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Abstract: Due to the inability of remote sensing satellites to monitor avalanches in real time, this
study focuses on the glaciers in the rear edge of Jialongcuo, Tibet, and uses infrasound sensors to
conduct real-time monitoring of ice avalanches. The following conclusions are drawn: (1) In terms
of waveform, compared to background noise, ice avalanche events have a slight left deviation and
a slightly steep shape; compared to wind, rain, and floods events, ice avalanche events have less
obvious kurtosis and skewness. (2) In terms of frequency distribution, the infrasound frequency
generated by ice avalanche events is mainly distributed in the range of 1.5 Hz to 9.5 Hz; compared to
other events, ice avalanche events differ some in frequency characteristics. (3) The model based on
information entropy and marginal spectral frequency distribution characteristics of infrasound have
higher accuracy in signal classification and recognition, as they can better represent the differences
between infrasound signals of different events than other features. (4) Compared with the K-nearest
neighbor algorithm and classification tree algorithm, the support vector machine and BP (Back
Propagation) neural network algorithm are more suitable for identifying infrasound signals in the
Jialongcuo ice avalanche. The research results can provide theoretical support for the application of
infrasound-based ice avalanche monitoring technology.

Keywords: ice avalanche; ice lake collapse; infrasound signal; feature extraction; classified recognition

1. Introduction

Glaciers are widely distributed in the Qinghai–Tibet Plateau, which is rich in fresh
water resources, which can meet the survival needs of about 1/3 of people all over the
world, so it is also known as the “Asian Water Tower”. The Qinghai–Tibet Plateau serves
as a regulator of climate change in the Northern Hemisphere. It provides important
ecosystem services for the Asian region. Affected by global warming, glaciers in the
Qinghai–Tibet Plateau are melting and retreating. At the same time, the influence of
topography, earthquakes, precipitation, and other internal and external forces further
increases the probability of ice avalanche disasters [1–3]. An ice avalanche is an instant
collapse of the ice body in front of a glacier under the action of gravity, which often occurs at
the end of the glacier, and sometimes in the middle and upper part of the glacier associated
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with ice falls [4]. Ice avalanches easily lead to a series of glacier disasters, such as ice lake
collapse, debris flow, and plateau landslides [2,3,5,6], which not only affect the ecological
environment of the plateau, but also seriously threaten the life and property safety of the
people in the plateau and reduce the service function of the ecosystem.

Records of ice avalanches originated in 1767 from Saussure, a Swiss geologist, meteo-
rologist, and mountaineer, who first recorded in detail the movement and ice avalanche
phenomena of Alpine glaciers during mountaineering [7]. D.R. Crandell divided ice
avalanches into four types in 1968, and ice avalanches belong to one of them [2]. In
the same year, Pinchak [8] made a preliminary study on the ice avalanche probability of
Vaughan Lewis Glacier. Hans [9] classified ice avalanches in terms of volume and distance
of movement. Margreth et al. [10] conducted an ice avalanche hazard assessment based
on the Gutzgletscher ice avalanche northwest of Wetterhorn above Greendewa (Bern Alps,
Switzerland) in September 1996 and January 1997, and analyzed the formation mechanism
and research difficulties of the ice avalanche. It is considered that the ice avalanche is the
process of the ice body breaking from the glacier and then falling to the slope and forming
small pieces of ice under the action of gravity. With the in-depth understanding of the
ice avalanche, researchers began to study and monitor the activity of the ice avalanche.
Salzmann et al. [11] developed a method to detect potentially hazardous areas based on
statistical parameters, geographic information system (GIS) modeling technology, and
remote sensing technology. Vilajosana et al. [12] use seismographs to observe and esti-
mate the energy transferred to the ground by ice avalanches, which is used to verify the
model and evaluate the size and classification of ice avalanches. Herwijnen et al. [13] use
seismic sensors combined with automatic cameras to monitor ice avalanches to predict
ice avalanche activity. Murayama et al. [14] monitored ice shocks through an infrasound
array deployed in the bay of eastern Antarctica and found that ice shocks produce special
infrasound signals, and ice avalanches are one of the causes of ice shocks and special
infrasound. Asming et al. [15] also carried out infrasound monitoring of glaciers in the
Arctic and Svalbard, which once again proved that infrasound can be used to monitor
glacier damage. Mayer et al. [16] also monitor ice avalanche activity through different
infrasound detection systems installed in the Swiss Alps. Herwijnen et al. [13] monitored
ice avalanches by infrasound array and evaluated the avalanche activity near the avalanche
area by machine learning. Graveline et al. [17] indicated that there may be interaction
between ice avalanches and snowslides. Compared with the research on ice avalanche
disasters worldwide, there are fewer studies on individual ice avalanche disasters in China,
and more on secondary disasters, such as glacial lake collapse and glacier debris flow
caused by ice avalanches. Scholars [18–21] analyzed a large number of ice lake collapse
events in Tibet, which proved that ice avalanches were one of the main factors leading to
ice lake collapse.

At present, research methods for ice avalanche disasters mainly include site investi-
gation, remote sensing, seismograph, and numerical simulation [12,13]. As ice avalanche
disasters often occur in remote mountainous areas with rugged terrain, site investigation is
very difficult and dangerous, so the actual data collected are very limited. The development
of remote sensing technology has promoted the research on ice avalanche disasters. Remote
sensing images can monitor glaciers in all directions, but remote sensing technology relies
on the temporal and spatial resolution of satellites and cannot monitor glaciers in real
time. Seismographs are mainly used to record the frequency of avalanche events currently,
but do not record the whole dynamic process of avalanches. Numerical simulation can
simulate the main factors influencing the avalanche, but it is still difficult to simulate the
mechanism of an avalanche. In view of this situation, taking the trailing edge glacier
of Jialongcuo in Tibet as the research object, infrasound with the characteristics of low
frequency, low attenuation, and long propagation distance [22–25] is used to monitor ice
avalanches in this work. On this basis, combined with other monitoring data, features of
avalanche infrasound signals were extracted, and avalanche infrasound signals were sorted
out from signals of other events to provide technical support for follow-up monitoring and
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early warning of secondary disasters (ice lake collapse and glacier debris flow, etc.). The
infrasound monitoring of ice avalanches can make up for the deficiency of remote sensing
technology and realize real-time monitoring of ice avalanche disasters.

2. Methods
2.1. Study Area
2.1.1. Geographical Location

The Jialong Cuo trailing margin glacier belongs to the middle part of the Himalayas,
and its watershed code is 50191B. According to the second round of glacier statistics, this
glacier is about 4.52 square kilometers in area and about 0.30 cubic kilometers in volume
(based on the average estimated volume of the two rounds). The glacier has a maximum
elevation of 6660.7 m, a minimum elevation of 4384.2 m, and an average elevation of
5593.6 m, an average slope direction of 56.0 degrees, and an average slope of 27.6 degrees
(the above data are from the second catalogue of glaciers in Tibet), as shown in Figure 1.
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Figure 1. Geographical location of the study area.

