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Abstract: A polarimetric synthetic aperture radar (PolSAR) has great potential in ground target
classification. However, current methods experience difficulties in separating forests and buildings,
especially oriented buildings. To address this issue, inspired by the three-component decomposition
method, multiple new scattering models were proposed to describe the difference between forest
scattering and building scattering. However, this problem cannot effectively be solved with scattering
power alone since HV polarization records significant scattering powers from building areas that
are similar to vegetation. Therefore, in this study, two new parameters, the polarization orientation
angle (POA) variance and helix angle (HA) variance, were defined to describe the distributions of
buildings and forests. By combining scattering power with POA and HA variances, the random forest
algorithm was used to conduct the land cover classification, focusing on distinguishing between
forests and oriented buildings. Finally, the C- and L-band polarimetric SAR data acquired by the
GF-3, ALOS1 PALSAR, and SAOCOM systems were selected to test the proposed method. The results
indicate that it is feasible to improve PolSAR classification accuracy by introducing polarimetric
parameters. Quantitatively, the classification accuracies increased by 23.78%, 10.80%, and 12.97% for
the ALOS1 PALSAR, GF-3, and SAOCOM data, respectively.

Keywords: PolSAR; orientation angle; helix angle; classification

1. Introduction

A polarimetric synthetic aperture radar (PolSAR) can acquire images with high resolu-
tion full-time and in all weather [1,2]. In the event of disasters and wars, PolSAR has timely
and effective ground-mapping capabilities [3,4]. Using polarimetry, four polarizations
(HH, VV, HV, and VH) are used to illuminate the ground targets, making them sensitive
to the shape, orientation, and dielectric properties of illuminated targets and capable of
distinguishing different targets [5–15].

To effectively classify ground targets from PolSAR images, it is necessary to under-
stand the PolSAR scattering process [16]. To this end, PolSAR decomposition technology
has been widely used to interpret the scattering process by decomposing the PolSAR
coherency matrix into several scattering matrices related to the geometrical and physical
characteristics of ground targets. Currently, PolSAR decomposition includes coherent target
decomposition [17–19] and incoherent target decomposition [20–23]. The former is mainly
suitable for analyzing deterministic targets, while the latter can be used to investigate the
scattering process of distributed targets and has received widespread attention [24]. In par-
ticular, model-based decomposition, as an incoherent decomposition, plays an important
role in land cover classification [25–31].
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In 1998, Freeman–Durden decomposition was proposed by Freeman and Durden,
which decomposes the scattering process of the land cover into surface scattering caused
by micro-rough surfaces, double-bounce scattering generated from two mutually per-
pendicular planes, and volume scattering induced by random dipoles [20]. Although
Freeman–Durden decomposition can effectively describe the scattering process of natural
media based on the assumption of reflection symmetry, only some of the elements in the
PolSAR coherency matrix are used to interpret the scattering process. In this case, for the
oriented buildings that do not satisfy reflection symmetry, the corresponding scattering
signals are also recorded by the PolSAR coherency matrix, which cannot be interpreted
by the Freeman–Durden scattering model. As a result, the misclassification of oriented
buildings and vegetation is significant since the volume scattering contribution from ori-
ented buildings is strong and similar to that of vegetation. To solve this problem, the
non-reflection symmetry elements in the PolSAR coherency matrix should be considered in
a model-based decomposition.

There are two types of methods that can be used to describe the scattering process
following non-reflection symmetry, including scattering model-based and polarimetric
orientation rotation methods. Yamaguchi et al. first introduced the helix scattering model to
describe the scattering process linked to the imaginary part of T23, which can absorb some
scattering power of the HV channel and reduce the overestimation of volume scattering
contribution from oriented buildings to some degree [32]. In the following studies, the
most representative scattering model to absorb the scattering components following non-
reflection symmetry was proposed by Singh et al., including the six- and seven-component
decomposition models [33,34]. Compared with the Freeman–Durden scattering model,
Singh’s model can effectively reduce the overestimation of the volume scattering contri-
bution from the oriented building area. In contrast to the above scattering models, the
methods based on polarimetric orientation rotation interpret the scattering process fol-
lowing non-reflection symmetry by rotating the PolSAR coherency matrix. A reflection
symmetry algorithm is proposed by An et al. [35], in which the polarimetric orientation
angle (POA) is used to rotate the PolSAR coherency matrix so that the real part of T23 can
be changed to zero [35–38]. The helix angle (HA) corresponding to the imaginary part of
T23 is then used to rotate the PolSAR coherency matrix. Finally, the T13 is rotated to zero
by a further 45◦ POA rotation. In such a case, the T33 term has been minimized as much
as possible, which reduces the misclassification of oriented buildings and forests, and the
corresponding scattering process recorded by the PolSAR coherency matrix can be well
fitted by the Freeman–Durden scattering model.

