses, and high false alarm rates. These problems can arise due to various factors,
including the complexity of the background, low contrast of infrared small targets, noise,
and variations in target appearance. In order to address the challenge of adapting generic
object detectors for infrared small target detection, researchers began treating the problem
of infrared small target detection as a binary classification task. They designed intricate
semantic segmentation networks [12–14] to segment infrared small targets from complex
backgrounds, thereby achieving infrared small target detection. However, this approach
proves ineffective in scenarios characterized by significant variations in target size and high
target densities. The method proposed in this paper builds upon the existing research.

To address these issues, this paper proposes an infrared small target detection method
based on multi-stage and multi-scale local feature fusion. Our method consists of three
components: a backbone network, three multi-scale local feature pyramid modules, and a
multi-scale feature fusion module.

The backbone network serves as the foundation of our method and is responsible for
extracting high-level features from the input image. The multi-scale local feature pyramid
module aims to capture local details and contextual information at different scales. The
multi-scale feature fusion module combines the features from different scales [15] and
integrates them into a unified representation.
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The contributions of this paper can be summarized as follows: (1) To tackle the problem
of existing models being unable to handle multi-scale targets, this paper introduces a multi-
scale local feature pyramid module (MLFPM). This module combines local context, local
contrast, and local attention mechanisms to extract semantic information from different
layers of feature maps. (2) To address the problem of undistinguishable dense small
targets, a multi-scale feature fusion module (MFFM) is designed to leverage both deep
and shallow features for precise target localization. (3) To validate the effectiveness of the
proposed model, the paper conducts ablation experiments on the MDFA [16] and SIRST [17]
datasets to evaluate the individual modules. The experimental results demonstrate the
effectiveness of each proposed module. Comparisons with state-of-the-art algorithms
are also conducted, and the results show that the proposed network achieves excellent
performance on two datasets.

The remainder of this paper is structured as follows. Section 2 provides an extensive
review of the related work and presents a detailed explanation of our proposed method.
In Section 3, an analysis of the proposed method against state-of-the-art approaches is
conducted on various datasets. Section 4 focuses on discussing the results of the ablation
experiments performed to evaluate the individual components and variations of our
proposed method. Finally, in Section 5, the conclusions are presented, summarizing the key
findings and contributions of our research.
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2. Materials and Methods
2.1. Related Work
2.1.1. Generic Object Detection

With the recent advancements in deep learning techniques, the performance of generic
object detectors based on deep convolutional neural networks (DCNNs) has significantly
improved. The mainstream generic object detection methods can be broadly categorized
based on the following criteria: two-stage or single-stage object detection, and anchor-free
or anchor-based object detection.

Two-stage object detectors, such as Faster-R-CNN [18], initially generate region of
interest (RoI) proposals as coarse class-agnostic detection results in the first stage. In
the second stage, these detectors extract RoI features and perform refined classification
and localization processes. Although two-stage object detectors achieve high detection
accuracy rates, their inference speeds are relatively slow. On the other hand, one-stage
object detectors, such as the YOLO series [19–21] and SSD [22], directly regress the complete
detection results in a single prediction step. One-stage detectors are faster and can achieve
real-time inference; however, they tend to have slightly lower accuracy rates compared
to two-stage detectors. While the method proposed in this paper comprises multiple
processing steps, these steps are aimed at generating the detection results directly in the
end, without an RoI generation stage. Therefore, this method belongs to the one-stage object
detection method, capable of directly producing detection results in a single forward pass.

2.1.2. Infrared Small Target Detection

Traditional infrared small target detection methods can be divided into two main
categories: local feature-based methods and non-local feature-based methods. Local feature-
based methods assume that there are significant differences in grayscale values between
the target pixels and their surrounding pixels, while all background pixels have similar
grayscale values. These methods detect infrared small targets by extracting the differences
between pixels and their surrounding pixels in infrared images. Some common local feature-
based methods include maximum mean–median filtering [23], morphological filtering [24],
and local contrast methods [25–28]. Non-local feature-based detection methods assume
that there are differences between targets and backgrounds in terms of the frequency bands
or linear subspaces. These methods do not focus on the local characteristics of the targets
but directly process the entire infrared image to separate the targets from the original image.
Several representatives of non-local feature-based methods include transform domain
filtering [29,30], sparse representation methods [31,32], and sparse low-rank decomposition
methods [33,34]. Traditional infrared small target detection methods typically rely on
manually designed methods for feature extraction. Manually designed feature extraction
methods have certain limitations. Firstly, they may fail to fully extract the rich features of
the targets. Secondly, they are influenced by the subjective judgment and experience of the
algorithm designer, which makes them less adaptable to different datasets. Lastly, manually
designed methods often require extensive experimentation and manual adjustments to
achieve good detection performance.