According to the classification of Chinese glaciers by Chinese glaciologist and academi-
cian Shi Yafeng, the upper glacier of Jialongcuo belongs to continental glacier or cold glacier.
With a low temperature, dry climate, less precipitation, and weaker water vapor cycle than
that on the southern slope of the Himalayas, it has slow movement and weak activity.

2.1.2. Climate

A set of weather stations has been set up in the study area, and meteorological data
from 5 November 2020 to 19 January 2022 have been collected. Temperature, air humidity,
and wind direction data were processed and analyzed in this work, as shown in Figure 2.
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Figure 2. Variation trend of daily temperature and humidity.

The monitoring results show that the annual temperature in the study area is less than
15 degrees Celsius, and the temperature varies widely from day to night. And, the daily
temperature reaches the highest between 12:00 and 14:00. Opposite to air temperature,
the relative humidity of the air falls with the rise of temperature, as the water in the air
decreases due to evaporation, while sporadic light rain in the evening and night make the
moisture content in the air increase.

It can be seen from Figure 3 that southeasterly winds prevail in the study area, which is
closely related to the geographical location of the monitoring point. Except for a channel in
the southeast, the monitoring point is surrounded by high mountains in the other directions,
and thus has weak air circulation overall. Affected by the Indian Ocean monsoon in summer,
a small amount of warm and wet air rises along the Zhangmu channel to the southeast of
the monitoring point, so it mainly has southeasterly winds in the summer.

2.1.3. Earthquake

According to the statistics of the earthquakes that have occurred in the range of
200 km around the monitoring site since 2021, as shown in Table 1, there are 0 earthquakes
with magnitude ≥ 5.0 M, 4 earthquakes with magnitude ≥ 4.0 M, and 10 earthquakes
with magnitude < 4.0 M in the whole year. On 21 August 2023, at 16:51:59, the epicenter
center closest to the monitoring point (Nie Lamu County earthquake with magnitude 4.2)
was approximately 118 km away. Therefore, the earthquake may have some impact on
potentially unstable glaciers.
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Figure 3. Distributions of wind directions in different seasons. In which, (a) is wind direction rose
chart of Spring, (b) is wind direction rose chart of Summer, (c) is wind direction rose chart of Autumn,
(d) is wind direction rose chart of Winter, and (e) is wind direction rose chart of the whole year.

Table 1. Statistics on earthquakes from January 2021 to February 2022.

Seismogenic Time Earthquake
Magnitude/M Latitude/◦ Longitude/◦ Focal

Depth/km Reference Position

15 December 2021 04:07:12 3.5 28.59 87.41 10 Dingri County, Rikaze City, Tibet
8 December 2021 12:23:19 3.2 28.77 87.35 10 Dingri County, Rikaze City, Tibet
5 November 2021 09:48:30 4.2 28.73 87.44 10 Dingri County, Rikaze City, Tibet
18 October 2021 18:32:16 3.8 28.54 87.41 10 Dingri County, Rikaze City, Tibet
15 October 2021 18:35:39 3.0 28.64 87.43 10 Dingri County, Rikaze City, Tibet

21 June 2021 18:06:50 3.0 29.3 87.36 10 Angren County, Rikaze City, Tibet
20 June 2021 04:01:39 3.8 29.58 84.3 10 Zhongba County, Rikaze City, Tibet
26 May 2021 04:46:08 4.2 28.99 86.47 10 Nielamu County, Rikaze City, Tibet

16 March 2021 21:16:08 3.4 30.11 86.44 10 Angren County, Rikaze City, Tibet
28 February 2021 04:03:43 3.1 29.07 86.75 10 Dingri County, Rikaze City, Tibet
20 February 2021 02:44:03 3.2 28.79 87.47 17 Dingri County, Rikaze City, Tibet
9 February 2021 09:50:11 3.3 28.01 87.9 10 Dingjie County, Rikaze City, Tibet
4 February 2021 13:06:23 4.3 28.64 87.52 28 Dingri County, Rikaze City, Tibet
2 February 2021 10:31:15 4.7 28.55 87.5 10 Dingri County, Rikaze City, Tibet
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2.1.4. Topographic Factor

As shown in Figure 1, the part circled by the red line in the picture is the monitored
glacier, which moves toward the glacial lake. The ice tongue of the glacier is about 4880 m
in elevation, about 430 m vertically to the ice lake surface, and about 230 m vertically to the
position of the steps (surrounded by orange thin strips in the picture). The corresponding
angle of the ice tongue at the steps is about 48.99◦, exceeding the limit slope of a cold glacier
(45◦). The steps are 200 m vertically from the lake surface, and the slope of the ice tongue
in this section is about 27.76◦. The slope of the ice tongue is steep on the whole, which is
not conducive to the stability of the glacier.

2.1.5. Disaster Form

Due to the steep slope at the first step of the glacier, if large amounts of ice fall, they
will directly gush into the ice lake and cause surges, which may cause the spillway to
burst. The spillway has a height difference of about 40 m with the river and is nearly
perpendicular to the other side of the river bank. When a surge instantly rushes into the
river and hits the slope of the opposite bank, this part of the bank with loose soil may
experience landslides or collapses (Figure 4), causing slope instability and providing large
amounts of material sources for debris flow. That is to say, the form of the disaster chain
is ice avalanche–ice lake collapse–debris flow. The debris flow formed by the collapse of
the ice lake is sudden, which is often accompanied by erosion on both sides of the channel,
resulting in the collapse of soil on both sides of the channel, the destruction of vegetation,
and the flooding of pastures in areas with flat terrain, causing damage to the ecological
environment and posing a threat to the lives and property of local residents. According
to the literature records, in May and June 2002, there were two ice avalanches into the
Jialongcuo lake, which led to collapses of the ice lake and debris flow disasters.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 27 
 

 

 
Figure 4. The slope on the opposite side of the spillway. 

2.2. Data Collection 
2.2.1. Overview of Equipment Layout 

The monitoring equipment is installed in Jialong Cuo, Nyalamu County, Rikaze City, 
Tibet Autonomous region, at the latitude 28°12′24.55″–28°12′54.13″ north, longitude 
85°51′00.63″–85°51′11.48″ east, and about 4376 m above sea level. 

