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Abstract: The Lancang–Mekong River Basin (LMRB) is the largest international river in Southeast
Asia, supporting a population of about 70 million people. Precipitation is the main source of water
resources in the basin, with significant impacts on ecology, production, and livelihoods in the basin. In
this study, future precipitation was projected using the Coupled Model Intercomparison Project Phase
6 (CMIP6) climate models. The initial bias of each model was corrected using the daily bias-correction
(DBC) method, and then the models were ensembled using the Bayesian model-averaging (BMA)
method. The evaluation, based on metrics such as climatology bias, root-mean-square error (RMSE),
mean absolute error (MAE), and correlation coefficient (COR), showed that the ensemble precipitation
performs better than the individual models. Precipitation under four future Shared Socioeconomic
Pathway scenarios (SSP126, SSP245, SSP370, SSP585) displayed an increasing trend throughout the
LMRB. The anomalies in annual precipitation in 2061–2090 under each scenario are 136 mm, 142 mm,
114 mm, and 227 mm, in that order. Precipitation in spring and winter shows a trend of increasing in
the northern LMRB and decreasing in the southern LMRB, and precipitation in summer and autumn
shows a significant trend of increasing in almost the whole basin (significance level 0.05). Spring
precipitation in the Mekong Delta decreases in all scenarios. The ratio of wet-season precipitation to
dry-season precipitation shows an increasing trend for all scenarios, indicating that the difference
between wet-season precipitation and dry-season precipitation will increase in the future. For daily
precipitation, the Lancang River Basin (LRB) is dominated by a 3–5% increase in the number of
days with 5–10 mm/d of precipitation and the Mekong River Basin (MRB) by a 3–5% increase in the
number of days with 10–20 mm/d of precipitation under four SSP scenarios in 2061–2090. There
are important changes in the spatial distribution of future precipitation, with the 2500 mm isohyet
expanding outwards in a circular pattern and the center of the 1500 mm isohyet moving westwards;
i.e., areas with annual precipitation exceeding 2500 mm and 1500 mm will expand. For dry-season
precipitation, the 500 mm isohyet shrinks, mainly in a circular pattern towards the center, while the
300 mm isohyet moves mainly towards the east, indicating that areas of dry-season precipitation
below 500 mm and 300 mm will expand. In the future, the LMRB will generally become wetter in the
wet season and drier in the dry season.

Keywords: climate change; precipitation; spatial characteristic; CMIP6; Lancang–Mekong River basin

1. Introduction

Precipitation is the key hydrological process in the global hydrological cycle, and
changes in precipitation have always been of interest to the geosciences [1,2]. Precipitation
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is the most important indicator for detecting and diagnosing global change, as well as an
important driver of global change [3–5]. Observations show a radical change in global
precipitation patterns [6–9], characterized by an increase in annual precipitation and the
frequency of extreme precipitation events [10,11]. This makes us aware that global climatic
conditions are changing dramatically and that we are and will soon be faced with the
enormous challenge of adapting to climate change [12–14]. Precipitation is a sensitive factor
in climate change [15,16]; it is often used as an important lens to analyze the severity of
climate change and its impacts on security and livability [17,18], water resources [19,20],
agricultural and livestock production [21–23], the ecological environment [24,25], renewable
energy [26–28], and other things. Studies have shown that climate change is already
affecting precipitation patterns in many parts of the world, including typical regions such
as the Alps in Europe [29], the Qinghai–Tibet Plateau [30], Australia [31], the Mississippi
River Basin in North America [32], the Nile and Congo river basins in Africa [33,34], the
Amazon Basin in South America [35], dryland in Central Asia [36,37], the Lancang–Mekong
River Basin (LMRB) in Southeast Asia [38], the Yangtze River Basin in China [39,40], and
many other typical regions of concern.

The Lancang–Mekong River (LMR) is the most important international river in South-
east Asia, and changes in its precipitation directly affect the ecological conditions and
livelihoods of people in the basin [41,42]. It originates on the Tibetan Plateau, known as the
water tower of Asia, a region that is significantly affected by climate change [43–47]. It is the
mother river of Southeast Asia, known as the “Danube of the East”, and flows through five
countries in Southeast Asia: Myanmar, Laos, Cambodia, Thailand, and Vietnam [48]. The
LMRB crosses cold, temperate, and tropical zones from north to south, making the climate
complex and variable, and is also a region sensitive to climate change [49,50]. The main
source of water resources in the LMRB is precipitation, and changes in hydrological condi-
tions have a direct impact on the survival of the populations of the countries in the basin,
as well as on irrigated agriculture, hydropower, fisheries, ecology, and other areas [51–55].
Agriculture accounts for up to 90% of all water use in the LMRB [56,57], and there are
prominent international water disputes [58,59], and all this irrigation water is essentially
from precipitation. Meanwhile, droughts and floods are common in the LMRB [60], so
changes in precipitation have a direct impact on water security and international relations
in the LMRB [61–63].

Precipitation in the LMRB has changed significantly over the historical period. Iran-
nezhad et al. [38] analyzed precipitation changes in the LMRB from 1952 to 2015 using
data from the Global Precipitation Climatology Centre (GPCC) and found that annual
precipitation showed a wetter trend in the northeastern part of the basin and a predomi-
nantly drier trend in the western part. Irannezhad et al. [64] analyzed the characteristics
of extreme precipitation in the LMRB from 1952 to 2015 and found no significant trends
in the intensity, frequency, or duration of precipitation at the basin scale, but there was a
significant increase in the number of wet days, the number of consecutive wet days, and the
intensity and frequency of extreme precipitation at the sub-regional scale. For the LRB, Guo
et al. [65] found no trend change in precipitation from 1957 to 2011 at six meteorological
stations in the upper LRB. Wang et al. [66] found that there was a general trend of increasing
precipitation in the middle and lower LRB from 1960 to 2009, but the trend of precipitation
changes in summer and autumn showed obvious spatial differences, decreasing at annual
and seasonal scales since 2000–2009. For the MRB, Hapuarachchi et al. [67] found no
significant trend in precipitation in the Mekong River Basin (MRB) from 1972 to 2000, based
on precipitation observations at 65 stations. Based on CHIRPS (Climate Hazards Group
InfraRed Precipitation with Station data), Mondal et al. [68] found that the rice-growing
region in the Mekong Delta of Vietnam was in a trend of drought with a significant 30%
decrease in precipitation during 2000–2018.

