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Abstract: Methane (CH4) is an important greenhouse as well as a chemically active gas. Accurate
monitoring and understanding of its spatiotemporal distribution are crucial for effective mitigation
strategies. Nowadays, satellite measurements are widely used for CH4 studies. Here, we use the CH4

products from four commonly used satellites (GOSAT, TROPOMI, ARIS, and IASI) during the period
from 2018 to 2020 to investigate the spatiotemporal variations of CH4 in China. In spite of the same
target (CH4) for the four satellites, differences among them exist in terms of the instrument, spectrum,
and retrieval algorithm. The GOSAT and TROPOMI CH4 retrievals use shortwave infrared spectra,
with a better sensitivity near the surface, while the IASI and AIRS CH4 retrievals use thermal infrared
spectra, showing a good sensitivity in the mid–upper troposphere but a weak sensitivity in the lower
troposphere. The GOSAT and TROPOMI observe high CH4 concentrations in the east and south and
low concentrations in the west and north, which is highly related to the CH4 emissions. The IASI and
AIRS show a more uniform CH4 distribution over China, which reflects the variation of CH4 at a high
altitude. However, a large discrepancy is observed between the IASI and AIRS despite using a similar
retrieval band, e.g., significant differences in the seasonal variations of CH4 are observed between the
IASI and AIRS across several regions in China. This study highlights the CH4 differences observed
by the four satellites in China, and caution must be taken when using these satellite products.

Keywords: CH4; spatiotemporal variations; multiple satellites; intercomparison; China

1. Introduction

In 2020, China announced its target to achieve carbon neutrality, aiming to peak its
carbon emissions by 2030 and reach net zero carbon emissions by 2060 [1]. Atmospheric
methane (CH4) is the second most abundant long-lived greenhouse gas after carbon dioxide
(CO2), with an estimated 20-year global warming potential 84–86 times greater than that
of CO2 [2]. CH4 is also a chemically active gas that significantly affects the atmospheric
environment [3]. Reductions in CH4 emissions are effective in mitigating radiative forcing
and, eventually, global warming [4]. Over the past century, the concentration of CH4 in
the atmosphere has more than doubled following the Industrial Revolution. This rapid
increase of CH4 has primarily been caused by the imbalance of CH4 sources and sinks, with
a significant amount of CH4 emitted by human activities [5]. However, the spatiotemporal
variations of CH4 emissions have not been well understood [6]. For instance, China
is a major CH4 emitter but has not yet compiled its own CH4 emission inventory [7].
Satellite data are important for emissions, mainly through the top-down method, which
is complementary to the bottom-up inventory. Consequently, it is critical to investigate
the spatiotemporal variations of atmospheric CH4 in China to conduct effective emission
reduction strategies.

Accurately monitoring atmospheric CH4 mole fractions is the first step toward achiev-
ing the effective mitigation of CH4 emissions. Several techniques have been developed,
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such as in situ observation, ground-based remote sensing, and space-borne remote sensing.
Among these methods, space-borne remote sensing provides global-coverage data that
can be used to detect and quantify point sources and characterize emissions at the re-
gional and national scales for cross-comparing with the reported bottom-up emissions [8,9].
Currently, there are several widely used satellites providing CH4 measurements, namely,
the Greenhouse Gases Observing Satellite (GOSAT), the Tropospheric Monitoring Instru-
ment (TROPOMI), the Infrared Atmospheric Sounding Interferometer (IASI), and the
Atmospheric Infrared Sounder (AIRS). Among them, the GOSAT and TROPOMI satellites
retrieve the column-averaged dry-air mole fraction of CH4 (XCH4) from the shortwave
infrared (SWIR) spectra at 1.65 and 2.3 µm, while the IASI and AIRS satellites derive the
CH4 mole fraction from the thermal infrared (TIR) spectra around 8 µm.