As shown in Figure 5, the blue marks are the positions of infrasound monitoring 
equipment (corresponding to 2 in the figure). Three sets of infrasound monitoring equip-
ment are installed to form an infrasound array, and the sensors are all facing the glacier 
(corresponding to 4 in the figure) in the rear edge of Jialongcuo. The infrasound array can 
effectively reduce the interference of background noise and improve the signal-to-noise 
ratio of the signals. The green marks are the position where the cameras are; the camera 
on the right side of the lake (corresponding to 1 in the figure) is used to cooperate with 
infrasound monitoring equipment to monitor the glacier dynamics, and the camera on the 
left side of the lake (corresponding to 3 in the figure) is used to monitor whether there are 
surges and bursts at the overflow mouth of the ice lake. 

Figure 4. The slope on the opposite side of the spillway.

2.2. Data Collection
2.2.1. Overview of Equipment Layout

The monitoring equipment is installed in Jialong Cuo, Nyalamu County, Rikaze
City, Tibet Autonomous region, at the latitude 28◦12′24.55′′–28◦12′54.13′′N, longitude
85◦51′00.63′′–85◦51′11.48′′E, and about 4376 m above sea level.
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As shown in Figure 5, the blue marks are the positions of infrasound monitoring
equipment (corresponding to 2 in the figure). Three sets of infrasound monitoring equip-
ment are installed to form an infrasound array, and the sensors are all facing the glacier
(corresponding to 4 in the figure) in the rear edge of Jialongcuo. The infrasound array can
effectively reduce the interference of background noise and improve the signal-to-noise
ratio of the signals. The green marks are the position where the cameras are; the camera
on the right side of the lake (corresponding to 1 in the figure) is used to cooperate with
infrasound monitoring equipment to monitor the glacier dynamics, and the camera on the
left side of the lake (corresponding to 3 in the figure) is used to monitor whether there are
surges and bursts at the overflow mouth of the ice lake.
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Figure 5. Schematic diagram of the location of monitoring equipment. In which, the green marks are
the position of cameras (corresponding to 1 and 3 in the figure), the blue marks are the position of
infrasound monitoring equipment (corresponding to 2 in the figure), and the number 4 in the figure
corresponds to the glacier.

2.2.2. Infrasound Signal Acquisition

The infrasound monitoring equipment used in this study includes an infrasound
sensor, infrasound data acquisition instrument, and supporting infrasound data acquisi-
tion system developed by the Institute of Acoustics, Chinese Academy of Sciences. The
detectable range of the infrasound sensor is from 0.5 to 200 Hz. Its 50 mV/Pa sensitivity
enables it to collect weak signals. Other indicators of the sensor are shown in Table 2. The
collected data are sent to the original infrasound database through a 4G network online
(Figure 6).

Table 2. Index parameters of infrasound sensor.

Index Parameters

Type IDS2016
Working voltage ±15 V

Working electricity 50 mA
Response amplitude ±10 V
Response frequency 0.1~1000 Hz

Sensitivity 50 mV/Pa
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Figure 6. Infrasound signal acquisition equipment and software platform.

Since it is impossible to tell accurately that abnormal events monitored are ice avalanche
events, a video surveillance device is installed near the infrasound array to realize video
online transmission and local storage at the same time (see Figures 7 and 8). In this study, in-
frasound signals occurring 2–3 min before and after a possible ice avalanche were collected
and compared with the surveillance video to determine whether it was an ice avalanche
event (see Figure 9).

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 6. Infrasound signal acquisition equipment and software platform. 

Since it is impossible to tell accurately that abnormal events monitored are ice ava-
lanche events, a video surveillance device is installed near the infrasound array to realize 
video online transmission and local storage at the same time (see Figures 7 and 8). In this 
study, infrasound signals occurring 2–3 min before and after a possible ice avalanche were 
collected and compared with the surveillance video to determine whether it was an ice 
avalanche event (see Figure 9). 

 
Figure 7. Schematic diagram of infrasound installation. Figure 7. Schematic diagram of infrasound installation.



Remote Sens. 2023, 15, 4482 9 of 25Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 27 
 

 

 
Figure 8. Camera and surveillance video. 

 
Figure 9. An ice avalanche on 24 November 2021. The ice avalanche occurred at 17:15:20 from the 
video, and the time range for intercepting the infrasound signal is 17:15:00~17:16:30, in which (a) 
corresponds to 17:15:23, (b) corresponds to 17:15:30, and (c) corresponds to 17:16:20. 

2.3. Analysis Method 
The collected signal needs to be processed before it can be analyzed. Figure 10 shows 

the signal processing work flow. 

Figure 8. Camera and surveillance video.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 27 
 

 

 
Figure 8. Camera and surveillance video. 

 
Figure 9. An ice avalanche on 24 November 2021. The ice avalanche occurred at 17:15:20 from the 
video, and the time range for intercepting the infrasound signal is 17:15:00~17:16:30, in which (a) 
corresponds to 17:15:23, (b) corresponds to 17:15:30, and (c) corresponds to 17:16:20. 

2.3. Analysis Method 
The collected signal needs to be processed before it can be analyzed. Figure 10 shows 

the signal processing work flow. 

Figure 9. An ice avalanche on 24 November 2021. The ice avalanche occurred at 17:15:20 from
the video, and the time range for intercepting the infrasound signal is 17:15:00~17:16:30, in which
(a) corresponds to 17:15:23, (b) corresponds to 17:15:30, and (c) corresponds to 17:16:20.

2.3. Analysis Method

The collected signal needs to be processed before it can be analyzed. Figure 10 shows
the signal processing work flow.
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2.3.1. Infrasound Signal Preprocessing

The collected infrasound signals are discrete nonlinear data. Meanwhile, due to the
insufficient power supply of the equipment and interruption of the network signal at the
monitoring site, the collected infrasound signals may have some missing, high-frequency
noise interference and a large amount of useless information, etc., so it is necessary to
preprocess the original signals before extracting the features of the infrasound signals
of ice avalanche, flood, wind, and rain events. The preprocessing aims to improve the
signal-to-noise ratio of the signals through event sample extraction, de-DC (direct current)
drift, and filtering.

(1) Event sample extraction

Due to the large amount of data and the traditional manual identification of samples
taking a lot of time, the ratio of the short time average (STA) to the long time average (LTA),
namely, the STA/LTA time window ratio method, was used to obtain the first arrival time
of events and judge if the events were an ice avalanche according to the first arrival time
and the video surveillance. Then, the ice avalanche event samples were extracted.

The STA/LTA time–window ratio method sets a long-time window and a short-time
window, the windows move with the time series, and all signal amplitudes in the long-time
window and short-time window are averaged at the same time. When the ratio R of the
two windows exceeds the set threshold T, it is confirmed an event happened [26,27].