Recently, with the availability of infrared small target datasets and the development
of deep-learning-based object detection methods [18–22], deep-learning-based infrared
small target detection methods have gained increasing attention. MDvsFA [16] introduces
two generators that focus on addressing missed detections and false alarms, and achieved
a balance between the two through training a discriminator. ACM [17] focuses on the
fusion of deep and shallow features and includes an asymmetric feature fusion structure,
which achieved good detection performance on FPN [35] and U-Net [36,37]. ALCNet [38]
integrates traditional local contrast-based methods into deep learning networks. RISTD-
Net [39] introduces a feature extraction framework that combines handcrafted features
with convolutional neural networks. DNANet [40] introduces a dense nested attention
network for reusing and fusing deep and shallow features. AGPCNet [41] involves an
attention-guided contextual module to obtain and fuse multi-scale features. Although
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these methods have been used to investigate infrared small target detection from different
perspectives, there are still several limitations. On one hand, the existing methods fail to
handle the extraction of multi-scale targets, since the size of infrared small targets can vary
significantly. On the other hand, due to the decrease in resolution during feature extraction,
features of dense small targets in deep feature maps tend to merge together, making it
challenging to separate the targets during feature fusion and leading to missed detections.

The traditional infrared small target detection methods typically rely on manually
designed feature extraction techniques. However, they come with certain limitations, such
as their limited adaptability to different datasets and the need for extensive experimentation
and parameter adjustments. Despite the significant progress made by deep learning
methods in the field of infrared small target detection, they still face several challenges.
These challenges include effectively extracting multi-scale targets and separating dense
small targets within deep feature maps. Deep learning methods offer the advantage of
automatically learning features but demand substantial annotated data and computational
resources for support. Therefore, when considering the strengths and weaknesses of both
traditional and deep learning approaches, a wider range of choices and development
directions can be provided for infrared small target detection. The method proposed in this
paper is built upon the foundations of both traditional and deep learning methods, with a
specific focus on addressing the issues of multi-scale target extraction and the separation of
dense small targets within deep feature maps.

2.2. Method
2.2.1. Overall Architecture

The network architecture proposed in this paper is shown in Figure 2. Firstly, the
infrared image is input into the network, and feature extraction is performed using ResNet-
18 as the backbone network [42]. This procedure includes three down-sampling stages,
resulting in three different-sized feature maps. Secondly, each of the three feature maps is
processed by the corresponding MLFPM to obtain multi-scale features. Then, the MFFM
is used to fuse the three feature maps. Finally, the fused feature map is fed into the object
detector to obtain the final detection results.
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scale local feature pyramid modules (MLFPM), and a multi-scale feature fusion module (MFFM).
After passing through the backbone network, input images yield feature maps of three layers. These
feature maps are then fed into their respective MLFPMs for further extraction. Subsequently, they are
passed into the MFFM for feature fusion, ultimately resulting in the output.

ResNet-18 was selected as the backbone network for feature extraction for the fol-
lowing reasons. Firstly, ResNet-18 has already been trained on the large-scale dataset
ImageNet [43], which gives its model parameters a good initial state. By fine-tuning the
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pretrained weights of ResNet-18 on the infrared dataset, the network can acquire the ability
to extract features of infrared images. Furthermore, ResNet-18, being a relatively shallow
model among the ResNet series, maintains higher computational efficiency while still
achieving a certain level of detection performance. Additionally, for the task of detecting
small targets in infrared images, deeper networks tend to focus excessively on global infor-
mation, disregarding the local details of the targets. Since infrared datasets are typically
smaller, deeper networks are more prone to overfitting, while ResNet-18, with fewer model
parameters, offers better control over the model complexity and helps mitigate overfitting.
The reason for further processing the obtained feature maps of different scales using the
corresponding MLFPM is that the target features vary across different stages of the feature
maps. The shallow-level feature maps have higher resolutions, rich spatial features, and
significant scale variations, while the deep-level feature maps have lower resolutions, rich
semantic information, and minor scale variations. A single module in a uniform form
would struggle to adapt to the different characteristics of feature maps at different stages.
The reason for performing multi-scale feature fusion on the feature maps processed by
MLFPM is that the low resolution of the deep-level feature maps causes densely distributed
targets to blend together, making it difficult to accurately separate and localize the targets.
Meanwhile, the high resolution of the shallow-level feature maps can provide rich spatial
information. Through multi-scale feature fusion, the spatial information provided by the
shallow-level feature maps and the semantic information provided by the deep-level fea-
ture maps are fully utilized. This enables the detection method to better separate densely
distributed objects.

2.2.2. Multi-Scale Local Feature Pyramid Module

By analyzing the features of the infrared small targets extracted by the backbone
network, it was observed that the feature extraction capability of the backbone network
varied for targets of different sizes. Larger-sized targets possess richer semantic features in
the deep-level feature maps, while smaller-sized targets exhibit weaker semantic features in
the deep-level feature maps. This is due to the loss of features during the down-sampling
process for smaller-sized targets. Therefore, more attention needs to be given to the shallow-
level feature layers. In comparison to deep-level features, shallow-level feature layers
contain richer contour information for small targets but have weaker semantic information
and are more prone to background interference. Hence, this paper introduces a local feature
extraction module to enhance the semantic information for targets in shallow-level feature
maps and suppress background interference.

In the previous work, the design of the local feature extraction module employed
convolutional pooling, dilated convolution, and attention mechanisms [44–46]. However,
this design overlooked the features with high local contrast within the target itself and
neglected the contextual information of the target. The proposed local feature extraction
module in this paper differs by introducing the local context module and local contrast
extraction module and improving the local attention mechanism module. The local context
module incorporates the information surrounding the targets, which helps distinguish the
targets from complex backgrounds. The local contrast extraction module measures the
degree of local brightness changes by calculating the variance and standard deviation of
local pixel values, thereby focusing more on features with high local contrast within the
target itself. The improved local attention mechanism provides a more detailed and rich
representation of local features, assisting in addressing the challenge of separating densely
distributed targets in deep-level feature maps. By extracting and fusing features at different
scales, the model can comprehensively capture the contextual information and holistic
features of the targets, thereby further enhancing the performance during target detection.