Satellite observations were utilized to study the spatiotemporal distribution of CH4
concentrations and their driving forces in China. Based on the GOSAT measurements,
Qin et al. [10] assessed XCH4 variations in China during 2010–2012, and Lei et al. [11]
conducted a preliminary investigation on the variation of CH4 concentration given the
land-use change in northern China. Zhang et al. [7] investigated the spatiotemporal
distributions of XCH4 in China during 2018–2021 using the TROPOMI measurements. As
for the AIRS, due to its earlier launch and longer data coverage, there is a greater amount
of research related to it [12–17]. These studies mainly use the profile data of the AIRS to
investigate the spatial and temporal distribution of the CH4 concentration in the mid-to-
upper troposphere, lower troposphere, and near-surface in China. As shown above, the
previous studies on atmospheric CH4 in China mainly focused on one or two satellites, so
the differences among the CH4 products from the four satellites mentioned above have not
been thoroughly discussed.

This study aims to comprehensively explore the differences and similarities among the
CH4 products from the GOSAT, TROPOMI, AIRS, and IASI satellites, to better understand
the spatiotemporal distribution of CH4 in China. The paper is structured as follows: The
data and method used in this study are described in Section 2. The spatial distributions of
the CH4 concentrations derived from the four satellites in China, as well as the differences
among them, are presented in Section 3. Moreover, the CH4 emission inventory and model
results are separately compared to the results of the SWIR and TIR satellites. The temporal
variations of the atmospheric CH4 in China are also discussed in this section. Finally,
conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Data
2.1.1. Satellite CH4 Measurements

Table 1 lists the key characteristics of the four satellites used in this study. SWIR spec-
tra are observed by satellite from the solar radiation reflected by the Earth’s surface and
backscattered by its atmosphere. As a result, the GOSAT and TROPOMI CH4 measurements
derived from the SWIR spectra are only available during the daytime. In contrast, TIR sig-
nals are emitted by the Earth and its atmosphere and can be detected during both daytime
and nighttime. All these satellites are in polar sun-synchronous low-Earth orbits (LEO).

Table 1. Satellite instruments for measuring atmospheric CH4.

Instruments TANSO-FTS TROPOMI IASI AIRS

Satellite GOSAT S5P MetOp-A Aqua
Agency JAXA ESA, NSO EUMETSAT NASA

Data period 2009–now 2017–now 2007–now 2002–now
Overpass time [local time] 01:00/13:00 01:30/13:30 09:30/21:30 01:30/13:30

Fitting window [nm]
Spectral resolution

1560–1720
0.27 cm−1

2310–2390
0.25 nm

7100–8300
0.5 cm−1

6200–8200
0.5 cm−1

Pixel size 10.5 km 5.5 × 7.0 km2 12 km 13.5 km
Swath [km] Discrete, 1–9 points 2600 2200 1650
Reference Kuze et al. (2009) [18] Lorente et al. (2021) [19] Crevoisier et al. (2009) [20] Xiong et al. (2008) [21]
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The Thermal And Near infrared Sensor for carbon Observations-Fourier Transform
Spectrometer (TANSO-FTS) instrument onboard the GOSAT was developed by the Japan
Aerospace Exploration Agency (JAXA) and was launched in January 2009 [22]. It is the first
space-based sensor specifically measuring greenhouse gases based on high-resolution SWIR
spectra [23,24]. The SRFP (the full-physics of SRON/KIT’s RemoTec Algorithm) of the
GOSAT bias-corrected daily L2 XCH4 measurements (CH4_GOS_SRFP, v2.3.8) from January
2018 to December 2019 are used in this study. The SRFP adjusts parameters of surface,
atmosphere, and satellite instrument to fit the GOSAT spectra [25]. The satellite data are
downloaded from the Copernicus climate data center (https://cds.climate.copernicus.eu/,
accessed on 30 January 2022). We use the SRFP/GOSAT products as they were developed
on the basis of the RemoTeC/TROPOMI algorithm [23].