R =
STA(i)
LTA(i)

=
Wlta ∑Wsta

i=1 |A(i)|
Wsta ∑Wlta

i=1 |A(i)|
(1)

In Equation (1), Wlta and Wsta are the lengths of the long-time window and short-time
window, respectively, and A(i) is the amplitude of the signal. In this study, the lengths of
the long-time window and short-time window were 10 s and 0.1 s, respectively, and the
threshold was set at 5. Figure 11 shows the identified avalanche events.
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Figure 11. Ice avalanches on 10 June 2021.

(2) De-DC drift

The data acquisition equipment can produce a constant interference signal during
operation, namely, the DC component. This part of the signal does not carry information,
but carries energy, which will convey an energy error to the subsequent data processing; so,
it is necessary to remove it before signal processing.

yDC(i) = y(i)−mean[y(i)] (2)

where y(i) is the original signal fragment containing the ice avalanche event for about 3
min. As shown in Figure 12, the original signal has a DC drift of about −1.2/Pa.
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Figure 12. Original signal and de-DC signal.

(3) Filtering

The response frequency range of the infrasound sensor is 0.1–1000 Hz, that is, in the
actual signal acquisition, part of the signals collected by the sensor will be greater than
20 Hz in frequency. As only the signals no more than 20 Hz in frequency were analyzed in
this study, signals larger than 20 Hz in frequency need to be removed through filtering. The



Remote Sens. 2023, 15, 4482 12 of 25

filter adopted the window function design method and, specifically, the Kaiser window
with high adaptability. The filtering effect is shown in Figure 13.
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2.3.2. Extraction Methods of Avalanche Infrasound Features

(1) Extraction of time domain features

In this study, kurtosis and skewness of the signal are extracted to characterize the
waveform characteristics of the signal in the time domain. Kurtosis reflects the gentle
degree of the waveform: the higher the kurtosis, the steeper the waveform. Skewness
reflects the deflection degree of the waveform: positive skewness indicates right skewness,
negative skewness indicates left skewness.

Kurtosis is expressed as:

Ku =
E(x− µ)4

σ4 (3)

Skewness is expressed as:

Sk =
E(x− µ)3

σ3 (4)

In the equations above, x represents the input signal, µ represents the mean value of
the input signals, σ represents the standard deviation of the input signal, and E represents
the expected value of the input signal.

(2) Extraction of features in frequency domain

In this study, the frequency spectrum and power spectrum of the signal are obtained
by Fast Fourier Transform (FFT), and the center of gravity frequency [28] and frequency
standard deviation [29] of the signal are extracted. The center of gravity frequency repre-
sents the frequency distribution of the signal on the frequency spectrum. The frequency
standard deviation characterizes the dispersion of the power spectrum energy of the signal.

X( f ) = F[x(t)] =
∫ ∞

−∞
x(t)e−i2π f tdt (5)

X( f ) represents the Fourier transform of the signal, f is the frequency, and x(t)
represents the input signal [30].

P̂ = 10 ∗ log10
|X( f )|2

N
(6)

P̂ is the power spectrum, X( f ) represents the fast Fourier transform of the signal, and
N represents the length of the signal.

FC =

∫ ∞
0 f P̂d f∫ ∞
0 P̂d f

(7)



Remote Sens. 2023, 15, 4482 13 of 25

FC is the center of gravity frequency.

RVF =

√√√√∫ ∞
0 ( f − FC)2P̂d f∫ ∞

0 P̂d f
(8)

RVF is the standard deviation of the frequency.

(3) Joint extraction of features in time and frequency domains

The time domain analysis and frequency domain analysis of the signal can only
characterize the characteristics of the signal from one aspect. In this paper, wavelet and
Hilbert–Huang transform analyses were selected to obtain wavelet coefficients and the
Hilbert marginal spectrum distribution, respectively, which were used to characterize the
features of the signal in both the time domain and the frequency domain.

1©Wavelet transform
The discrete wavelet transform depends on the selection of the wavelet function,

which is mainly divided into the following five steps [31]:
Step 1: suppose that the function ψ(t) satisfies ψ(t) ∈ L2(R), and its Fourier transform

ψ̂(w) satisfies the following conditions, then ψ(t) is a mother wavelet:

+∞∫
−∞

∣∣ψ̂(w)
∣∣2

|w| dw < ∞ (9)

Step 2: by stretching and translating the mother wavelet, a set of wavelet basis
functions ψa,b(t) are obtained, such as the following formula, where a, b ∈ R, a > 0, a is the
scale factor, and b is the translation factor, all of which are continuously changing values:

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
(10)

Step 3: the scale parameter a and the shift parameter b are discretized, that is, a = 2j,
bj,k = 2jk, j, k ∈ Z, and the discrete wavelet basis function, ψj,k(t), is obtained, which is the
wavelet coefficient Coe(in):

ψj,k(t) =
1√
2j

ψ

(
t
2j − k

)
(11)

Step 4: discrete wavelet transform of signal x(t):

Wx(j, k) =
∫ +∞

−∞
x(t)ψ∗j,kdt (12)

Step 5: calculate the energy Ei and energy proportion Pi on different scales:

Ei = Ei(j, k) = ∑k∈Z

(
ψj,k

)2
(13)

Pi ==
Ei

∑i
i=1 Ei

(14)

The main eigenvalue extracted based on the wavelet transform is the distribution
value of wavelet coefficients, and the extraction includes four main steps:

Step 1: wavelet packet decomposition: the pre-processed signal is decomposed by
three layers of wavelet packets, and the waveforms of 8 nodes can be obtained, and each
node waveform corresponds to a set of wavelet packet coefficients Coe(in).

Step 2: take the absolute values of the wavelet coefficients Coe(in) of the waveform at
each node and sum them.

Sw(i) = ∑n
n=1|Coe(in)| (15)
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where n is a natural number of finite length of 1 ∼ n.
Step 3: the ratio of the sum of wavelet packet coefficients of each node to the sum of

all node coefficients is calculated:

Rw(i) =
Sw(i)

∑i
i=1 Sw(i)

(16)

where i is the number of nodes corresponding to the number of decomposition layers, and
in this study, the decomposition layers are three, that is, i = 23.

Step 4: finally, the ratio of the ratio calculated in the above step and the ratio of
the adjacent node is determined, and that is the eigenvalue of the wavelet coefficient
distribution.

EVw =
Rw(i)

Rw(i + 1)
(i = 1 . . . i− 1) (17)

Through the above steps, the eigenvalues of the wavelet coefficient distribution corre-
sponding to the signal can be extracted. In this study, the signal was decomposed by three
layers of wavelet packets, and the corresponding eigenvalue dimension was the 23 − 1
dimension.