The local feature extraction module is shown in Figure 3. It consists of three parts:
the local context module, the local contrast extraction module, and the local attention
mechanism module.
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Figure 3. Local feature extraction module. The local feature extraction module consists of three parts:
a local context module, a local contrast extraction module, and a local attention mechanism module.
The local context module consists of an adaptive max-pooling layer, two activation functions, and
two convolutional layers. The local contrast extraction module involves calculating the standard
deviation of the feature map and then processing it through a convolutional layer. The local attention
mechanism module incorporates two convolutional layers, three activation functions, and one fully
connected layer.

The local context module first applies adaptive max pooling to the feature map to
introduce the contextual information of the target. By adjusting the output size of the
adaptive max pooling, the focus range of this module can be controlled. Then, convolutional
layers, ReLU activation functions, and sigmoid activation functions are used to obtain
the weights of the contextual information. Finally, the contextual weights are multiplied
with the feature map to extract the local contextual information, enhancing the expressive
power of the input feature map for target discriminative. This module can be represented
as follows:

L(X) = σ(W2(δ(W1(AP(X))))) (1)

where X ∈ RW×H represents the input feature map, AP(·) denotes the adaptive max
pooling function, W1(·) and W2(·) represent the convolutional layers, δ(·) is the ReLU
activation function, σ(·) is the sigmoid activation function, and L(·) represents the local
context module.

The local contrast extraction module sequentially calculates the local mean, variance,
and standard deviation of the feature map. First, the local mean is computed using the
average pooling function. Then, the local variance is calculated using the local mean and
the average pooling function. On this basis, the standard deviation is computed. Finally, a
convolutional layer is applied to obtain the local contrast. The purpose of this module is to
extract the local contrast by introducing manually designed features to enhance the contrast
between the target and its surroundings. It captures the grayscale differences between
the target and its surrounding pixels, helping the network better differentiate between the
target and the background. This module can be represented as follows:

C(X) = W(STD(X)) (2)

where X ∈ RW×H represents the input feature map, STD(·) represents the standard devia-
tion, W(·) represents the convolution layer, and C(·) represents the local contrast module.

The local attention mechanism is inspired by the SE attention mechanism [47]. The
SE attention mechanism primarily focuses on learning channel-wise relationships through
global average pooling and fully connected layers. However, it mainly emphasizes channel
weights, which results in the loss of local detail information and insensitivity to scale
variations of the targets. In this paper, improvements are made based on the SE attention
mechanism. Firstly, two convolutional layers are used to extract different representations of
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the input feature map, in order to further enhance the feature expressive capacity and focus
more on the relationships between local features. Then, the results obtained from these two
convolutional layers are multiplied and an attention weight of the input feature is calculated
using a fully connected layer. Compared to the SE attention mechanism, the proposed local
attention mechanism has fewer parameters. Finally, the attention weight is multiplied with
the input feature map to obtain the processed result using the local attention mechanism.
The purpose of this module is to compute the attention weights of the input feature map
in a learned manner, perform weighted fusion on the original feature map, and enhance
the network’s focus on local features. This module can highlight important local features.
By introducing local feature attention and multi-channel feature interaction, this design
enables the local feature extraction module to possess stronger expressive capacity and
local feature separation ability when addressing dense object detection problems. This
module can be represented as follows:

A(X) = X⊗ δ(W3(δ(W1(X))⊗ δ(W2(X)))) (3)

where X ∈ RW×H represents the input feature map; δ(·) is the ReLU activation function;
W1(·), W2(·), and W3(·) represent the convolution layers; ⊗ denotes the element-wise
multiplication; and A(·) represents the local attention module.

The local feature extraction module can be obtained by adding the output feature
map of the local contrast module and the output feature map of the local attention module,
and then multiplying the result with the output feature map of the local context module.
Finally, the channel number can be adjusted through a convolutional layer. By adjusting the
output size of the adaptive max pooling in the local context module and the convolutional
layer size and number in the local context, local contrast, and local attention modules, the
scope of the local feature extraction module’s effect can be controlled, achieving multi-scale
feature extraction. This module can be represented as follows:

LF(X) = (C(X) + A(X))⊗ L(X) (4)

where X ∈ RW×H represents the input feature map; LF(X), L(X), C(X), and A(X) respec-
tively represent the output feature map of the local feature extraction module, the local
contrast module, the local attention module, and the local context module.

To address the issue of significant scale variations in infrared small targets, a multi-
scale local feature pyramid module was designed, which consists of multiple stacked
local feature extraction modules. For the input infrared image I ∈ RW×H, the backbone
network undergoes three down-sampling steps during the feature extraction process,
resulting in three feature maps of different sizes: I1 ∈ R(W/2)×(H/2), I2 ∈ R(W/4)×(H/4),
and I3 ∈ R(W/8)×(H/8). By analyzing these three feature maps, it can be observed that both
large and small targets’ features are preserved. However, as the feature map size decreases,
the features of small targets in the feature maps may be lost to some extent. To tackle this
problem, this paper proposes three different multi-scale local feature pyramid modules,
each designed specifically for the feature maps of the three different sizes.