TROPOMI is the sensor onboard the Sentinel-5 precursor (S5P) satellite, with its daily
global coverage at an unprecedented resolution of 7 × 7 km2 since its launch in October
2017 (upgraded to 5.5 × 7.0 km2 in August 2019). It aims at providing accurate and
timely observations of abundances of the atmospheric species, such as CH4 and CO, for air
quality and climate change research and service [26]. The RemoTeC is the S5P operational
algorithm for CH4 at the SWIR bands, which is in essence the same as the SRFP algorithm.
It also uses the full-physics approach that simultaneously retrieves the atmospheric CH4
mole fraction and the physical scattering properties of the atmosphere. In this study, the
bias-corrected daily granule XCH4 products, spanning from January 2018 to December 2020,
are provided by ESA (European Space Agency, https://scihub.copernicus.eu/, accessed on
30 January 2022).

IASI onboard the MetOp is a Fourier transform spectrometer that measures infrared
radiation. The IASI CH4 retrieval uses 10 channels around the 7.7 µm spectral region
that are mostly sensitive to CH4 and temperature. The Advanced Microwave Sounding
Unit (AMSU) also onboard the MetOp provides microwave observations only sensitive to
temperature that can be used to separate the effects of temperature and CH4. The retrieval
algorithm developed at the Centre National de Recherche Scientifique (CNRS)-Laboratoire
de Météorologie Dynamique (LMD) is based upon a nonlinear regression inverse radiative
transfer model using a multilayer perceptron [20]. The retrieved CH4 integrated columns
are weighted to the mid-to-upper troposphere with peak sensitivity at about 200 hPa
(~11 km), half the peak sensitivity at 100 and 300 hPa (~6 and 16 km), and almost no
sensitivity at the surface [27]. In this study, the IASI level 2 mid-to-upper tropospheric
columns of the atmospheric CH4 (MUT_CH4; written as XCH4 for comparison with other
satellites in the following texts) products (CH4_IASB_NLIS, v9.1) from 2018 to December
2020 are downloaded from https://iasi.aeris-data.fr/catalog/, accessed on 30 January 2022.

AIRS is a nadir cross-track scanning infrared spectrometer, and was launched on 4 May
2002 onboard the EOS/Aqua platform. The AIRS measures approximately 200 channels
in the 7.66 µm absorption band of CH4, of which 71 channels are used to retrieve the CH4
profile. The atmospheric temperature profile, water vapor profile, surface temperature,
surface emissivity, and a priori profile of CH4 are inputted into a forward model to compute
the upwelling radiance. The differences between the computed radiance and the observed
clear-sky radiance are used to invert the CH4 profile [21]. In this study, the AIRS V7 L2
support products (AIRS2RET 7.0) from January 2018 to December 2020 are downloaded
from http://disc.sci.gsfc.nasa.gov/, accessed on 30 January 2022. The AIRS2RET 7.0 data
provide CH4 volume mixing ratio (VMR) profiles at 100 levels from 1100 hPa to 0.0161 hPa.

2.1.2. CH4 Emission Inventory

The CH4 emissions used in this study are from the Emissions Database for Global
Atmospheric Research (EDGAR V6.0, https://edgar.jrc.ec.europa.eu/, accessed on 5 Febru-
ary 2022). EDGAR is a widely used inventory for anthropogenic emissions of greenhouse
gases such as CO2, CH4, and N2O, as well as fluorinated gases per sector and country. The
EDGAR CH4 emission data include emissions from energy manufacturing, coal/oil/gas
production, agricultural soils, waste disposal, etc. [28]. It has been used as an important

https://cds.climate.copernicus.eu/
https://scihub.copernicus.eu/
https://iasi.aeris-data.fr/catalog/
http://disc.sci.gsfc.nasa.gov/
https://edgar.jrc.ec.europa.eu/
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reference for many emission-related studies [29]. Moreover, we followed the regional
division proposed by Wang et al. (2022) [30] and looked into the four regions specifically in
China, namely north-eastern China (NE), south-eastern China (SE), north-western China
(NW), and the Qinghai–Tibet Plateau (TP), to further investigate the spatiotemporal varia-
tions of CH4 and the differences among the four satellites. These regions differ in climate,
agricultural types, major economic activities, and CH4 emission sources. Figure 1 illustrates
the spatial distribution of CH4 emissions in China for the year 2018, with a spatial grid
of 0.1◦ × 0.1◦, along with the regional division used in this study. It reveals that the SE
and NE regions have higher levels of anthropogenic CH4 emissions, while the TP and NW
regions exhibit relatively lower emissions.
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2018, namely north-eastern China (NE), south-eastern China (SE), north-western China (NW), and
the Qinghai–Tibetan Plateau (TP).