2© Hilbert–Huang transform
The main eigenvalues extracted based on the Hilbert–Huang transform are the Hilbert

spectrum and Hilbert marginal spectrum. The marginal spectrum can reflect the distribu-
tion of signals at different frequencies, especially local characteristics of signals at lower
frequencies. In this study, the proportions of different frequency segments corresponding to
the Hilbert marginal spectrum were taken as the characteristics of different sample signals,
that is, the frequency distribution value of the marginal spectrum [32,33].

The Hilbert–Huang transform is mainly divided into the following nine steps:
Step 1: find all the maximum points, minimum points, and endpoints of signal x(t).
Step 2: the extreme points of all the marks in step 1 are interpolated, and then the

upper and lower envelope sequences Eup and Elow of the signal x(t) are obtained, and the
mean value of the upper and lower envelope of signal x(t) is calculated:

M1(t) =
(
Eup + Elow

)
/2 (18)

Step 3: calculate the IMF signal I(t) of signal x(t):

I1(t) = x(t)−M1(t) (19)

Step 4: to judge whether I(t) satisfies the two conditions of IMF, (1) the difference
between the total number of cross-zero points of the signal waveform and the number of
all extreme points is less than or equal to 1, (2) and the local mean of the upper and downer
envelope of the signal is zero. If the above two conditions are satisfied, then IMF1 = I1(t),
and the first IMF component is obtained; if the condition is not satisfied, then steps 2 to 4
of the above are repeated as the signal until the two conditions of IMF are met, and the
IMF1 is obtained.

Step 5: the IMF1 component is removed to obtain the residual component r1:

r1 = x(t)− IMF1 (20)

Step 6: to judge whether r1 conforms to the three conditions of EMD (Empirical Mode
Decomposition), (1) if the number of extreme points of the signal is greater than or equal to
2, it means that there is at least one maximum and one minimum point; (2) the time scale of
the extreme point can only determine the local time domain characteristics of the original
signal; and (3) if a signal has no extreme point, there must be a singularity or inflection
point that can be obtained by several differentials. If the above three conditions are satisfied,
the EMD decomposition ends. If not, steps 2 to 5 above are repeated with r1 as the new
original signal to obtain other IMFn components.
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Step 7: when rn satisfies the termination condition, the EMD decomposition ends, and
the signal x(t) can be expressed in the form of the sum of multiple IMF components:

x(t) = ∑n
i=1 IMFi(t) + rn(t) n ≥ 1 (21)

Step 8: the Hilbert–Huang transform is performed on each IMF component to obtain
the Hilbert spectrum H(w, t), where Re represents the real part of the IMF component:

H(w, t) = Re ∑n
i=1 ai(t)ejθi(t) = Re ∑n

i=1 ai(t)ej
∫

wi(t)dt (22)

Step 9: the Hilbert spectrum H(w, t) is integrated, and the marginal spectrum h(w)
is obtained:

h(w) =
∫ +∞

−∞
H(w, t)dt (23)

In this study, the proportion of different frequency segments corresponding to the
Hilbert marginal spectrum is taken as the characteristic of different sample signals, that is,
the marginal spectrum frequency distribution value. The extraction process mainly has the
following four steps:

Step 1: the marginal spectrum of the signal is obtained by the Hilbert–Huang transform,
and the marginal spectrum is divided according to 1 Hz. In this study, after resampling the
original data, the corresponding sampling frequency is 25 Hz, so it can be divided into 25
frequency bands, each band corresponding to 1 Hz.

i =
h(w)

Fs
(24)

h(w) is the marginal spectrum, and Fs is the sampling frequency.
Step 2: the sum of the marginal spectrums of each frequency band, that is, the sum of

the amplitudes corresponding to the marginal spectrum, is determined as follows:

Sh(i) = ∑n
n=1 A(in) (25)

In the equation, n is a finite natural number of 1 ∼ n, and A(in) is the amplitude
corresponding to the marginal spectrum.

Step 3: the ratio of the sum of the marginal spectrums to the sum of the marginal
spectrums corresponding to each frequency band is determined as follows:

Rh(i) =
Sh(i)

∑i
i=1 Sh(i)

, Rh(i) =
Sh(i)

∑i∗n
1 h(w)

(26)

Step 4: finally, the ratio calculated in step 3 and the ratio of the adjacent frequency
bands are calculated again, that is, the eigenvalue of the marginal spectral frequency
distribution.

EVh =
Rh(i)

Rh(i + 1)
(i = 1 . . . i− 1) (27)

Through the above steps, the eigenvalues of the marginal spectrum frequency distri-
bution corresponding to the signal can be extracted. In this study, 25 frequency segments
are obtained after the marginal spectrum is segmented, and the corresponding eigenvalue
dimension is 24 dimensions.

(4) Extraction of information entropy feature

Information entropy is used to measure the uncertainty of random variables [34] (Zhu
Xuenong, 2001), which is expressed as

Hp = −∑N
n=1 pn log pn (28)
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where pn represents the probability of occurrence of N values of the random variable.
In this study, eigenvalues extracted based on information entropy included singular

spectrum entropy based on time domain analysis, power spectrum entropy based on fre-
quency domain analysis, wavelet energy entropy based on the wavelet transform, wavelet
packet energy entropy, wavelet packet scale entropy and wavelet packet singular entropy
based on the wavelet packet transform, and energy entropy based on EMD (Empirical
Mode Decomposition) decomposition.

1© Singular spectral entropy based on time domain analysis
The singular spectrum of signals needs to be decomposed before solving the singular

spectrum entropy, which includes decomposing and reconstructing signals according to
the time series of the signals to extract different components of the signals [35].

X = Um×mΣm×nVn×n
T (29)

where X denotes the m× n matrix of signals to be decomposed. U is the unitary matrix of
m×m; V is the unitary matrix of n× n, that is, UTU = I, VTV = I; and Σ is the matrix of
m× n.

It can be obtained from Equation (29).

XV = UΣ (30)

Xνi = µiσi (31)

where νi is the eigenvector of XTX, µi is the eigenvector of XXT , σi are singular values.