Although the difference in scattering powers from oriented buildings and forests is
enhanced by the above two kinds of strategies, the misclassification of oriented buildings
and forests is still a common phenomenon, which makes it difficult to extract the building
areas from the PolSAR image [39]. In fact, it is hard to separate highly oriented buildings
from the PolSAR signal because the corresponding scattering contributions are mainly
recorded by the HV channel, presenting a scattering process similar to that of forests. To
solve this problem, two polarimetric parameters, polarization orientation angle (POA)
variance and helix angle (HA) variance, recording the texture information, are proposed
to enhance the distinction between buildings and forests, which is complementary to the
scattering power in classification.

2. Methodology

For PolSAR image acquisition, the scattering matrix of each pixel can be recorded as
follows [7,24]:

S =

[
SHH
SVH

SHV
SVV

]
(1)
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where the subscripts represent different polarimetric modes, e.g., HV means transmitting
vertical waves and receiving horizontal waves. According to the reciprocity condition, the
Pauli scattering vector can be expressed by the following [7,24]:

kP =
1√
2
[SHH + SVV , SHH − SVV , 2SHV ]

T (2)

Subsequently, the Pauli scattering vector can be converted to obtain the coherency
matrix T as follows [7,24]:

T =
〈

kPkH
P

〉
=

T11 T12 T13
T∗12 T22 T23
T∗13 T∗23 T33

 (3)

where * denotes the complex conjugate. To investigate the scattering process from il-
luminated targets, different decomposition methods have been proposed based on the
coherency matrix.

2.1. The Freeman–Durden Decomposition and Reflection Symmetry Approximation Methods

The Freeman–Durden decomposition method uses specific physical models to fit all
ground targets of the PolSAR image, using three scattering processes, namely, surface
scattering, double-bounce scattering, and volume scattering. Assuming that these three
scattering models are independent of each other, the corresponding coherency matrices can
be expressed as follows [20]:

T = fs

1 β∗ 0
β |β|2 0
0 0 0

+ fd

|α|2 α 0
α∗ 1 0
0 0 0

+
fv

4

2 0 0
0 1 0
0 0 1

 (4)

where fs, fd, and fv represent the scattering coefficient of the surface, double-bounce, and
volume scattering models, respectively. β and α are parameters related to the incidence
angle and the relative dielectric properties of the scatterer, respectively. By converting
Equation (4), we can obtain the following four equations [20]:

T11 = fs + fd|α|2 + 0.5 fv

T22 = fs|β|2 + fd + 0.25 fv
T12 = fsβ∗ + fdα
T33 = 0.25 fv

(5)

In such a case, Equation (5) faces the rank deficiency problem. To solve this, we
determine which of the surface scattering and the double-bounce scattering is dominant
according to the relationship between T11 and T22, and then set one of the model parameters
to be zero. In this case, all model parameters can be solved with the following [20].
Additionally, therefore, the power corresponding to different scattering mechanisms can be
subsequently calculated with the following [20]:

Ps = fs(1 + |β|2)Pd = fd(1 + |α|2)Pv = fv (6)

It is noteworthy that for the distributed target that follows reflection symmetry in the
plane normal to the line of sight, the associated coherency matrix can be expressed by the
following [24]:

T =

T11 T12 0
T∗12 T22 0
0 0 T33

 (7)

This means that the Freeman–Durden decomposition algorithm truncates the co-
herency matrix directly, and T13 and T23 should be set to 0 [20]. However, this stronger
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assumption is invalid for oriented buildings because they are not symmetrical in the plane
that is normal to the line of sight. To address this issue, a new reflection symmetry algo-
rithm was proposed in [26,36]. The core idea is to rotate T13 and T23 to zero using POA and
HA rotations [35]. By doing so, the resultant new coherency matrix satisfies the reflection
symmetry assumption, allowing the Freeman–Durden decomposition to use it. In addition,
since the new coherency matrix is obtained by rotating the POA and HA, the power of
different scattering mechanisms contained in the matrix is redistributed. As a result, the
double-bounce scattering power is significantly enhanced, and the volume scattering power
is suppressed, which is expected to improve the discrimination between oriented buildings
and forests.

2.2. POA Variance and HA Variance

It is important to note that rotating the measured matrix is similar to rotating an
oriented building toward the radar’s line of sight. The orientation angle information of
ground objects is no longer included in the rotated observation matrix due to the real part
of T23 being turned to zero [37]. In such a case, the rotated matrix makes it difficult to
explore the scattering differences between buildings with different POAs. Thus, orthogonal
buildings and oriented buildings still cannot effectively be distinguished solely based
on the scattering power due to the lower sensitivity to building orientations. In addition,
although the POA and HA compensations can enhance the double-bounce scattering power
for oriented buildings, the double-bounce scattering power for forest areas is also increased.
It is foreseeable that improvements in classification accuracy are limited. Therefore, besides
scattering power, we must seek more information or parameters to improve the distinction
between buildings of different orientations and forests. The scattering power derived from
the PolSAR decomposition only describes the scattering properties of individual pixels.
However, different ground targets have different texture features in space. As a supplement
to scattering power, adding texture information is helpful for land-cover classification.