2.1.3. CAMS Global Greenhouse Gas Reanalysis (EGG4)

The Copernicus Atmosphere Monitoring Service (CAMS) provides near-real-time anal-
ysis and forecast data on atmospheric composition with a globally horizontal resolution of
0.75◦ × 0.75◦. The reanalysis procedure combines model data with satellite data into a glob-
ally complete and consistent dataset using the European Centre for Medium-range Weather
Forecasts’ Integrated Forecasting System (IFS). The purpose of the CAMS GHG analyses
is to provide realistic global 4D fields of the atmospheric CO2, CH4, and N2O mole frac-
tions [31]. This study uses monthly CAMS data, downloaded from https://ads.atmosphere.
copernicus.eu/cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4?tab=form, accessed on
5 February 2022, which provides the CH4 column-mean molar fraction and VMR profiles
at 25 vertical levels from 1000 hPa to 1 hPa. The CAMS model assimilates ground-based
observations, e.g., NOAA, ICOS in situ measurements, and satellite observations, includ-
ing the SCIAMCHY, GOSAT and IASI [32]. Note that the CAMS model only assimilates
the IASI data in the tropical region, so that the CAMS reanalysis data can be used as an
independent reference to compare with the IASI and AIRS above China.

2.2. Methods

In order to compare the AIRS data with other satellites’ products, we convert the AIRS
CH4 VMR profiles to XCH4 as follows

XCH4 =
TCCH4

TCdry
air

, (1)

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4?tab=form
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4?tab=form
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TCdry
air =

Ps/g − TCm
H2O

mdry
air /Na

, (2)

where TCCH4 is the total column of CH4 (molecules/cm2), Ps is the surface pressure, TCm
H2O

is the mass of total column water vapor (kg/m2), g is the column-averaged gravitational
acceleration varying with location, mdry

air is the molecular masses of H2O, and Na is the
Avogadro constant.

We aggregated all satellite CH4 data into 0.5◦ × 0.5◦ grids and calculated the mean
value within each grid to obtain the spatial distribution of CH4 in China. Note that we only
took the data that was of a good quality according to the qa_value or quality_flag given in
each product.

Before comparison, it is necessary to look at their respective averaging kernels that
represent the vertical sensitivities of the retrieval to the true state. Figure 2 shows the
typical averaging kernels of the four satellites. The GOSAT and TROPOMI measurements
have a nearly uniform sensitivity close to unity within the troposphere, especially in the
lower troposphere, thereby enabling them to efficiently characterize the CH4 variations
in the lower troposphere. The AIRS and IASI have a good sensitivity to the middle-to-
upper troposphere (about 200 hPa) but have a weak signal in the lower troposphere. The
reason is that the thermal difference between the atmosphere and the surface is not large
enough to gain information in the lower troposphere. To conclude, the SWIR instruments
(GOSAT and TROPOMI) have good sensitivity in both the troposphere and stratosphere,
while the TIR instruments (AIRS and IASI) are mainly sensitive to the CH4 changes in the
upper troposphere and lower stratosphere. As the TROPOMI and GOSAT use almost the
same retrieval algorithm and have similar vertical sensitivities, we compared their XCH4
products directly. Regarding the TIR instruments (IASI and AIRS), their peak sensitivities
correspond to a similar altitude (~200 hPa), so we compared the AIRS partial column-
averaged mole fraction of CH4 between 100 hPa and 300 hPa with the IASI XCH4. Similarly,
we compared the CAMS partial column-averaged mole fraction of CH4 between 100 hPa
and 300 hPa with the AIRS and IASI, respectively.
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3. Results and Discussion
3.1. Spatial Distribution of CH4 in China