σi =
Xνi
µi

(32)

Sj = ∑n
i=1 σi (33)

The corresponding singular spectrum Sj can be obtained by singular value decomposi-
tion of X. By calculating the proportion of every singular value in the singular spectrum, a
set of probability density functions can be obtained. By substituting the probability density
function into the classical entropy formula, the singular spectrum entropy of the input
signal can be obtained.

pj =
Sj

∑N
j=1 Sj

(34)

SVDp = −∑N
j=1 pj log pj (35)

2© Power spectral entropy based on frequency domain analysis
In the part of the extraction of features in the frequency domain, the power spectrum

of the input signal, P̂, has been obtained, and the power spectrum, P̂, contains r band
values. By calculating the proportion of every band value of the power spectrum P̂r in
the power spectrum, a set of probability density functions pr can be obtained. The power
spectrum entropy of the input signal can be obtained by substituting the probability density
function into the classical entropy formula.

pr =
P̂r

∑N
r=1 P̂r

(36)

PSDp = −∑N
r=1 pr log pr (37)

3©Wavelet energy entropy and wavelet packet energy entropy based on the wavelet
and wavelet packet transforms
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In the part of the extraction of features through the wavelet and wavelet packet trans-
forms, the energy Ei and energy proportion Pi of each layer after wavelet decomposition
have been calculated, and then the energy entropy can be determined.

pi =
Ei

∑N
i=1 Ei

(38)

Ep = −∑N
i=1 pi log pi (39)

4©Wavelet packet scale entropy and wavelet packet singular entropy based on the
wavelet packet transform

Similarly, the wavelet scale entropy is the Shannon entropy of the probability density
of the wavelet coefficients Coek of all nodes in the wavelet packet decomposition.

pk =
Coek

∑N
k=1 Coek

(40)

SEp = −∑N
k=1 pk log pk (41)

The calculation method of singular entropy of the wavelet packet is consistent with
that of singular spectral entropy of the input signal, that is, the singular value of each
node Sj is obtained by singular spectral decomposition of the wavelet packet coefficients
of each node, and then the singular entropy of wavelet packet SVDp is obtained by the
same method.

5© Energy entropy based on EMD decomposition
In the part of the extraction of features through the Hilbert–Huang transform, a set

of IMF (Intrinsic Mode Function) components of the input signal im fs can be obtained
by EMD decomposition, and the energy entropy of the probability density function pj
corresponding to each group of im f j can be obtained.

ps =
im fs

∑N
s=1 im fs

(42)

EMDp = −∑N
s=1 ps log ps (43)

The eigenvalues of ice avalanche events, flood events, and wind-and-rain events
extracted by using the above feature extraction methods constitute feature vectors of
different features.

2.3.3. Class Recognition Method

In this study, supervised pattern recognition was used to classify infrasound signals.
Support vector machine (SVM), K-nearest neighbor (KNN), classification tree, and BP neural
network (BPNN) were used. After preprocessing of the original infrasound signals, based
on feature vectors extracted by time and frequency domain analysis, the wavelet transform
and the Hilbert–Huang transform, classification models were constructed, and the model
parameters were improved through continuous training to achieve the best classification
effect. The trained classification models have been applied to the recognition of unknown
signals to judge classes of the signals, with the classification results output [36,37].

In order to characterize the recognition effect of the models more accurately, five
indexes—recall ratio, precision, accuracy, F1 score, and area under the curve (AUC) were
used to evaluate the classification results of the models.

The recall ratio, also known as recall, refers to the ratio of samples of a class identified
in the process of class recognition to the actual total samples of this class. It is generally



Remote Sens. 2023, 15, 4482 18 of 25

considered that the higher the value, the better the performance of the classifier is, but the
higher recall rate also means a greater possibility of misjudgment.

Re =
TP

TP + FN
∗ 100% (44)

TP refers to the number of samples of the class concerned that are true in the actual
situation and prediction, while FN is the number of samples that are true, but predicted
as false.

Precision refers to the ratio of the actual samples to the predicted samples of the
concerned class in the process of class recognition. The higher the value, the better the
performance of the classifier is.

Pr =
TP

TP + FP
∗ 100% (45)

FP represents the number of samples of the class in concern that are actually false, but
predicted as true.

Accuracy refers to the ratio of the correctly predicted events to the total events, which
characterizes the performance of the classifier. And, the higher the value, the better the
classifier is.

Ac =
TP + TN

TP + TN + FP + FN
∗ 100% (46)

TN indicates the number of samples that are false in the actual situation and prediction.
The F1 score can characterize the recall rate and accuracy rate at the same time, and it

is the harmonic average that can maintain the two indexes as high at the same time.

F1 = 2 ∗ Re ∗ Pr
(Re + Pr)

(47)

The area under the, AUC, refers to the area under the Receiver Operating Characteristic
Curve (ROC). Its abscissa is the false positive rate; its vertical coordinate is the true positive
rate, in which the true positive rate is equal to the recall rate; and the closer the curve is to the
upper left corner, the better the recognition effect is. In order to quantitatively characterize
the performance of the classifier, AUC, that is, the area under the ROC, values ranging
from 0 to 1 are introduced. The closer the AUC value is to 1, the better the performance of
the model.

As the main purpose of class identification is to identify disaster events, and this study
focuses on ice avalanche disasters, the three types of events were given different weights,
ice avalanche events 0.5, flood events 0.4, wind-and-rain events 0.1, and the comprehensive
index of each classification model was calculated.

3. Results and Discussion
3.1. Characteristic Response Analysis of Avalanche Infrasound

As only a small number of ice avalanche events have been monitored so far, the
recognition effect may not be obvious or ideal due to insufficient training samples in the
later class recognition of ice avalanche signals. Therefore, the captured six complete ice
avalanche events (about 3 min of each event) were divided into 151 short-time-series ice
avalanche events and combined with 386 samples of wind-and-rain events and 146 samples
of flood events, and the classifiers were trained to improve the effect of class identification
of ice avalanche events. The infrasound signal data of the three types of events used for
subsequent class identification in this paper all come from the infrasound monitoring
equipment installed by us. By using the above feature extraction methods, characteristic
responses of different events in waveform, sound pressure, power spectrum, and frequency
distribution have been obtained, as shown in Tables 3 and 4.
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Table 3. Characteristics of different events in time domain and frequency domain.

Event

Feature Kurtosis Skewness Sound Pressure Peak/Pa Average Power Spectrum/dB

Value Variance Value Variance Value Variance Value Variance

Ice avalanche 5.67 7.85 −0.09 0.23 2.83 7.76 −41.48 56.72
Flood 8.33 6.91 −0.13 0.10 331.80 12,214.11 −2.35 6.71

Wind and rain 6.90 7.46 −0.16 0.27 4.62 10.94 −37.83 61.43
Background 3.81 0.16 0.00 0.01 0.10 0.00 −69.56 25.25

Table 4. Wavelet frequency distribution characteristics of different events.