The multi-scale local feature pyramid module is designed to address the significant
variations in target sizes within the feature maps. In order to extract semantic features of
the targets while preserving features of different sizes, this paper proposes stacking three
local feature extraction modules of different scales to form the multi-scale local feature
pyramid module. The architecture of the multi-scale local feature pyramid module for the
feature map I1 ∈ R(W/2)×(H/2) is shown in Figure 4.

The convolutional kernel sizes for the three local feature extraction modules are 3× 3,
5× 5, and 7× 7. The output sizes of the adaptive max pooling are 25× 25, 19× 19, and
15× 15. Taking the example of the convolutional kernel sizes and the output sizes of the
adaptive max pooling, this module focuses on the targets in the feature map and introduces
context information slightly larger than the range through adaptive max pooling. The
reasons for choosing different convolutional kernel sizes and adaptive max pooling output
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sizes are as follows. Through an experimental analysis, it was found that in the feature maps
I1, there was significant variation in the target sizes. Therefore, we chose three different
kernel sizes that matched the target sizes and calculated the adaptive max pooling output
size to be slightly larger than the target size to capture contextual information around the
target. The results of the three local feature extraction modules at these three scales are
summed together to obtain the final output.
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consists of three local feature extraction modules with different kernel and pooling sizes.

For the feature map I2 ∈ R(W/4)×(H/4) with a moderate range of target size variations,
a multi-scale local feature pyramid module was designed by combining two local feature
extraction modules. The convolutional kernel sizes for these modules are 3× 3 and 5× 5,
and the output sizes of the adaptive max pooling are 13 × 13 and 9 × 9. Through an
experimental analysis, it was observed that as the feature map size decreases, the range of
target size variations also decreases. Therefore, we opted for only two kernel sizes and did
not use a 7× 7 kernel size. Through calculations, we determined the adaptive max pooling
output size to be slightly larger than the target size to capture contextual information
around the target. For the feature map I3 ∈ R(W/8)×(H/8) with the smallest range of target
size variations, only one local feature extraction module is used. The convolutional kernel
size for this module is 3× 3, and the output size of the adaptive max pooling is 7× 7.
As the target size in the deepest feature map is very small, we retained only the 3× 3
convolutional kernel and selected an adaptive max pooling output size that aligned with it.

2.2.3. Multi-Scale Feature Fusion Module

The structure of the multi-scale feature fusion module is shown in Figure 5.
This module can be represented as follows:

P = W(Concat(M1, M2, M3)) (5)

where W(·) represents the convolutional layer and Concat(·) represents the concatenation
operation. M1, M2, and M3 can be represented as follows:

M1= M(X1) (6)

M2= F(M1, Up(M(X2))) (7)
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M3= F(M1, Up(F(M( X2), Up(M(X3))))) (8)

where M(X1), M(X2), and M(X3) represent the outputs of the multi-scale local fea-
ture pyramid module for feature maps X1 ∈ R(W/2)×(H/2), X2 ∈ R(W/4)×(H/4), and
X3 ∈ R(W/8)×(H/8), respectively; F(·) donates the asymmetric fusion module (AFM) [41],
Up(·) represents the up-sampling operation, and P is the final detection result.
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Figure 5. Multi-scale feature fusion module. The multi-scale feature fusion module integrates features
from different scales obtained at three different stages. The MLFPM1 output, MLFPM2 output, and
MLFPM3 output in the figure are the results of processing performed by MLFPMs, while M1, M2,
and M3 represent the respective fusion results.

MFFM takes M(X1), M(X2), and M(X3) as inputs. For M(X3), it first undergoes
up-sampling, followed by feature fusion with M(X2). The fused result is then up-sampled
again and further fused with M(X1) to obtain M3. For M(X2), it undergoes up-sampling
and is fused with M(X2) itself to generate M2. M(X1) remains unchanged and is directly
used as M1. These M1, M2, and M3 feature maps are concatenated, and a convolutional
operation is applied to obtain the final detection result.

3. Results
3.1. Datasets
3.1.1. SIRST

SIRST extracts 427 representative images from hundreds of real infrared video se-
quences, containing a total of 480 targets. Additionally, due to the limited availability of
infrared sequences, SIRST includes infrared images at wavelengths of not only short and
mid-waves but also at a wavelength of 950 nm. Each target is confirmed by observing
the motion sequences to ensure it is a real target rather than pixel-level noise. The size
of each image is 256× 256 pixels. The dataset provides high-quality annotations. In this
dataset, small targets have five annotation forms that adapt to different detection models
and support various tasks: image classification, instance segmentation, bounding box
regression, semantic segmentation, and instance point recognition. Following the dataset’s
provided partitioning, the dataset was divided into 342 images for the training set and the
remaining 86 images for the test set. Figure 6 displays some representative images from
SIRST. Many targets in infrared images are highly blurred and concealed within complex
backgrounds. Detecting them is not an easy task, even for humans, as it requires a high
level of semantic understanding within the overall scene and focused searching.
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3.1.2. MDFA