The XCH4 maps above China observed using the four satellites are shown in Figure 3.
Note that the TROPOMI and AIRS have good spatial coverages in China. However, the
data density of GOSAT is notably scarce, and the IASI suffers from a significant gap over
the Qinghai–Tibet Plateau.
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The TROPOMI and GOSAT XCH4 measurements show a consistent spatial pattern,
with higher values in the south and east and lower values in the north and west of China.
Compared to the GOSAT, TROPOMI could provide advantages due to its much larger
data density. For instance, the TROPOMI XCH4 measurements can observe XCH4 hotspots
in cities [33,34]. From the TROPOMI XCH4 map, we can clearly recognize high XCH4
values in the north, central, and the south of China as well as the Sichuan Basin, and lower
XCH4 values in the Qinghai–Tibet Plateau and northeast China. This spatial distribution of
XCH4 observed from the TROPOMI is highly consistent with the EDGAR anthropogenic
emissions (Figure 1).

The spatial distribution of the IASI XCH4 measurements in China is relatively uniform
compared to that of the TROPOMI. The changes in CH4 concentrations in the mid-upper
troposphere are mainly influenced by atmospheric transport and less affected by surface
emissions. The IASI measurements show a slight latitude gradient, with higher concentra-
tions in the south and lower values in the north. Nevertheless, the IASI measurements still
show a similar CH4 spatial distribution in China compared to the TROPOMI. However,
the AIRS XCH4 measurements have a different spatial pattern, with the highest values in
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Inner Mongolia and the northwestern regions. Moreover, the AIRS XCH4 values are about
30–60 ppb systematically lower than the other three satellites.

It is abnormal to observe high XCH4 values in NW from the AIRS measurements,
as the CH4 emissions are relatively low in that region (Figure 1). Figure 4 shows these
high-value areas, along with a surface emissivity around 1300 cm−1 (~7700 nm) and the
bare soil surface type. It was found that the high XCH4 values in Inner Mongolia and
northwestern China correspond to the low emissivity areas. The land surface emissivity
in the thermal infrared usually increases when the vegetation amount increases, which
has been explained by internal reflection occurring inside of a plant canopy, constituting a
“cavity effect” [35]. Therefore, the thermal infrared surface emissivity of bare soil is usually
lower than that of vegetation. In addition, the heat capacity of bare soil is smaller than that
of vegetation or water, so under the same radiation conditions its temperature changes
more significantly, which also affects the surface emissivity. Low surface emissivity leads
to a low signal-to-noise ratio of the infrared spectrum, and the AIRS CH4 retrieval is found
to be affected by it.
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3.2. Intercomparison between Satellites
3.2.1. Comparison between the GOSAT and TROPOMI Measurements

As shown in Figure 5, the mean and standard deviation of the differences between
the TROPOMI and GOSAT (TROPOMI-GOSAT) co-located XCH4 measurements are
−14.2 ± 18.0 ppb in NW,−14.6± 19.6 ppb in NE,−13.4± 16.3 ppb in TP, and−6.3 ± 14.9 ppb
in SE. The correlation coefficients for these regions are 0.71, 0.78, 0.74, and 0.80, respectively.
It is worth noting that the number of co-located data points varies across the four regions,
with 1082 in NW, 493 in NE, 65 in TP, and 111 in SE. The TROPOMI and GOSAT show good
consistency in all four regions, especially in SE, where they have the highest correlation
coefficient and the smallest bias and standard deviation. The bias in the NW, NE, and
TP regions is approximately 85% higher than that in SE. The XCH4 of TROPOMI is more
affected by the surface albedo compared to the GOSAT [36]. As the NW, NE, and TP regions
have higher snow cover than the SE region, this may be the reason for the higher biases [19].