Currently, there are few studies of future precipitation changes in the LMRB based
on the Coupled Model Intercomparison Project Phase 6 (CMIP6) models [69], and most
previous studies are based on the CMIP5 models. Anh et al. [70] found an increase in
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wet-season precipitation and a decrease in dry-season precipitation in the Mekong Delta
for 2036–2065 based on five CMIP5 models under RCP4.5 and RCP8.5. Cook et al. [71]
found an increase in precipitation in the lower MRB under the RCP4.5 scenario based on
five CMIP5 models. Try et al. [72], based on two CMIP5 models, MRI-AGCM3.2H and
MRI-AGCM3.2S, projected a 13–30% increase in extreme discharge and a 19–43% increase
in flood inundation area in the lower MRB and Mekong Delta during 2075–2099, mainly
due to a 6.6–14.2% increase in precipitation. Sun et al. [73] analyzed future changes in the
number of days with different precipitation intensities under the RCP6.0 scenario based
on five CMIP5 models and found that wet-season precipitation has an increasing trend
while dry-season precipitation is dominated by an increase in the near future, an increase
in the lower LMRB, and a decrease in the upper and middle LMRB in the mid- and far
future. There is spatial and temporal heterogeneity in the frequency of different rainfall
intensities, e.g., a decrease in rainless and drizzly days and an increase in the number
of heavy rainfall days in the middle LMRB in the wet season. These studies draw our
attention to the precipitation changes in the LMRB based on CMIP6 models.

This study aims to provide a comprehensive understanding of future changes in pre-
cipitation in the LMRB. Specific objectives include: (1) to understand the inter-annual trend
of future precipitation and its spatial distribution characteristics as well as the precipitation
climatology at different periods in the future; (2) to analyze the seasonal characteristics
of future precipitation, including the seasonal changes of spring, summer, autumn, and
winter, and the characteristics of wet and dry seasons; (3) to analyze the structural changes
in daily precipitation by comparing changes in the frequency of daily precipitation with
different intensities; (4) to study the spatial distribution of future precipitation, includ-
ing annual precipitation and dry-season precipitation, based on the spatial variations of
representative isohyets.

2. Study Area and Data
2.1. Study Area

The LMRB is one of the most important international rivers in Southeast Asia (Figure 1).
It rises in the Tibetan Plateau in China and flows through five countries, Myanmar, Laos,
Thailand, Cambodia, and Vietnam, before emptying into the South China Sea at Ho Chi
Minh City in Vietnam. Located at 94–107◦E and 10–34◦N, the LMRB has a watershed area
of 811,000 km2 and a total length of 4880 km, making it the ninth-longest river in the world.
The part of the Lancang–Mekong in China is called the Lancang River, with a catchment
area of 165,000 km2, accounting for about 20% of the total catchment area [56]. This river,
known as the Mekong after it leaves China’s borders, includes almost all of Laos and most
of Cambodia and Thailand. The upper reaches of the mainstream have a large gradient
and are rich in hydroelectric resources. The lower reaches are relatively flat and prone
to flooding [74]. There are great differences in topography between the upper and lower
reaches of the basin [37]. The average elevation of the upper LMRB (above Yunjinghong)
is about 3300 m. The headwaters of the LRB in the northern section are located on the
Qinghai–Tibet Plateau at an elevation of over 4000 m. The riverbed in the southern LRB has
a steep slope and a deep valley. The basin below Yunjinghong is downstream of the LMRB;
the overall terrain is gentler than upstream, and the average elevation is about 400 m. The
area below Vientiane is mainly flat; most of the area is 0~300 m above sea level, and a few
areas in the east can reach 1000 m. The area between Yunjinghong and Vientiane is 500 to
1000 m above sea level, so it plays a transitional role in elevation.
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Figure 1. Map of the Lancang–Mekong River Basin and spatial distribution of precipitation. (R1:
Lancang River Basin (LCRB); R2: upper Mekong River Basin (UMRB); R3: middle Mekong River
Basin (MMRB); R4: lower Mekong River Basin and Mekong Delta (LDMRB); Black circles indicate
major rice-growing areas).

The LMR is one of the longest north–south rivers in the world, flowing from north to
south through all climate types except a tropical desert climate, with cold areas and low
precipitation in the upper reaches, distinct seasonal characteristics of dry and wet seasons in
the middle reaches, and hot and humid areas in the lower reaches. The MRB is significantly
influenced by different climatic zones and monsoons, with large differences in precipitation
and runoff between the dry and wet seasons, with the wet season accounting for more than
85% of annual precipitation [75]. The basin is affected by the southwest monsoon from May
to September, with a hot and humid climate. From November to March, it is affected by the
northeast monsoon, with a dry climate and low precipitation [76]. The spatial distribution
of precipitation and surface water resources in the LMRB is very uneven due to the influence
of the monsoon winds from East and South Asia, with annual precipitation in the northern
part of the LMRB ranging only from 400 to 800 mm, while annual precipitation in the
southern part of Laos and the mountainous fringes of Cambodia and Vietnam can reach up
to 3000 mm [77]. The spatial variation in temperature in the basin is also significant, with
the average temperature in the upper LRB ranging −3~3 ◦C, in the middle LRB 12~15 ◦C,
and in the lower LRB 15~18 ◦C. Compared with the LRB, the MRB has less spatial variation
in temperature, and the highest temperature in the basin is in March–April, with an average
temperature of more than 30 ◦C. The lowest temperature is in December, with an average
temperature of more than 20 ◦C [78].
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Based on the spatial distribution of topography and climate in the LMRB, the basin
can be divided into four regions. The first is the upper Yunjinghong region, which covers
most of the LRB and is located in China, with an average multi-year precipitation of about
985 mm. The second is the Yunjinghong–Vientiane interval, or upper MRB, which consists
mainly of the northern part of Laos, with an average annual precipitation of 1440 mm.
The third is the Vientiane–Pakse interval, or middle MRB, which consists mainly of the
eastern part of Thailand and the central and southern parts of Laos, with an average annual
precipitation of 1610 mm. There is a rainy zone in the northeast of the region (i.e., the
central part of Laos). Finally, the lower Pakse, or lower MRB and delta, includes most of
Cambodia, southern Vietnam, and southern Laos, with average annual precipitation of
1770 mm and a rainy zone in the eastern part of the region, roughly within the 3S basin.