MDFA comprises 10,078 images, with each image’s size being 128× 128 pixels. Fol-
lowing the dataset’s provided partitioning, the dataset was divided into 9987 images for
the training set, with the remaining 100 images being used for the test set. Figure 7 displays
some representative images from MDFA. Not all images in the MDFA dataset are real in-
frared images. Due to the lack of infrared small target dataset, MDFA collects real infrared
images and synthesizes new infrared images, collects infrared high-resolution natural
scene images from the Internet, and crops these images in different areas to form different
backgrounds. Then, the small target separated from the real infrared image and the small
target object synthesized by the two-dimensional Gaussian function are superimposed on
the obtained background to form a new image. The approach for separating small targets
from real images involves directly segmenting the targets based on annotated masks. The
grayscale distribution of the targets is generated through the two-dimensional Gaussian
function proposed in Equation (9):

s(x, y) = exp{−[((cos(α)x− sin(α)y]/ wx)
2 +((cos(α)y + sin(α)x)/ wy

)2
]} (9)

where wx and wy represent the dimensions of the Gaussian distribution in two vertical
directions, with values ranging from 1 to 3; α determines the distribution direction, with
values ranging from 0 to π; s(x, y) represents the grayscale value at position (x, y) in
the image.

3.2. Evaluation Metric

To accurately assess the detection capabilities of different methods, this paper utilizes
classic semantic segmentation evaluation metrics, including the precision, recall, F-measure,
mean intersection over union (mIoU), and area under the curve (AUC). Higher precision,
recall, F-measure, mIoU, and AUC values indicate stronger detection abilities for the methods.

The selection of precision as one of our evaluation metrics was driven by the paramount
importance of accuracy in infrared small target detection. A high precision value signifies
the model’s reduced likelihood of misclassifying non-target objects, a critical factor in
tasks such as target tracking and military applications. The recall assesses the model’s
capability to detect all targets within the dataset. In the context of infrared small target
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detection, where targets can be exceedingly small and scattered, the goal is to ensure the
model minimizes missed detections. High recall signifies the model’s effectiveness in
detecting the majority of small targets, thereby mitigating the likelihood of false nega-
tives. Although the mIoU is typically employed in image segmentation tasks, it also holds
significance in object detection. It quantifies the degree of overlap between the model’s
detection outcomes and the actual target regions, providing an assessment of the target
localization quality. In the realm of small target detection, precise target localization is
pivotal, and the mIoU provides insights into the spatial accuracy of the model’s predictions.
The F-measure, as the harmonic mean of the precision and recall, provides a balanced
assessment of a model’s accuracy and recall. This is useful for balancing false positives and
false negatives. In small target detection, consideration must be given to both false alarms
and missed detections, rendering the F-measure a comprehensive performance metric.
The AUC assesses the model’s capability to differentiate between positives and negatives
across various thresholds. In the realm of small target detection, the AUC evaluates the
model’s comprehensive ability to distinguish between targets and non-targets, serving as
an indicator of its discriminative power.
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The selection of these metrics is deliberate, aiming to provide a thorough evaluation
of infrared small target detection methods. These metrics take into account key aspects,
including the accuracy, recall, spatial precision, overall model performance, and discrimi-
native capability.

3.3. Implementation Details

The entire method was implemented using the PyTorch framework. The choice of the
PyTorch framework was primarily driven by its widespread adoption and its reputation
for flexibility and ease of use in the deep learning community. PyTorch provides a rich
set of tools for developing and training neural networks, making it a suitable choice for
implementing and experimenting with complex deep learning models such as the one
proposed in our study. In this paper, ResNet-18 is used as the backbone network and is
retrained along with the other parts of the network using the Stochastic Gradient Descent
(SGD) optimizer. The momentum and weight decay are set to 0.9 and 0.0004, respectively.
The initial learning rate is set to 0.05 and is multiplied by (1− iter/total_iter)0.9 after each
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iteration. The SoftIoU loss function is employed. For SIRST, the method is trained for 400
epochs, while for MDFA, it is trained for 5 epochs. The training process is performed using
an Nvidia Titan XP GPU with 12GB of memory.

3.4. Comparisons with State-of-the-Art Methods

To further validate the effectiveness of our proposed method, a comparison was con-
ducted with state-of-the-art methods, including traditional methods (LCM [25], RLCM [26],
PSTNN [48], MPCM [49], IPI [33]) and deep-learning-based methods (MDvsFA [16],
ACM [17], AGPCNet [41]). The hyper-parameters for all methods were set according
to the respective papers or publicly available code, and these hyper-parameters are shown
in Table 1. In Tables 2 and 3, quantitative evaluations of different methods were conducted
on SIRST and MDFA. The maximum value in each column is highlighted in bold black font.
ACM and AGPCNet were retrained using the dataset segmentation approach described in
this paper.

Table 1. Hyper-parameter settings for state-of-the-art methods.

Methods Hyper-Parameters Settings

LCM Filter radius: 1, 2, 3, 4
RLCM Filter radius: 1, 2, 3, 4

PSTNN Patch size: 40 × 40, Slide step: 40,
λ = 0.7/

√
max(n1, n2)

MPCM Filter radius: 1, 2, 3, 4

IPI Patch size: 50 × 50, Slide step: 10,
λ = 1/

√
max(m, n)

Table 2. Comparison with state-of-the-art methods on SIRST. The maximum value in each column is
highlighted in bold black font.