3.2.2. Comparison between the IASI and AIRS Measurements

As the IASI has a significant gap over the Qinghai–Tibet Plateau, we only showed the
differences between the IASI and AIRS CH4 measurements in the NW, NE, and SE regions
(of China). As shown in Figure 6(a1–a4), the mean and standard deviation of the differences
between the IASI and AIRS (IASI-AIRS) co-located CH4 measurements are 65.9 ± 12.0 ppb
in China, 64.1 ± 16.7 ppb in NW, 72.7 ± 9.0 ppb in NE, and 61.0 ± 6.3 ppb in SE. The
IASI CH4 is systematically higher than the AIRS CH4. The correlation coefficients for each
region are 0.43, −0.20, 0.52, and 0.18, respectively. The region with the best correlation is
NE, while the NW and SE regions have poor correlations (R ≤ 0.2).
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It is unexpected to find such a large difference between the IASI and AIRS, as they use
similar retrieval windows. To further validate the usability of the two products, we used
the CAMS model data as an independent dataset to compare with both IASI and AIRS,
respectively.

As shown in Figure 6(b1–b4), the mean and standard deviation of the differences be-
tween the CAMS and IASI (CAMS-IASI) co-located CH4 measurements are −11.9 ± 13.9 ppb
in China, −13.0 ± 15.2 ppb in NW, −19.8 ± 12.8 ppb in NE, and −3.1 ± 5.3 ppb in SE.
The IASI CH4 is also systematically higher than the CAMS model, but compared to the
AIRS, the mean difference has significantly decreased. The correlation coefficients for each
region are 0.51, −0.13, 0.52, and 0.36, respectively. Similar to the comparison between
the IASI and AIRS, the region with the best correlation between the CAMS and IASI is
NE, followed by SE. The NW region exhibits the worst correlation, with a negative value.
Figure 6(c1–c4) show that the mean and standard deviation of the differences between the
CAMS and AIRS (CAMS-AIRS) co-located CH4 measurements are 55.6 ± 7.6 ppb in all of
China, 51.8 ± 6.4 ppb in NW, 53.4 ± 6.3 ppb in NE, and 58.3 ± 4.1 ppb in SE. The CAMS
CH4 is systematically higher than the AIRS CH4. Compared to the CAMS-IASI, the bias
is higher but the standard deviation is lower. The correlation coefficients for each region
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are 0.85, 0.67, 0.96, and 0.42, respectively. The CAMS-AIRS demonstrates better correlation
coefficients in all regions, with a notable increase observed in NE and NW.
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Figure 6. The scatter plots of the IASI XCH4 and AIRS (a1–a4) and the CAMS (b1–b4) average CH4
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average CH4 concentration between 100 and 300 hPa and the AIRS average CH4 concentration
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(y = ax + b). R is the Pearson correlation coefficient. N is the number of co-located data.

When compared using the CAMS model, the AIRS measurements can better present
the CH4 variation in the mid-upper troposphere compared to the IASI measurements,
especially in NE and NW. Since the training dataset of the IASI neural network retrieval
algorithm mainly comes from tropical low-latitude regions [20], it might cause a flawed
result in high-latitude regions, such as NW. The correlation between the CAMS and AIRS
in SE is relatively weak, which is likely due to the impact of the East Asian monsoon on
the distribution of CH4 concentrations in the middle-to-upper troposphere [37,38]. As
SE is of importance as a major source of CH4 emissions in China, further investigation is
needed to better understand the distribution of CH4 concentrations in the middle-to-upper
troposphere in this area. For instance, comparing and verifying satellite and model data
with aircraft profile observations could enhance the dataset’s reliability.