2.2. Data Description

We used the output data from the CMIP6 experiment to project future precipitation
in the LMRB. In general, there is some uncertainty in climate models and a large bias in
the simulation of regional-scale climate [79], especially in some watersheds with complex
topography, such as alpine areas like the Tibetan Plateau [80,81]. Several models have
been used to improve the reliability of future precipitation projections. Based on the
completeness of individual model experiments, we screened 19 models, as shown in
Table 1. For each model, we used daily precipitation data from four SSP scenarios (SSP126,
SSP245, SSP370 and SSP585). These four scenarios are from the CMIP6 Tier 1 trial (core trial).
SSP1, SSP2, SSP3, and SSP5 represent four future socio-economic development pathways,
namely sustainability, middle of the road, regional rivalry, and fossil-fueled development,
respectively. Specifically, SSP126, SSP245, SSP370, and SSP585 are the low forcing, medium
forcing, medium-to-high forcing and high forcing scenarios, respectively, with emissions
leading to radiative forcings of 2.6, 4.5, 6.0, and 8.5 Wm−2 in 2100, respectively. A bilinear
interpolation method was used to interpolate the data from each mode into 0.25◦ grids, so
that the whole basin was divided into 1465 grids.

Table 1. List of CMIP6 GCM models used in this study.

Number Model (Abbreviation) Resolution (lon × lat) Country or Institution

1 ACCESS-CM2 (ACC) 1.875◦ × 1.25◦ Australia
2 ACCESS-ESM1-5 (ACE) 1.875◦ × 1.25◦ Australia
3 CanESM5 (Can) 2.8125◦ × 2.8125◦ Canada
4 CMCC-ESM2 (CMC) 1.25◦ × 0.9375◦ Italy
5 EC-Earth3 (EC) 0.703125◦ × 0.679245◦ European Union
6 EC-Earth3-Veg (ECV) 0.703125◦ × 0.679245◦ European Union
7 EC-Earth3-Veg-LR (ECL) 1.125◦ × 1.125◦ European Union
8 FGOALS-g3 (FGO) 2◦ × 2.25◦ China
9 GFDL-ESM4 (GFD) 1.25◦ × 1◦ the United States
10 INM-CM4-8 (INM4) 2◦ × 1.5◦ Russia
11 INM-CM5-0 (INM5) 2◦ × 1.5◦ Russia
12 IPSL-CM6A-LR (IPS) 2.5◦ ×1.25◦ France
13 MIROC6 (MIR) 1.40625◦ × 1.40625◦ Japan
14 MPI-ESM1-2-HR (MPH) 0.9375◦ × 0.9375◦ Germany
15 MPI-ESM1-2-LR (MPL) 1.875◦ × 1.875◦ Germany
16 MRI-ESM2-0 (MRI) 1.125◦ × 1.125◦ Japan
17 NorESM2-LM (NoL) 2.5◦ × 1.89474◦ Norway
18 NorESM2-MM (NoM) 1.25◦ × 0.9375◦ Norway
19 TaiESM1 (Tai) 1.25◦ × 0.9375◦ China

To correct the bias of the climate model, we chose the MSWEP gridded precipitation
dataset as reference data (http://www.gloh2o.org/mswep/, accessed on 30 May 2023).
MSWEP is a dataset that merges a wide range of precipitation data products, such as
observations, analyzed data, satellite remote-sensing data, etc. [82,83]. A comparative
study of 22 global-scale precipitation datasets shows that MSWEP combines the strengths

http://www.gloh2o.org/mswep/
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of several source datasets and generally has the best accuracy [84]. Studies at regional scales
such as in the Qinghai–Tibet Plateau [85], the Huaihe River Basin (China) [86], India [87],
and the Highlands of Indo-Pak [88] have also shown good performance of MSWEP. In
particular, studies by Tang et al. [89,90] and Tian et al. [91] in the LMRB also demonstrate
the applicability of MSWEP. We selected MSWEP version V2.2, a dataset that provides 0.1◦

daily precipitation globally from 1979–2017, with output on a 0.25◦ grid consistent with the
climate model using a bilinear interpolation method.

3. Methodology
3.1. Bias Correction

For climate model bias, this study takes the approach of first correcting the bias and
then correcting the multi-model ensemble. The bias correction was performed using the
daily bias-correction (DBC) method.

The DBC method is a hybrid method that combines daily translation (DT) and local
intensity (LOCI) [92,93]. The LOCI is first used to correct precipitation occurrence so that
the frequency of precipitation occurrence in the corrected data for the reference period
is equal to the frequency in the observed data for each month. The DT method is then
used to correct the frequency distributions of precipitation and temperature to obtain the
bias-corrected future daily temperature and precipitation. Instead of applying the same
factors to daily precipitation and temperature in a given month, it adjusts the difference
between observation and simulation of the same quartile in each month as a function of
daily precipitation and temperature based on the interquartile differences in the frequency
distributions of precipitation and temperature in the observed data. The DT method is
calculated using the following formulas:

Padj,d = PGCM,d × (Pobs,Q/PGCM,re f ,Q)
Tadj,d = TGCM,d + (Tobs,Q − TGCM,re f ,Q)

(1)

where P denotes precipitation, T denotes temperature, Q denotes a quantile for a month,
d denotes a historical or future date, adj denotes the corrected variable, GCM denotes the
variable before correction, ref denotes the simulation, and obs denotes the observations.