Methods Precision Recall mIoU F-Measure AUC

LCM 0.0241 0.9087 0.2015 0.0469 0.7208
RLCM 0.0111 0.9164 0.0094 0.0219 0.9509
PSTNN 0.7893 0.5198 0.4262 0.6268 0.7131
MPCM 0.0052 0.8550 0.0046 0.0102 0.8986

IPI 0.7541 0.5749 0.6216 0.6524 0.8485
MDvsFA — — — — —

ACM 0.6262 0.7531 0.5196 0.6838 0.9053
AGPCNet 0.6858 0.8424 0.6078 0.7561 0.9321

Ours 0.6757 0.9118 0.6343 0.7762 0.9577

Table 3. Comparison with state-of-the-art methods on MDFA. The maximum value in each column is
highlighted in bold black font.

Methods Precision Recall mIoU F-Measure AUC

LCM 0.0192 0.7538 0.4085 0.0375 0.9979
RLCM 0.0047 0.9359 0.0276 0.0094 0.9360
PSTNN 0.4369 0.4996 0.3304 0.4661 0.7752
MPCM 0.0023 0.8859 0.0086 0.0046 0.7850

IPI 0.4674 0.5471 0.2836 0.5041 0.6418
MDvsFA 0.6600 0.5400 — 0.6000 0.9100

ACM 0.4615 0.7177 0.3906 0.5617 0.9029
AGPCNet 0.5490 0.7231 0.4537 0.6242 0.8814

Ours 0.5992 0.6705 0.4629 0.6328 0.8382

3.4.1. Results on SIRST

From Table 2, it can be observed that traditional methods often struggle to balance
the precision and recall. LCM, RLCM, and MPCM exhibit high recall but low precision,
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indicating a high number of false positives in the detection results, while PSTNN and IPI
show high precision but low recall, indicating instances of missed detection. This is because
the traditional methods primarily focus on the local features of the targets and have limited
background suppression capability, making them susceptible to the influence of complex
backgrounds. Deep-learning-based methods show improved recall while maintaining
high precision. As shown in Table 1, our proposed method achieved a 67.57% precision
rate, which is higher than many advanced methods. Our proposed method achieved a
91.18% recall rate, which is second only to the RLCM. Our proposed method achieved the
maximum values for the mIoU, F-measure, and AUC. This indicates that compared to other
state-of-the-art methods, our proposed method effectively suppresses the background and
accurately detects the targets.

In the case where the precision and recall show higher values for other methods, this
discrepancy arises due to differences between traditional and deep-learning-based methods.
Traditional methods tend to excel in scenarios with straightforward backgrounds because
they primarily focus on the local features of the targets. However, they often struggle
with maintaining both precision and recall when dealing with complex backgrounds.
Conversely, deep-learning-based methods leverage the powerful capabilities of neural
networks to enhance the recall while maintaining competitive precision rates, effectively
striking a balance between the two aspects. To comprehensively assess the performance of
our method, we conducted further evaluations using the F-measure, which considers the
balance between the precision and recall. Therefore, even though our proposed method did
not achieve the highest values for both precision and recall, having the highest F-measure
still indicates its exceptional performance. This is because the F-measure’s calculation
method takes into account the trade-off between the precision and recall, enabling a more
comprehensive evaluation of our method’s overall performance.

3.4.2. Results on MDFA

As shown in Table 3, our proposed method achieved a 59.92% precision rate, which is
second only to the MDvsFA. Our proposed method achieved a 67.05% recall rate, which
is higher than many advanced methods. Our proposed method achieved the maximum
values for the mIoU and F-measure.

Consistent with the comparison results on the SIRST dataset, our proposed method
also did not achieve the highest values for precision and recall individually. However, it
demonstrated comparatively high values for both precision and recall. Notably, it achieved
the highest F-measure value, which underscores the superiority of our proposed approach.
For the LCM and RLCM, they achieved high detection rates in scenarios with relatively high
false alarm rates, consequently yielding high AUC values to approach zero, subsequently
leading to F-measure values close to zero as well. Therefore, it is crucial to consider multiple
metrics when assessing the method performance.

In Figures 8 and 9, two representative infrared images were selected to compare the
detection results of the eight methods. The target locations are marked with red bounding
boxes, while missed detections and false positives are marked with yellow bounding boxes.
By observing Figure 8, it can be noted that traditional methods can detect the objects but
are often affected by complex background interference, resulting in a large number of
false positives. Large numbers of false alarms can be observed in the detection results of
the LCM and MPCM algorithms. In the detection results of the RLCM, PSTNN, and IPI
algorithms, false alarms occur in locally highlighted areas. ACM and AGPCNet exhibit
instances of missed detections. The proposed method in this paper achieves the best
detection results, accurately detecting the targets without any false positives. The proposed
method achieves the best detection results by effectively suppressing the background and
accurately detecting the targets.



Remote Sens. 2023, 15, 4506 15 of 23

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 24 
 

 

ACM 0.4615 0.7177 0.3906 0.5617 0.9029 

AGPCNet 0.5490 0.7231 0.4537 0.6242 0.8814 

Ours 0.5992 0.6705 0.4629 0.6328 0.8382 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Cont.