3.2.3. Comparison between the TROPOMI and AIRS Measurements

Here, we highlight the difference between the SWIR and TIR retrievals. Both the
SWIR and TIR satellite measurements are widely used in CH4 research studies, but users
might ignore their differences. Figure 7 shows the scatter plots of the TROPOMI and
AIRS co-located XCH4 measurements. The mean and standard deviation between the
TROPOMI and AIRS (TROPOMI-AIRS) are 20.8 ± 13.1 ppb in NW, 28.9 ± 20.3 ppb in NE,
27.7 ± 17.3 ppb in TP, and 51.4 ± 15.8 ppb in SE. The TROPOMI XCH4 is systematically
higher than the AIRS XCH4, which is also consistent with the IASI and CAMS data. These
results confirm that the AIRS XCH4 is systematically underestimated. The correlation
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between the TROPOMI and AIRS is relatively high in NE (R = 0.64), while pretty weak in
the other regions (NW: R = 0.11; TP: R = 0.14; SE: R = 0.27).
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The spatial distribution of the differences between the TROPOMI and AIRS XCH4
is shown in Figure 8a, which has a similar pattern to the CH4 anthropogenic emissions
(Figure 1). Figure 8b demonstrates the frequency histogram of the XCH4 differences along
with absolute CH4 emissions. It is found that large positive differences between the two
XCH4 datasets correspond to strong CH4 emissions. The difference between the TROPOMI
and AIRS is up to 80 ppb in SE, where the largest CH4 emission exists. The AIRS CH4
retrievals are mainly sensitive to the middle-to-upper troposphere, but less sensitive to
the lower troposphere. Therefore, the AIRS CH4 retrieval in the lower troposphere relies
heavily on the a priori profiles.

Based on the optimal estimation method

xr,T = xa,T + AT(xt − xa,T), (3)

xr,A = xa,R + AR(xt − xa,R), (4)
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where, subscripts T and R represent the TROPOMI and AIRS, respectively, xt, xa, and xr are
the true, a priori, and retrieved CH4, and A is the averaging kernel. The difference between
the TROPOMI and AIRS retrievals can be written as

xr,T − xr,A = xa,T − xa,R + AR(xt − xa,T)− AR(xt − xa,R), (5)

Regarding a priori information, the a priori information of the TROPOMI comes from
the TM5 model [39], and the a priori information of the AIRS is a constant value at a
location [21]. Assuming xa,T is close to xt, and then Equation (5) becomes

xr,T − xr,A = xa,T − xa,R − AR(xt − xa,R) = (I − AR)(xt − xa,R), (6)

xa,R is a function of latitude and altitude that varies smoothly from the Northern
Hemisphere to the Southern Hemisphere. It was generated using a nonlinear polynomial
fitting to different data, including the in situ aircraft observation data from some sites of the
NOAA ground-based flask network data [21]. However, the ground-based data related to
CH4 emissions (such as ESRL/GMD and flask network) are limited in China, which results
in significant deviations between the a priori profiles and the actual conditions, especially in
areas with high CH4 emissions such as SE. The low xa,R in the high-anthropogenic-emission
area (SE) leads to a positive difference (xr,T − xr,A).
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3.3. Temporal Variation of the Atmospheric CH4 in China

In this section, we derive the XCH4 seasonal means in China (Figure 9(e1,e2)). All the
four satellite measurements show high CH4 concentrations in summer and autumn, and
low in winter and spring.

The XCH4 values obtained from the GOSAT have very sparse coverage; it is hard to
see its phase pattern (Figure 9(a1–a4)). The spatial pattern of the TROPOMI XCH4 remains
consistent throughout the four seasons (Figure 9(b1–b4)).

In contrast, the XCH4 values from the AIRS vary significantly with time. Notably, in
winter, the AIRS XCH4 is high in the south and low in the north (Figure 9(c1)), while, in
summer, the AIRS XCH4 is low in the south and high in the north (Figure 9(c3)). Moreover,
relatively high AIRS XCH4 measurements are found in Inner Mongolia, especially during
winter and spring, which has been discussed in Section 3.1. Figure 9(d1–d4,e1,e2) show
that the IASI CH4 measurements are systematically higher than the other three satellites,
especially during spring and summer seasons.
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Figure 9. Spatial distributions of the seasonal averages of XCH4 concentrations across China in the
four seasons from GOSAT (2018–2019; (a1–a4)), TROPOMI (2018–2020; (b1–b4)), AIRS (2018–2020;
(c1–c4)), and IASI (2018–2020; (d1–d4)), together with the monthly variations of XCH4 concentrations
over China (e1,e2).