For daily precipitation data, the precipitation frequency (number of wet days) was
first corrected using the LOCI approach. For each month, a daily precipitation threshold
must be determined; days with daily precipitation greater than this threshold are referred
to as wet days so that the simulated frequency of wet days during the historical period is
the same as the observed one. The DT method is then applied to correct for the quantile of
daily precipitation on wet days. The precipitation thresholds are calculated separately on a
monthly basis, taking into account seasonal differences in precipitation. First, the observed
frequency of wet days (Fobs), which is the ratio of the number of wet days to the total
number of days in the month, is calculated according to the observed daily precipitation
data for a given month (e.g., January). The simulated daily precipitation for that month is
then arranged in reverse order. If the proportion of daily precipitation that is not less than a
certain number in the sequence is Fobs, this number is the daily precipitation threshold for
the month. When the DT method is used to correct the daily precipitation, only the daily
precipitation exceeding the threshold is corrected.

Bayesian model averaging (BMA) is a statistical post-processing method based on
Bayesian theory that takes into account the uncertainty of the model itself [94,95]. It
can organically combine forecasts from different sources and maximize the use of each
member model’s forecast. The essence of BMA is to compute the posterior distribution
of the observation by weighted-averaging the conditional probability distribution of the
observation and each member model.
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Assuming that P denotes the BMA forecast and D denotes the observed data,
f = [f 1, f 2, . . ., fk] denotes the ensemble of K member model forecasts. The probabilis-
tic forecast formula for the BMA is as follows:

p(P|D) =
K

∑
k=1

p( fk|D) · pk(P| fk, D) (2)

where p( fk|D) is the posterior probability of the kth member model fk given the observed
data D; in fact, p( fk|D) is also the weight wk of BMA, and pk(P| fk, D) denotes the posterior
distribution of the forecast P given the member model fk and the data D.

The average BMA forecast is the weighted average of the member model forecasts. If
both the member model forecast and the measured data are normally distributed, then the
average forecast of the BMA is as follows:

E(P|D) =
K

∑
k=1

p( fk

∣∣∣D) · E[g(P
∣∣∣ fk, σ2

k ) ] =
K

∑
k=1

wk fk (3)

where wk and σ2
k are the parameters to be calculated; they are usually written as

θ =
{

wk, σ2
k , k = 1, 2, · · · , K

}
, then the logarithmic form of the likelihood function con-

cerning θ can be expressed as:

l(θ) = log(p(P|D)) = log(
K

∑
k=1

wk · g(P
∣∣∣ fk, σ2

k ) ) (4)

where g(P
∣∣ fk, σ2

k ) denotes a normal distribution with mean fk and variance σ2
k .

It is difficult to find the analytical solution of θ from Equation (3), while the EM
algorithm (expectation maximization) can be used with repeated iterations of both the
expectation and maximization steps until convergence. A large likelihood value is obtained
by EM, which leads to a numerical solution for θ = {wk, σ2}, k = 1, 2, · · · , K. In the EM, the
hidden variable zt,k will be used to compute the BMA weights. Prior to the application of
the EM algorithm, the observed and forecast data were generally normalized using the
Box–Cox function. The application of the EM algorithm to the calculation of the BMA
parameters can be seen in particular in [96,97].

3.2. Trend Analysis

In this study, three methods were used to quantitatively characterize future trends in
precipitation: the Mann–Kendall (MK) trend analysis method, linear trend coefficients, and
annual mean anomalies.

The MK is an acausal statistical method used to detect trends in time series [98,99],
and recommended by the World Meteorological Organization for trend analysis [100,101].
The method assumes that the original data series are random and independent of each
other. For all results, the significance of trends is tested at the 5% level. The MK method
determines whether Z reaches the threshold corresponding to the significance level at a
given significance level by constructing a statistic Z that obeys a normal distribution. The
calculation method is:

Z =


(S− 1)/

√
Var(S) S > 0

0 S = 0
(S + 1)/

√
Var(S) S < 0

 (5)

Var(S) = n(n− 1)(2n + 5)/18 (6)

S =
n−1

∑
k=1

n

∑
j=k+1

sgn(xj − xk) (7)
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sgn(x) =


1 x > 0
0 x = 0
−1 x < 0

 (8)

where n is the sequence length and S is a statistic. At the 0.05 level of significance, if Z
is greater than 1.96 it indicates a significant increasing trend and if Z is less than −1.96 it
indicates a significant decreasing trend.

The linear trend coefficients are derived from the slope k of a single linear fit based on
the least-squares method, using the mathematical model of:

y = kx + b (9)

where y is the precipitation variable, x is the time variable, k is the linear trend coefficient,
and b is a parameter. The parameter k can be used to indicate a linear trend over time, with
an increasing trend when k is positive, and a greater absolute value of k results in a greater
trend of change.

For future climate change, in addition to long-term-trend changes, we are also con-
cerned with the mean climate change over a given period. We use the anomaly D in a
period to represent this trend of change in the mean climate:

D = Pt0 − Pt1 (10)

where t0 is the historical base period, t1 is a given period in the future, Pt0 is the multi-year
average of the precipitation index P in the base period, and Pt1 is the multi-year average of
the precipitation index P in the future period.

3.3. Evaluation Metrics for Performance

We have selected some commonly used metrics to evaluate the accuracy of precipita-
tion simulations, including RMSE (root-mean-square error), MAE (mean absolute error),
COR (correlation coefficient), and MS (model spread). The RMSE reflects the simulation
accuracy of the precipitation process:

RMSE =

√
1
n

n

∑
t=1

(Xo,t − Xs,t)
2 (11)

where n is the sequence length, Xo,t is the observation, and Xs,t is the simulation. The lower
the RMSE, the better.

MAE reflects the precision of the total deviation:

MAE =
1
n

n

∑
t=1
|Xo,t − Xs,t| (12)

where the meaning of each variable is the same as before, and the closer the MAE is to 0
the better the simulation accuracy.

COR reflects the consistency of precipitation variables over time:

COR =

n
∑

t=1
(Xo,t − Xo)(Xs,t − Xs)√

n
∑

t=1
(Xo,t − Xo)

2 ×
√

n
∑

t=1
(Xs,t − Xs)

2
(13)

where Xo denotes the mean of the observed series and Xs denotes the mean of the simulated
series. The other variables have the same meaning as before. The closer the COR is to 1, the
more consistent the temporal change is across models.
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MS is used to reflect the closeness of the models:

MS =

√√√√ 1
N

N

∑
i=1

(Xs,t,i − Xs,t)
2 (14)

where N is the number of models, Xs,t,i is the simulated value for the ith model, and Xs,t is
the mean of the simulated values for each model.