Remote Sens. 2023, 15, 4506 16 of 23Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 24 
 

 

  
(g) (h) 

  
(i) (j) 

Figure 8. Detection results for infrared scene 1: (a) input image; (b) ground truth; (c) detection result 

for LCM; (d) detection result for RLCM; (e) detection result for PSTNN; (f) detection result for 

MPCM; (g) detection result for IPI; (h) detection result for ACM; (i) detection result for AGPCNet; 

(j) detection result for our proposed method. The target locations are marked with red bounding 

boxes, while missed detections and false positives are marked with yellow bounding boxes. 

As shown in Figure 9, the detection results for the traditional methods also show 

significant numbers of false positives. Regarding the detection results for the traditional 

methods, LCM, PSTNN, MPCM, and IPI are all capable of detecting the targets, although 

these methods also suffer from false alarms. RLCM exhibits instances of missed detection 

for densely packed targets. Although ACM and AGPCNet exhibit strong background 

suppression, they still suffer from false positives and missed detections. The proposed 

method in this paper achieves the best detection results, accurately detecting the targets 

without any false positives. This indicates that the proposed method in this paper is 

capable of effectively addressing scenarios with densely packed targets. 

Figure 8. Detection results for infrared scene 1: (a) input image; (b) ground truth; (c) detection result
for LCM; (d) detection result for RLCM; (e) detection result for PSTNN; (f) detection result for MPCM;
(g) detection result for IPI; (h) detection result for ACM; (i) detection result for AGPCNet; (j) detection
result for our proposed method. The target locations are marked with red bounding boxes, while
missed detections and false positives are marked with yellow bounding boxes.

As shown in Figure 9, the detection results for the traditional methods also show
significant numbers of false positives. Regarding the detection results for the traditional
methods, LCM, PSTNN, MPCM, and IPI are all capable of detecting the targets, although
these methods also suffer from false alarms. RLCM exhibits instances of missed detection
for densely packed targets. Although ACM and AGPCNet exhibit strong background
suppression, they still suffer from false positives and missed detections. The proposed
method in this paper achieves the best detection results, accurately detecting the targets
without any false positives. This indicates that the proposed method in this paper is capable
of effectively addressing scenarios with densely packed targets.
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Figure 9. Detection results for infrared scene 2: (a) input image; (b) ground truth; (c) detection result
for LCM; (d) detection result for RLCM; (e) detection result for PSTNN; (f) detection result for MPCM;
(g) detection result for IPI; (h) detection result for ACM; (i) detection result for AGPCNet; (j) detection
result for our proposed method. The target locations are marked with red bounding boxes, while
missed detections and false positives are marked with yellow bounding boxes.

3.4.3. Running Time

The average running times for the state-of-the-art methods and proposed method
were calculated on images measuring 256 × 256 pixels, as shown in Table 4. Among the
traditional methods, except for RLCM, the rest of the methods generally outperform the
deep-learning-based methods in terms of the running time. The proposed method does not
exhibit an advantage in terms of running speed.

Table 4. A running time analysis on images measuring 256 × 256 pixels.

Methods Running Time on GPU/s

LCM 0.163
RLCM 8.987
PSTNN 0.272
MPCM 0.093

IPI 23.913
ACM 0.077

AGPCNet 0.423
Ours 0.947
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4. Discussion
4.1. Ablation Study

To demonstrate the effectiveness of the proposed model, ablation studies were con-
ducted on the SIRST and MDFA. The results of the ablation experiments are presented
in Table 1, with the maximum value for each metric highlighted in bold black font. It
can be seen from Table 5 that the proposed method with both the MLFPM and MFFM
modules achieved a significant improvement. For SIRST, when both MLFPM and MFFM
were added, all four metrics showed improvements, with the recall, mIoU, and F-measure
values being the highest and the precision value being close to the maximum. For MDFA,
when both MLFPM and MFFM were added, all four metrics showed improvements, with
the precision, mIoU, and F-measure values being the highest.

Table 5. Ablation study on the whole network. The maximum value in each column is highlighted in
bold black font.

Dataset Backbone MLFPM MFFM Precision Recall mIoU F-Measure AUC

SIRST

ResNet-18

0.6437 0.8729 0.5886 0.7410 0.9252√
0.6777 0.8818 0.6213 0.7664 0.9526√
0.6658 0.8504 0.5960 0.7469 0.9319√ √
0.6757 0.9118 0.6343 0.7762 0.9577

MDFA

0.5674 0.6574 0.4379 0.6091 0.8454√
0.5439 0.7231 0.4502 0.6208 0.8529√
0.5630 0.7185 0.4613 0.6313 0.8833√ √
0.5992 0.6705 0.4629 0.6328 0.8382

4.1.1. Effect of the Proposed MLFPM

The results of the ablation study on the whole network are shown in Table 5. The
results of the ablation study on SIRST and MDFA indicate that the detection performance
is improved by adding MLFPM to the backbone network. For SIRST, adding MLFPM
resulted in improvements in all five metrics. The precison, recall, mIoU, F-measure and
AUC increased by 3.40%, 0.89%, 3.27%, 2.54%, and 2.74%, respectively. For MDFA, adding
MLFPM led to improvements in the recall, mIoU, F-measure, and AUC. The recall, mIoU,
F-measure, and AUC increased by 6.57%, 1.23%, 1.17%, and 0.75%, respectively. However,
the precison decreased by 2.35%. The results prove the effectiveness of the MLFPM module.
The design of the proposed MLFPM offers an effective approach to address the challenge
of detecting infrared small targets at various scales. Given the broader context of infrared
small target detection, where targets can exhibit significant variations in size, the existing
methods often struggle to deliver satisfactory detection performance for both small and
large targets. This module processes multiple layers of feature maps, ensuring the extraction
and preservation of target features at different scales.