Figure 10 shows the monthly average XCH4 in the four regions. To reduce the sampling
error, we only took the monthly mean in regions with more than 100 individual bins. Due
to the limited amount of the GOSAT data, it was filtered out. Note that there are also some
missing months for the IASI measurements.

The TROPOMI measurements show that the seasonal variations of XCH4 in the four
regions are consistent, with a high XCH4 value in summer. According to the previous study,
the seasonal variation of CH4 in China is dominated by wetland and rice paddies due to
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large rice production in summer [40]. In TP, the TROPOMI and AIRS measurements have a
similar seasonal variation in terms of both amplitude and phase, where a maximum in the
late summer and early autumn, and a minimum value in late winter and early spring are
observed. The amplitudes of the seasonal variation derived from both satellites are about
90 ppb, indicating a similar variation in the near-surface and mid-to-upper troposphere in
TP. In SE, the seasonal variations of CH4 observed by the TROPOMI and IASI are similar,
with a maximum in late summer and early autumn and a minimum in winter. However,
the AIRS XCH4 shows a different seasonal variation compared to the IASI and TROPOMI,
with a minimum in May–July and a maximum in October–December. In NE and NW,
the TROPOMI measurements have a bimodal peak (summer and autumn). The AIRS
measurements generally have a consistent seasonal variation with the TROPOMI. However,
the seasonal variation of CH4 in NE and NW derived from the IASI measurements has
a much larger amplitude, and the maximum peak derived from the IASI measurements
occurs 1–3 months in advance compared to the other two satellites.
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4. Conclusions

The study presents and discusses the spatiotemporal variations of CH4 in China
between 2018 and 2020 from four satellites. The GOSAT and TROPOMI CH4 data are
retrieved from the SWIR spectra, with a good sensitivity in the troposphere and strato-
sphere. The mean and standard deviation between the GOSAT and TROPOMI XCH4 are
−13.8 ± 18.3 ppb and a good correlation was found between them (R = 0.78). They both
observe high concentrations in the east and south, and low concentrations in the west and
north, which is consistent with the CH4 anthropogenic emission inventory.

The AIRS and IASI use TIR spectra, mainly sensitive to the upper troposphere and
lower stratosphere. The spatial distributions of their CH4 products are relatively uniform
compared to the TROPOMI. However, the correlation between them is relatively weak,
especially in high-latitude regions. Using the CAMS model as an independent reference, we
find that the AIRS measurements better present the CH4 variation in the upper troposphere
and lower stratosphere compared to the IASI measurements.

As expected, large differences between the TROPOMI (SWIR) and AIRS (TIR) XCH4
measurements are observed in China. We find that the differences between the two XCH4
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datasets are highly related to the CH4 emissions. For example, in southeastern China where
there are high CH4 emissions, the difference between the TROPOMI and AIRS is up to
80 ppb. The reason is that the a priori profile for the AIRS CH4 in the lower troposphere is
considerably underestimated in these areas.

In terms of the temporal variation, the four satellites all show that the XCH4 in China
is high in summer and autumn, and low in winter and spring. It is noteworthy that the
AIRS XCH4 shows extremely high values in winter and spring in NW, which may be due
to the low emissivity in this area. IASI has a good agreement with TROPOMI in SE, while
it deviates from TROPOMI and AIRS in NW and NE.

Overall, this study provides insight into the spatiotemporal variations of CH4 in China,
and compares the CH4 datasets from four widely used satellites. Differences do exist in
terms of both spatial and temporal distributions of CH4, and cautions must be taken when
using these satellite products in China.
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2022. The CAMS CH4 reanalysis data is publicly available at https://ads.atmosphere.copernicus.eu/
cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4?tab=form, accessed on 5 February 2022.
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