4. Results
4.1. Evaluation of Simulation Deviation

To understand the ability of each climate model to simulate precipitation in the LMRB,
the simulation bias of each model for annual mean precipitation over the historical period
was first analyzed, as shown in Figure 2. The bias of each model is very pronounced, up
to 1500 mm for both overestimation and underestimation, which is in general agreement
with the model assessment of Pimonsree et al. using the GPCC reference data [102].
Spatially, overestimation occurs mainly in the upper LMRB; i.e., in the areas with less
annual precipitation, such as ACC, ACE, Can, CMC, GFD, INM4, INM5, MIR, NoL, and Tai,
the models overestimate the middle and lower part of the R1 region by more than 1000 mm.
Underestimation occurs in the lower LMRB in the areas with more annual precipitation,
such as ACC, ACE, Can, CMC, ECL, FGO, GFD, IPS, MIR, MPH, MPL, MRI, NoL, NoM,
and Tai, where the models underestimated the R3 region and part of the R4 region by more
than 1000 mm, which mainly corresponded better with the areas with more than 2500 mm
annual precipitation (Figure 1). Except for two models, INM4 and INM5, the bias of the
annual precipitation simulation for the R2 region is relatively small, and the overestimation
or underestimation is generally within 500 mm.

The DBC method was used to correct the bias of each model. The statistical results
of the bias distribution for each model and the multi-model ensemble after correction are
shown in Figure 3. Overall, the number of grids with an annual precipitation simulation
bias (including overestimation and underestimation) higher than 600 mm is significantly
reduced after correction. Comparing the models, the corrected Can, INM4, and INM5
models have more grids with a bias higher than 600 mm, while most of the other models
have a bias within 600 mm. To further reduce the simulation bias, the BMA method was
used to ensemble the simulation of each model. After the ensemble, the annual precipitation
simulation bias of most grids is within 40 mm, and only a few grids have a bias of around
100 mm. From a spatial perspective, there is some overestimation in the middle and lower
parts of the R1 region and the central part of the R4 region (Tonle Sap Lake Basin), with an
overestimation of around 30–60 mm, and a small amount of underestimation in the eastern
parts of the R3 and R4 regions, with an underestimation around 60–100 mm. Although
there is still some bias, it is very low compared with the initial bias of the model, and most
grids have relative biases of less than 5%.

Figure 4 shows the evaluation of the simulation accuracy of daily precipitation for
each model and MME after bias correction. The RMSE is 8–15 mm for most grids of each
model on the daily scale and 6–10 mm for the MME. The RMSE is 70–180 mm for most
grids of each model on the monthly scale and 50–70 mm for the MME. The MAE is 4–7 mm
for most grids of each model on the daily scale and 3–6 mm for the MME. The MAE is
50–120 mm for most grids of each model and 30–50 mm for MME. On the daily scale, the
COR of most grids of each model is 0.15–0.25, and the COR of MME is 0.3–0.35, which is
still small but significantly improved compared with each model. On the monthly scale,
the COR of most grids of each model is 0.55–0.8, and the COR of MME is 0.8–0.9.
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Comparing Figures 3 and 4, the precipitation simulation accuracies after correction
and ensemble are better, with the total annual precipitation simulation bias within 5% in
most regions, and the intra-annual variation in precipitation can be better simulated; i.e.,
the bias-processing procedures based on DBC and BMA have achieved good performance.
For the prediction of future periods, the same bias procedure is used as for the historical
periods; i.e., the DBC method is used to correct the bias, and then the BMA method is
applied to ensemble-average the projection of each model to obtain the future precipitation
projection under four SSP scenarios.
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Figure 3. The deviations of each model after correction and multi-model ensemble (MME).
(a) Deviation statistics of the corrected model and MME. (b) Spatial distribution of the deviation of
the multi-model ensemble.
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4.2. Trends in Future Precipitation

Figure 5 shows the future annual precipitation trends for each SSP scenario. Precipita-
tion will increase in the future in the whole basin and in each region. The rates of increase
in annual precipitation (k in Figure 5) for the whole basin under each SSP scenario are
180 mm/100 a, 240 mm/100 a, 270 mm/100 a, and 510 mm/100 a. Spatially, under SSP126,
UMRB precipitation increases at the fastest rate (220 mm/100 a) and LCRB precipitation
at the slowest rate (150 mm/100 a); under SSP245, LDMRB precipitation increases at the
fastest rate (270 mm/100 a) and LCRB precipitation at the slowest rate (210 mm/100 a);
for SSP370, UMRB, LCRB, and LDMRB precipitation increase the fastest (at 300 mm/100 a,
290 mm/100 a, and 290 mm/100 a, respectively) and MMRB precipitation increases the
slowest (at 190 mm/100 a); for SSP585, LDMRB precipitation increases the fastest (at
610 mm/100 a) and MMRB and LCRB precipitation increase the slowest (at 440 mm/100 a
and 450 mm/100 a, respectively).

Considering the spatial variation in precipitation in the LMRB, the spatial distribution
of the rate of increase in annual precipitation is shown in Figure 6. Under SSP126, SSP245,
and SSP370, most regions have relatively low rates of increase (approximately no more
than 200 mm/100 a), and a few regions have rates of increase exceeding 500 mm/100 a,
which, when compared with Figure 1, can be seen to be in the region of higher annual
precipitation in the historical period. Under SSP585, the regions with rates of increase
greater than 500 mm/100 a increase significantly and completely cover the regions with
annual precipitation greater than 2500 mm. This suggests that annual precipitation will
increase in all parts of the basin in the future, with regions with higher annual precipitation
in previous years increasing at a higher rate.
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To understand the precipitation changes in different periods, two periods were selected
in this study; the near future is 2031–2060 and the far future is 2061–2090. Figure 7 shows
the anomalies in regional annual average precipitation for the two future periods. The
precipitation anomaly in the far future is significantly higher than that in the near future.
In the near future, the basin-wide precipitation anomalies are 89 mm, 71 mm, 23 mm, and
70 mm for the four SSP scenarios, while the anomalies in the far future are 136 mm, 142 mm,
114 mm, and 227 mm, respectively. For the UMRB and MMRB, the anomaly in the near
future is slightly less than 0, indicating a slight decrease in the two sub-regions in the near
future, and it can be assumed that there is no significant change in the UMRB or MMRB