4.1.2. Effect of the Proposed MFFM

As shown in Table 5, adding the MFFM resulted in improvements in the precision,
mIoU, F-measure, and AUC values for SIRST. The precision, mIoU, F-measure, and AUC
values increased by 2.21%, 0.74%, 0.59%, and 0.67%, respectively. However, the recall
decreased by 2.25%. For MDFA, adding MFFM led to improvements in recall, mIoU,
F-measure, and AUC. The recall, mIoU, F-measure, and AUC increased by 6.11%, 2.34%,
2.22%, and 3.79%, respectively. However, the precison decreased by 0.44%. The results
prove the effectiveness of the MFFM module. The design of the proposed MFFM presents
an effective approach to address the challenges in dense infrared small target detection.
Within the broader context of infrared small target detection, the existing methods often
struggle to appropriately fuse the semantic information from high-level feature maps with
the spatial information from low-level feature maps, leading to inaccuracies in detecting
dense targets. This issue typically manifests as the omission of targets located in the middle
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of dense targets. The MFFM module achieves the preservation of valuable information by
reusing both high-level and low-level features.

4.1.3. Effect of the Three Components in the MLFPM

The results of the ablation study on MLFPM are shown in Table 6. To demonstrate
the effectiveness of the local context module, local contrast extraction module, and local
attention mechanism module with MLFPM, ablation studies were conducted on SIRST and
MDFA. The results are presented in Table 6. On SIRST, the network that incorporates all
three modules simultaneously achieved the highest values across all metrics. On MDFA,
the network that incorporates all three modules simultaneously achieved the highest values
for the recall, mIoU, F-measure, and AUC. These results indicate that incorporating these
three modules effectively enhances the detection capabilities of the network.

Table 6. Ablation study on MLFPM. The maximum value in each column is highlighted in bold
black font.

Dataset Local
Context

Local
Contract

Extraction

Local
Attention Precision Recall mIoU F-Measure AUC

SIRST

√ √
0.6609 0.9067 0.6188 0.7645 0.9574√ √
0.6597 0.8649 0.5981 0.7485 0.9283√ √
0.6554 0.8752 0.5994 0.7495 0.9437√ √ √
0.6757 0.9118 0.6343 0.7762 0.9577

MDFA

√ √
0.6391 0.6164 0.4573 0.6276 0.7762√ √
0.5915 0.5599 0.4038 0.5753 0.4902√ √
0.5997 0.6466 0.4516 0.6223 0.7640√ √ √
0.5992 0.6705 0.4629 0.6328 0.8382

4.2. Advantages and Limitations

As demonstrated in the comparison presented in the Results section and the ablation
study discussed in the Discussion section, the proposed MLFPM effectively enhances the
extraction of local features and contextual information from feature maps. It significantly
contributes to boosting the semantic information on both high-level and low-level features.
The introduced MFFM, by reusing high-level and low-level features, harnesses the rich
semantic information from low-level feature maps, resulting in improved prediction perfor-
mance across various metrics as compared to the existing methods. The overall detection
results outperform the current methods.

However, as indicated in Table 4, in the design process for the MLFPM, various multi-
scale convolution operations were employed on each layer to further enhance the feature
extraction. Given the larger dimensions of shallow feature maps, applying diverse multi-
scale convolutions increases the computational complexity. Consequently, this leads to a
prolonged running time and strained computational resources. This challenge represents
an area of focus for future research.

5. Conclusions

This paper presents an infrared small target detection method based on multi-stage
and multi-scale local feature fusion. The proposed method consists of two key modules:
the multi-scale local feature pyramid module and the multi-scale feature fusion module.
MLFPM aims to further enhance the semantic features of feature maps at different scales,
suppress background interference, and address the problem of target scale variation. MFFM
integrates feature maps of different scales, effectively solving the issue of dense targets
being difficult to separate. Both ablation studies and comparisons with state-of-the-art
methods were conducted on SIRST and MDFA. The former validated the effectiveness of
each component in the constructed model, while the latter demonstrated the superiority
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of the proposed method over similar approaches. On SIRST, an mIoU of 63.43% and F-
measure of 77.62% were achieved. On MDFA, an mIoU of 46.29%and F-measure of 63.28%
were obtained. By introducing these two modules, the model’s detection performance for
multi-scale and dense targets was enhanced. However, it is essential to acknowledge that
the complex MLFPM design has implications for the computational efficiency, potentially
impacting the processing speed. Furthermore, there is room for improvement in the
detection rate and precision during infrared small target detection. Our future work will
focus on optimizing the network, reducing the computational load, and exploring better
methods for multi-scale and densely distributed infrared small target detection.
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