Event

Frequency
Range/Hz 0–0.79 0.79–1.57 1.57–3.13 3.13–6.25 6.25–12.5 12.5–25

Value Variance Value Variance Value Variance Value Variance Value Variance Value Variance

Ice avalanche 7.45 32.29 14.72 79.94 23.79 95.80 24.17 87.66 19.75 157.34 10.11 157.26
Flood 0.31 0.02 1.05 0.16 7.18 2.71 27.29 10.78 41.90 10.51 22.27 6.40

Wind and rain 10.01 27.18 22.03 74.42 30.98 75.02 21.14 47.49 10.76 28.17 5.08 6.02
Background 3.32 3.27 2.42 7.18 4.10 6.65 24.61 12.66 48.39 24.85 17.16 35.19

Different kinds of events have some differences in waveform. Figure 14 is a schematic
diagram of the waveform based on the kurtosis and skewness in Table 3. As shown in
Figure 14, the gray curve in the figure is the waveform feature of background noise, which
basically shows a standard normal distribution, and the waveform of the flood event (red
curve in the figure) has the maximum kurtosis of 8.33; therefore, it is steeper than those
of other events and has a skewness of −0.13, that is, showing a left trailing phenomenon,
which is slightly slighter than that of wind-and-rain events (green curve in the picture).
The waveform of wind-and-rain events has a skewness of −0.16 and shows a more obvious
characteristic of left trailing among the three kinds of events. In comparison, the waveform
of the ice avalanche event has kurtosis and skewness (the blue part in the figure) less
obvious than those of the other two kinds of events. In addition, there are overlaps between
the three kinds of events and background noise in frequency range, which makes it difficult
to remove the background noise. But, the background noise is very small in sound pressure
and has little impact on the events. Therefore, there was no specific processing to remove
the background noise in this study.
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In terms of frequency distribution characteristics, avalanche events, flood events,
and wind-and-rain events are mainly distributed in the frequency ranges of 1.5–9.5 Hz,
3–12.5 Hz, and 0.5–6.5 Hz, respectively, while background noise is mainly concentrated
in the frequency range of 3–12.5 Hz. As shown in Figure 15, these events have certain
overlaps among each other and overlaps with background noise, but they also differ some
in frequency characteristics.
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3.2. Class Recognition of Avalanche Infrasound

Through pre-processing and feature extraction of the three kinds of events, the fea-
tures of different events were extracted in a total of 63 dimensions, including 4 dimensions
in the time domain and the frequency domain, 7 dimensions extracted by the wavelet
transform (distribution values of wavelet coefficients), 24 dimensions extracted by the
Hilbert–Huang transform (frequency distribution value of marginal spectrum), and 14 di-
mensions of information entropy. The information entropy features are subdivided into
seven dimensions of total entropy (total entropy) and seven dimensions of partial entropy
(the partial entropy is only the information entropy of part of the components). As shown
in Table 5, there are great differences between the extracted different eigenvalues, so each
type of feature extracted should be standardized to obtain the standard input data type for
the class recognition.

Table 5. Eigenvalue categories and corresponding dimensions.

Method Total
Dimension Eigenvalue Dimension

Time–Frequency 4

Kurtosis 1

Skewness 1

Center of gravity frequency 1

Frequency standard deviation 1

Wavelet packet transform 7 Wavelet coefficient distribution 7

Hilbert–Huang transform 24 Marginal spectral frequency distribution 24
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Table 5. Cont.

Method Total
Dimension Eigenvalue Dimension

Information entropy

7

Singular spectral entropy based on time domain 1

Power spectral entropy based on frequency domain 1

Wavelet energy entropy (Total information entropy) 1
Wavelet packet energy entropy (Total information entropy) 1

Wavelet packet-scale entropy (Total information entropy) 1

Wavelet packet singular entropy (Total information entropy) 1

Energy entropy based on EMD decomposition 1

7

Wavelet energy entropy (Partial information entropy) 1

Wavelet packet energy entropy (Partial information entropy) 2

Wavelet packet-scale entropy (Partial information entropy) 2

Wavelet packet singular entropy (Partial information entropy) 2

Tables 6–10 list the recall rate, accuracy values, F1 score, AUC, and precision of the
four kinds of algorithm models.

Table 6. Comparison of recall rates of four kinds of models.

Model

Feature Type
Time–

Frequency
Information

Entropy

Partial
Information

Entropy

Total
Information

Entropy

Wavelet
Coefficient

Distribution

Marginal
Spectral

Frequency
Distribution

Support vector machine 66.6 99.4 91.3 91.3 88.0 99.1
K-nearest neighbor 68.2 99.2 91.5 89.6 82.4 93.0
Classification tree 63.9 90.3 82.5 81.9 82.8 97.7
BP neural network 70.2 99.7 85.9 90.4 93.1 99.7

Table 7. Comparison of accuracy values of the four kinds of models.

Model

Feature Type
Time–

Frequency
Information

Entropy

Partial
Information

Entropy

Total
Information

Entropy

Wavelet
Coefficient

Distribution

Marginal
Spectral

Frequency
Distribution

Support vector machine 83.1 99.7 96.6 95.1 93.8 97.4
K-nearest neighbor 87.0 99.0 94.4 92.7 92.5 98.5
Classification tree 79.6 93.7 88.0 87.1 90.0 98.0
BP neural network 81.7 99.7 90.5 91.4 95.0 100.0

Table 8. Comparison of F1 scores of the four kinds of models.

Model

Feature Type
Time–

Frequency
Information

Entropy

Partial
Information

Entropy

Total
Information

Entropy

Wavelet
Coefficient

Distribution

Marginal
Spectral

Frequency
Distribution

Support vector machine 73.1 99.5 93.7 93.1 90.5 98.3
K-nearest neighbor 75.3 99.1 92.9 91.1 86.1 95.5
Classification tree 70.1 91.9 85.0 84.3 85.6 97.8
BP neural network 75.2 99.6 88.1 90.9 94.0 99.8
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Table 9. Comparison of AUC indicators of the four kinds of models.

Model

Feature Type
Time–

Frequency
Information

Entropy

Partial
Information

Entropy

Total
Information

Entropy

Wavelet
Coefficient

Distribution

Marginal
Spectral

Frequency
Distribution

Support vector machine 0.89 1.00 0.99 0.99 0.98 1.00
K-nearest neighbor 0.89 0.99 0.99 0.98 0.95 1.00
Classification tree 0.80 0.94 0.91 0.91 0.91 0.99
BP neural network 0.90 1.00 0.98 0.98 0.99 0.96

Table 10. Comparison of precision of the four kinds of models.