Remote Sens. 2023, 15, 4502 14 of 29

compared with the baseline period. Spatially, the LDMRB has a higher anomaly than the
other partitions in the four SSP scenarios in the near and far future, while the MMRB has a
lower anomaly than the other partitions in the four SSP scenarios. Comparing the four SSP
scenarios, the anomaly for each region is largest in the near future under SSP126 and the
largest in the far future under SSP585, indicating that the precipitation increase rate under
SSP585 is lower in the near future and higher in the far future.
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4.3. Annual Cycle of Average Seasonal Precipitation

Figure 8 shows the trend in seasonal precipitation; the trend is expressed using the
Z statistic in the MK method. Among the four seasons, there was significant spatial
heterogeneity in spring and winter precipitation and a significant increasing trend in
summer and autumn precipitation for almost the entire basin.

For spring precipitation, the change in LMRB in all scenarios showed an increasing
trend in the north and a decreasing trend in the south. R1 showed a significant increasing
trend under all four SSP scenarios. R2 showed a significant increasing trend under SSP126
and SSP585 and a non-significant increasing trend under SSP245 and SSP370. R3 showed
an increasing trend over most of the basin under SSP126 and SSP585 and a decreasing trend
under SSP245 and SSP370. Most areas of R4 showed an increasing trend under SSP126 and
SSP 585, a non-significant decreasing trend in most areas under SSP245, and a significant
decreasing trend in most areas under SSP370.

For winter precipitation, under SSP126 there is a significant increasing trend in south-
ern R1 and northern R2 and a non-significant increasing trend in the rest of the basin.
Under SSP245, there is a decreasing trend only in the localized area in the southeastern R3
and an increasing trend in all other areas. Under SSP370 and SSP585, there is a significant
increasing trend in northern R1, with a predominantly non-significant trend in R4 and a
decreasing trend in R2 and R3. Southern R1 shows a significant decreasing trend under
SSP370 but no significant trend under 585.

As shown in Figure 1, precipitation in the LMRB mainly occurs during the wet season
(May–October), accounting for about 85% of the annual precipitation. Figure 9 shows the
changes in monthly precipitation during the wet season in the two future periods. For the
basin as a whole, May precipitation will decrease and June to October precipitation will
increase in the future compared with the historical base period, with the increase in the far
future being higher than that in the near future. At the regional scale, May precipitation will
increase only in the LCRM and decrease in all three regions (UMRB, MMRB, and LDMRB)
and June–October precipitation will increase mainly in these three regions.
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It is well known that precipitation in the LMRB varies greatly between the wet and
dry seasons. Figure 10 shows the ratio of wet- to dry-season precipitation (Rwd) in different
regions. The greater the difference in precipitation between the wet and dry seasons, the
greater the Rwd. From the perspective of the whole basin, the Rwd shows an increasing
trend under all future scenarios, of which the trend is highest under SSP370, indicating that
the difference in precipitation between the wet and dry seasons will increase in the future.
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At the regional scale, Rwd in R1 shows a decreasing trend under SSP126, i.e., a decrease
in the precipitation difference between the wet and dry seasons, a slightly increasing trend
under SSP245 and SSP585, and an increasing trend under SSP370. Rwd in R2 and R3 show
no significant change under SSP126 and an increase under SSP245, SSP370, and SSP585.
Rwd in R4 has an increasing trend under all scenarios. In general, Rwd in the upper LMRB
has a decreasing trend or a weak increasing trend, while the middle and lower LMRB show
a stronger increasing trend. Among all the regions, the increasing trend for Rwd is the
highest under SSP370; i.e., the difference in precipitation between the wet season and the
dry season will increase the most in the future.

4.4. Changes in Daily Precipitation Composition

Flooding is common in the LMRB, especially downstream [103,104]. In general, flood-
ing in the MRB is caused by heavy rainfall, and an increase in the number of days with heavy
rainfall during the wet season will directly lead to an increase in the risk of flooding and
damage [74,105]. Changes in precipitation intensity have important implications for peo-
ple’s lives, especially in the LMRB, which is highly vulnerable to floods and droughts [106].
To this end, we counted the changes in the number of days with different precipitation
intensities under different scenarios. Based on the distribution of daily precipitation inten-
sity in the LMRB, we classified daily precipitation into seven types, namely 0–0.5 mm/d,
0.5–2 mm/d, 2–5 mm/d, 5–10 mm/d, 10–20 mm/d, 20–35 mm/d, and >35 mm/d [107].

Figure 11 shows the changes in the number of days with seven categories of precipi-
tation. The number of days with a daily precipitation of 0–0.5 mm/d is mainly reduced
in most parts of the LMRB under all scenarios, and in the lower LMRB (R3 and R4) is
significantly reduced under SSP585 in the near future and SSP126 in the far future. The
number of days with daily precipitation of 0.5–2 mm/d increases by 0–2% in most parts of
the LMRB in both the near and far futures. The number of days with daily precipitation of
2–5 mm/d varies (increases or decreases) within 1% in the near future and may decrease
by 3% in the far future in some areas of the LRB, Tonle Sap Lake Basin, and Mekong Delta.
The number of days with daily precipitation of 5–10 mm/d will increase by 1–2% in the
LRB in the near future, increase by more than 5% in the far future, decrease in the eastern
MRB, and increase in the western MRB. The number of days with daily precipitation of
10–20 mm/d will increase by 1–2% in most areas in the near future, by 2–4% in most areas
in the far future, and by more than 5% in some areas. The number of days with daily
precipitation of 20–35 mm/d is almost unchanged in the whole basin in the near future
and increases by more than 3% in some areas of R3 and R4 in the far future. The number
of days with daily precipitation of more than 35 mm/d is almost unchanged in the whole
basin in the near and far future.

Based on the above changes, changes in the compositional structure of future daily
precipitation occur mainly in the far future. The decrease in the number of days with daily
precipitation of 0–0.5 mm/d indicates an increase in the number of wet days. In the far
future, the LRB is dominated by a 3–5% increase in the number of days with 5~10 mm/d
of precipitation; the MRB is dominated by a 3–5% increase in the number of days with
10–20 mm/d of precipitation. Precipitation of 10–25 mm/d is usually referred to as moder-
ate precipitation, while precipitation above 25 mm/d becomes heavy precipitation [108].
The continuous occurrence of these rainy days is also usually one of the factors contributing
to flooding. The MRB is a flood-prone basin, and an increase in the number of days with
moderate and heavy precipitation may lead to an increase in the probability of continuous
rainy days, which could lead to an increased risk of flooding [109].
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4.5. Changes in the Spatial Distribution Characteristics of Future Precipitation

According to the Mekong River Commission report [110], the rice-growing area of
the MRB consists of three main areas: most of Thailand, the Tonle Sap floodplain, and
the Mekong Delta. It is also an area where annual precipitation is less than 1500 mm
(Figure 1). The spatial distribution of precipitation in the LMRB is also very uneven,
characterized by low precipitation in the upper reaches, high precipitation in the lower
reaches, and low precipitation throughout the basin during the dry season. According to
the spatial distribution characteristics of precipitation in the LMRB, two representative
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isohyets (precipitation contour) were selected for this study to show the spatial distribution
characteristics of precipitation. The first is the 2500 mm isohyet, which mainly includes
two rainy areas in the basin, i.e., the central part of Laos (line L1) and the 3S basin at the
Laos–Cambodia–Vietnam border (line L2). The second is the 1500 mm isohyet, which is
located near the mainstream of the Mekong River and roughly divides the MRB into east
and west, with the western part receiving less than 1500 mm of annual precipitation and the
eastern part receiving more than 1500 mm of annual precipitation. The spatial distribution
of precipitation can be understood by examining the spatial variation of the isohyets.

Figure 12 shows the spatial variability of the annual and dry-season precipitation
distribution for the two representative isohyets. We prefer to focus on the simulation of
the historical isohyets. The first columns of Figure 12a,b show the historical observed and
simulated (based on MME) isohyets. It can be seen that the MME-based isohyets overlap
very well with the observed isohyets for both annual and dry-season precipitation. This
suggests that the MME can capture the spatial distribution of precipitation well, which gives
us confidence in understanding the change in isohyets in future periods. We compared the
change in isohyets between the future projection and the simulation for the base period
(rather than the observed isohyets) to analyze the spatial variability of future precipitation.

Columns two to five of the first row in Figure 12a show the changes in annual pre-
cipitation isohyets in the near future. For the 2500 mm isohyet, line L1 does not change
significantly under the four SSP scenarios, and line L2 does not change significantly under
SSP370 but shifts slightly to the south (i.e., the area enclosed by the isohyet becomes larger)
under SSP126, SSP245, and SSP585. For the 1500 mm isohyet, there is no significant change
under SSP370, but the southern part of the isohyet (the boxed part in Figure 12a that lies
west of line L2 around the “3S” basin) is shifted westwards under SSP126, SSP245, and
SSP585. The above results indicate that there will be no significant change in the spatial
distribution of precipitation in the near future under SSP370 and that the area of annual
precipitation exceeding 2500 mm will expand under SSP126, SSP245, and SSP585 (i.e., two
rainy zones). The westward shift of the southern 1500 mm isohyet suggests that there
will be a more significant increase in precipitation in R4 in the near future, resulting in an
expansion of the area of annual precipitation above 1500 mm.

Columns two to five of the second row in Figure 12a show the changes in annual
precipitation isohyets in the far future. For the 2500 mm isohyet, there is no significant
change in line L1 under any of the four SSP scenarios, and line L2 shows a significant shift
to the south under all four SSP scenarios. For the 1500 mm isohyet, there is a significant
westward shift under all four SSP scenarios, mainly in the northern part (west of R2) and
the southern part (west of L2), while there is no significant change in the central part (west
of L1, at the ellipse in Figure 12b). Under the four SSP scenarios for the far future, the
area of the rainy zone enclosed by line L2 in the 2500 mm isohyet continues to expand
as precipitation increases in region R4. The area of annual precipitation above 1500 mm
expands westwards from regions R4 and R2, while there is no significant change in region
R3. In particular, for the Mekong Delta, there is a slight increase in precipitation in the near
future and a significant decrease in the far future, resulting in the gradual contraction of
a NW–SE-trending low precipitation zone (annual precipitation below 1500 mm), which
shrinks to a smaller ring under SSP585.

Figure 12b shows the variation in the spatial distribution of dry-season precipitation,
with the 300 mm and 500 mm isohyets selected as representative isohyets. Like the 2500 mm
isohyet for annual precipitation, the 500 mm isohyet consists mainly of two segments (L1
and L2). In the near future, the 500 mm isohyet does not change significantly under
SSP126, contracts slightly under SSP245 and SSP585, and contracts significantly under
SSP370. The central part of the 300 mm isohyet (located in the western part of R3) moves
westwards under SSP126 and eastwards under SSP245, SSP370, and SSP585. In the far
future, the 300 mm and 500 mm isohyets do not move significantly under SSP245 and
SSP585. The 500 mm isohyet expands slightly under SSP126 and contracts significantly
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under SSP370. The center of the 300 mm isohyet moves westwards under SSP126 and
eastwards under SSP370.
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5. Discussion: Reliability of Future Projections

According to Section 4.1, there are still some biases in the climate simulations after
bias treatment. Here, MS has been used to quantitatively assess the reliability of future
projections. MS is calculated on the basis of the simulation of each model without observa-
tion, thus facilitating assessment of the reliability of future projections. According to the
principle of MS, if the results of each model are more similar, the projection is considered
more reliable [111]. To verify the rationality of the MS, we examined the spatio-temporal
relationship between the RMSE (based on the multi-model ensemble) and the MS (based
on the single model) in the historical period. Figure 13a,b show that the spatial distribution
of RMSE and MS varies with good consistency on annual, monthly, and daily time scales.
That is, MS is also higher in regions with higher RMSE and lower in regions with lower
RMSE. Figure 13c shows the linear relationship between RMSE and MS, and the coefficients
of determination on annual, monthly, and daily scales are 0.76, 0.8, and 0.64, respectively,
indicating the existence of a good linear relationship between RMSE and MS. The above
conclusions indicate that the MS results based on each model can show the performance of
projections based on the MME.
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Figure 13. Spatial changes in RMSE and MS and their relationships at different time scales over
the historical period. (a) RMSE. (b) MS. (c) Relationship between RMSE and MS (R2 denotes the
coefficient of determination).