Model

Feature Type
Time–

Frequency
Information

Entropy

Partial
Information

Entropy

Total
Information

Entropy

Wavelet
Coefficient

Distribution

Marginal
Spectral

Frequency
Distribution

Support vector machine 78.5 99.7 95.0 93.1 90.2 96.9
K-nearest neighbor 81.4 98.7 94.4 90.6 88.0 96.6
Classification tree 75.4 93.3 87.6 85.1 84.9 98.5
BP neural network 81.8 99.9 91.4 92.8 94.6 99.8

It can be seen from Table 6, in terms of the recall rate, support vector machine, K-
nearest neighbor algorithm, and classification tree algorithm, that models based on the
time–frequency feature have a poor class recognition effect, while BP neural network
algorithm models yield average class recognition results, and the four algorithm models
based on information entropy and marginal spectral frequency distribution all have a very
good classification effect. The support vector machine and K-nearest neighbor algorithm
based on partial information entropy have a very good classification effect, while the
classification tree and BP neural network models based on partial information entropy
have a fairly good classification effect. The support vector machine and BP neural network
model based on total information entropy have a very good classification effect; the K-
nearest neighbor algorithm and classification tree based on total information entropy have
a fairly good classification effect; and the BP neural network based on wavelet coefficient
distribution has a very good classification effect, while the other three algorithm models
based on this feature have a fairly good classification effect.

It can be seen from Table 7 that the classification tree algorithm model based on
the time–frequency feature has an average class recognition effect, and the other three
algorithm models based on this feature have a fairly good class recognition effect. The
four algorithm models based on information entropy, the wavelet coefficient distribution,
and the marginal spectral frequency distribution have a very good classification effect.
The classification tree models based on partial information entropy and total information
entropy have a fairly good classification effect, and the other three algorithms based on
these features have a very good classification effect. Generally speaking, the classification
tree algorithm has a poorer classification effect than the other three classification algorithms
in terms of accuracy.

It can be seen from Table 8 that the four algorithm models based on time–frequency
features are average in the class recognition effect; the four algorithm models based on
information entropy and marginal spectral frequency distribution features all have very
good class recognition results; the support vector algorithm models based on the other
features, except time–frequency features, have the best class recognition effect; and although
the classification tree algorithm model has a fairly good class recognition effect, it is still
dead last among the four models.

It can be seen from Table 9 that, except for the classification tree algorithm model (with
a fairly good class recognition effect), all the other three kinds of algorithm models have
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AUC indexes higher than 0.95. That is to say, they have a very good class recognition effect.
Similarly, the models based on time–frequency features have a poorer class recognition
effect; except for the classification tree model with an average class recognition effect, the
other three kinds of models based on time–frequency features have a fairly good class
recognition effect.

It can be seen from Table 10 that the precision of the BP neural network model is
the best, while classification tree is the worst, and the precision based on time–frequency
features is still the lowest. To sum up, all four kinds of models based on time–frequency
features have a poorer class recognition effect (average) than those based on other features;
the four kinds of algorithm models based on marginal spectral frequency distribution
features all have a very good class recognition effect; the classification tree model based on
information entropy has a fairly good class recognition effect; and the other models based
on information entropy have a fairly good class recognition effect. The support vector
machine model based on partial information entropy has a very good class recognition
effect, while the other models based on this feature have a fairly good class recognition
effect. The four kinds of models based on the total information entropy and distribution
characteristics of wavelet coefficients all have a fairly good class recognition effect. The
class recognition effects of the models are closely related to the differences between the
selected features, and the models based on information entropy and marginal spectral
frequency distribution features with the best classification effect characterize more details
of the original signals. Among the four kinds of models, the support vector machine and
BP neural network models are roughly the same in class recognition effect. BP neural
network models are slightly better than support vector machine models, and K-nearest
neighbor algorithm models take the third place. The classification tree models have the
poorest effect among the four kinds of models, but they still have a fairly good effect in
recognizing events by class.

Therefore, in practical application, it is not recommended to train models to recognize
events based on time–frequency features alone; but, time–frequency features can be com-
bined with other features to form recognition features of higher dimensions. Information
entropy features and marginal spectral frequency distribution features can better reflect the
subtle differences among different infrasound signals, so they can be used as recognition
features for subsequent class recognition training. The four kinds of class recognition
algorithms all have fairly good recognition results in this study, but the infrasound samples
of disasters are often few in number and uneven in distribution, so the K-nearest neighbor
and classification tree algorithms are likely to have large errors in this circumstance.

4. Conclusions and Future Prospects

The main results are as follows:
(1) The waveform of background noise basically shows a standard normal distribution;

avalanche events are steeper than background noise and show slight left skewness in
the waveform; wind-and-rain events have more left skewness in the waveform than ice
avalanche events and flood events; and flood events are steeper than the other events in
the waveform, showing obvious impact characteristics.

(2) In terms of frequency distribution, the ice avalanche events, flood events, wind-and-
rain events, and background noise are distributed in the frequency ranges of 1.5–9.5 Hz,
3–12.5 Hz, 0.5–6.5 Hz, and 3–12.5 Hz, respectively. These events have a certain overlap in
frequency, but some different characteristics. For the background noise and flood events
with the same frequency range, in the same frequency distribution range, the frequency
distribution of flood events decreases gradually with the increase in frequency, while the
frequency distribution of background noise increases at first and then decreases with the
increase in frequency, reaching a peak distribution value between 6.0 and 9.5 Hz.

(3) The BP neural network is similar to the support vector machine algorithm in class
recognition effect. The BP neural network is slightly better than the support vector machine
algorithm, followed by the K-nearest neighbor algorithm, and the classification tree algo-
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rithm is dead last in class recognition effect, so it is suggested the support vector machine
or BP neural network algorithm be used to recognize ice avalanche infrasound events.

Some research prospects are as follows:
(1) Carry out indoor ice avalanche tests. As there are few ice avalanches actually

monitored, the conclusions of this study may not be universal. Therefore, the indoor
test of ice avalanches needs to be performed. By monitoring the infrasound signal of a
glacier fracture under different variables, the early warning model of ice avalanches will be
established to further improve the accuracy of field monitoring.

(2) Construction of more ice avalanche infrasound monitoring arrays. Glaciers are
widely distributed in the Qinghai–Tibet Plateau, global warming has led to the decline of
glacier stability, and there are serious security risks. Infrasound has the characteristics of
long propagation distance and low attenuation. With the further deepening of research
work, we will deploy more infrasound arrays and a video surveillance system in the re-
search area for monitoring, which can collect a more effective and larger number of ice
avalanche infrasound event samples for the training of artificial intelligence infrasound
signal recognition models in this study. At the same time, as the number of infrasound
sensors in the infrasound array increases, it will also lay the foundation for further im-
proving the accuracy of infrasound positioning of the location of ice avalanche events. By
strengthening the construction of avalanche infrasound monitoring arrays, ice avalanche
events can be monitored and located remotely. And, we can lay the foundation for the
follow-up early warning of an ice avalanche disaster and disaster chain.
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