It is important to note that we can qualitatively understand the relative reliability of
future precipitation projections primarily through the spatial distribution of MS, and such
information can suggest regions where we need to focus on improving climate models
in the future. For example, during the historical period (on the same time scale), the MS
results in the eastern parts of R3 and R4 were significantly higher than in other regions,
indicating that the reliability of climate modelling in these regions was relatively lower
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than in other regions, and a similar conclusion can be drawn from the spatial distribution
of RMSE.

Figure 14 shows the MS results for daily, monthly, and annual precipitation projections
under each future scenario. The spatial distribution of MS between the scenarios is generally
consistent and in line with the MS for the historical period (Figure 13b). The spatial
distribution of MS at all time scales is also more consistent, being higher in eastern R3 and
eastern and southern R4 than in other regions. This suggests that these regions have greater
inter-model differences in precipitation projections than other regions, have relatively
lower confidence in their future precipitation projections, and are priority regions for future
improvements in climate models.
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6. Conclusions

To gain insight into the characteristics of future precipitation in the LMRB, the CMIP6
daily precipitation data were used in this study. After assessing the simulation capabilities
of climate models, bias correction, and multi-model ensemble, we obtained more reliable
projections of future precipitation. Based on the spatial characteristics of precipitation, the
LMRB was divided into four regions and two future periods (near future, 2031–2050, and
far future, 2061–2090) were selected to analyze the changes in precipitation climatology,
seasonal characteristics of precipitation, compositional structure of daily precipitation, and
spatial distribution of precipitation.

In terms of precipitation climatology, future precipitation tends to increase in the
whole basin and all sub-regions, with the lowest rate of increase under SSP126, a higher
rate under SSP245 and SSP370, and the highest rate of increase under SSP585 (about twice
as much as under SSP245 or SSP370). The rates of increase under SSP126, SSP245, and
SSP370 are more evenly distributed across the basin, with most areas below 200 mm/100 a
and localized rates of increase in the lower LRB and eastern lower and middle MRB (up
to 500 mm/100 a) higher than in other areas. Under SSP585, the rates of increase in areas
with annual precipitation above 2500 mm are all higher than 500 mm/100 a and even up to
800 mm/100 a. In the near future (2031–2060), the precipitation anomalies in the LMRB
under the four SSP scenarios are 89 mm, 71 mm, 23 mm, and 70 mm, respectively, and in
the far future (2061–2090) they are 136 mm, 142 mm, 114 mm, and 227 mm. In both the near
and far futures, the anomalies are higher in the lower MRB and the Mekong Delta than in
other regions, while they are lower in the middle MRB.

Spring and winter precipitation tended to increase in the north and decrease in the
south, with spring precipitation in the Mekong Delta decreasing under all scenarios and
winter precipitation in the central MRB (eastern Thailand and northern Laos) decreasing
under SSP370 and SSP585. Summer and autumn precipitation showed a significant in-
creasing trend (0.05 significance) for almost the whole basin, and the increase was greater
with higher radiative forcing. For monthly precipitation in the wet season (May–October),
there was a decrease in precipitation in May and an increase in each month from June to
October, and the increase was greater in the far future than in the near future. The ratio
of wet- to dry-season precipitation (Rwd) in the LMRB shows an increasing trend under
all future scenarios, indicating an increase in the difference between wet- and dry-season
precipitation in the future.

We classified daily precipitation into seven classes according to precipitation intensity
and analyzed changes in the frequency of occurrence of daily precipitation of different
intensities in the future. The results showed that changes in the compositional structure
of daily precipitation occurred mainly in the far future. In the far future, under four SSP
scenarios, the LRB is dominated by a 3–5% increase in the number of precipitation days with
5–10 mm/d and the MRB is dominated by a 3–5% increase in the number of precipitation
days with 10–20 mm/d. The number of days with no precipitation (0–0.5 mm/d) mainly
decreased in most parts of the basin under each scenario. The frequency of days with daily
precipitation of 20–35 mm increased by about 3% in local areas of the middle and lower
MRB, while the number of days with daily precipitation of more than 35 mm showed no
significant change over the whole basin.

We chose the 2500 mm and 1500 mm isohyets as representative precipitation isohyets
for annual precipitation. In the near future under the SSP126, SSP245, and SSP585 scenarios
and in the far future under all four SSP scenarios, the 2500 mm isohyet extends outwards
in a circular pattern and the center of the 1500 mm isohyet moves westwards; i.e., the area
of annual precipitation exceeding both the 2500 mm and 1500 mm isohyets will expand.
We also used the 300 mm and 500 mm isohyets as representative isohyets for dry-season
precipitation and found that the 500 mm isohyet shrinks significantly towards the center of
the ring under SSP370 (both in the near and far future). The 300 mm isohyet (in roughly
the north–south direction) moves eastwards under SSP245, SSP370, and SSP585 in the near
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future and under SSP370 in the far future; i.e., the area of dry-season precipitation below
300 mm has expanded.

In the future, the LMRB will become wetter on an annual scale, but on a seasonal
scale there is a trend towards decreasing spring and winter precipitation in some areas.
This, together with a future increase in Rwd, will further exacerbate the uneven intra-
annual distribution of precipitation and water resources in the LMRB. On a daily scale, the
occurrence of 10–20 mm/d of precipitation has increased in most areas, and the occurrence
of 20–35 mm/d of precipitation has increased in the lower MRB, which may trigger more
severe flooding in the lower MRB. The spatial and temporal mismatch between precipitation
and irrigation water demand is a major challenge for agricultural development in the lower
MRB. However, dry-season precipitation (a period of high irrigation demand) is expected
to decrease further in the coming period, posing an even greater challenge to irrigated
agriculture.
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