When short-wavelength SAR is used to observe vegetation, the POA mainly reflects
the orientation of scatterers within the canopy due to the limited penetration. In the case of
long-wavelength SAR data, the POA represents both vegetation and ground orientations.
Typically, the randomness associated with canopy scatterer orientations is high, resulting
in significant variations in POA from pixel to pixel. Conversely, orthogonal buildings often
exhibit regular arrangements, leading to approximate POAs among neighborhood pixels.
This contrast allows for a better distinction between buildings and forests. In addition,
the HA can also describe the distribution of scatterers, providing valuable information
for separating buildings from forests. Drawing inspiration from the concept of POA
randomness [40], we defined the POA variance and HA variance as follows:

(1) Compute the POA θ and HA ϕ for the entire PolSAR image:

θ =
1
2

atan
(

2Re(T23)

T22 − T33

)
ϕ =

1
2

atan
(

2Im(T23)

T22 − T33

)
(8)

where Re(T23) and Im(T23) denote real and imagenary parts of T23. Then, labels
are assigned from 1 to 10 based on the values of the POA and HA, as illustrated in
Figure 1a. In this study, the decision to divide the orientation angles into 10 parts
is driven by the objective of preventing targets with similar orientations from being
classified into different categories.

(2) To calculate the POA variance SPOA and HA variance SHA for each pixel, the following
formula can be used:

SPOA = ∑M∗N
i=1 (ϑi−ϑ)

2

M∗N

SHA = ∑M∗N
i=1 (ψi−ψ)

2

M∗N

(9)
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where ϑi and ψi represent the label of the POA and the label of the HA, respectively. ϑ
and ψ are the labels of the central pixel. M ∗ N denotes the number of window sizes
used to calculate the variance, as illustrated by Figure 1b.
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Figure 1. Schematic diagram of POA variance and HA variance. (a) Ten labels of POA values.
(b) Neighborhood pixels involved in statistics. Red and green represent the central pixel and sur-
rounding pixels, respectively.

2.3. Classification Method

To perform the classification, we first employ the Freeman–Durden decomposition
and reflection symmetry algorithms [35], as described in Section 2.1, to obtain the surface,
double-bounce, and volume scattering powers. Following that, the POA variance and HA
variance are calculated using the method outlined in Section 2.2. Finally, the random forest
method is applied to each image to derive the final classification result [41,42].

To train the random forest model, we selected 1% of all pixels and ensured that these
sample pixels covered all land cover types. In addition, the number of decision trees
was set to 100 in this study, and the feature importance was evaluated with the Gini
coefficient [41,42]. To better evaluate the performance of the proposed parameters, three
feature sets were used for classification {Ps, Pd, and Pv}, {Ps, Pd, Pv, and POA random-
ness [40]}, and {Ps, Pd, Pv, POA, and HA variances}. A detailed flowchart of the proposed
method for land cover classification is shown in Figure 2.
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3. Study Areas and Datasets

To test the proposed method, we used three different PolSAR datasets. The first one
was from the ALOS1 PALSAR at L-band, acquired over San Fernando Valley, California,
USA. This image was collected on 8 June 2006 in the PLR mode. The second dataset,
from the GaoFen-3 at C-band, was collected over Oakland, Virginia, USA. This image was
acquired on 15 September 2017. The third dataset, from SAOCOM data at the L-band, was
collected over Guangzhou, China. This image was acquired on 12 November 2022. All of
these SAR images were acquired in Stripmap mode with full polarization. The coverage of
these datasets is shown in Figure 3, and the corresponding parameters of all the PolSAR
data used in this study are listed in Table 1.
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Table 1. Datasets over three different study areas.

Study Area Dataset Acquisition
Date

Incidence
Angle Band Pixel Spacing

(Range × Azimuth) (m)
Image Size

(km)

San Fernando
Valley ALOS1 8 June 2006 23.85◦ L- 9.37 × 3.55 42 × 23

Oakland GF-3 15 September
2017 21.22◦ C- 2.25 × 5.37 17 × 10

Guangzhou SAOCOM 12 November
2022 22.35◦ L- 4.80 × 6.00 35 × 17

To assess the classification results derived by the proposed method, ground truth data
of land cover type were employed, manually outlined against the optical map. In the San
Fernando Valley test site, the predominant land cover types include forests, orthogonal
buildings, and oriented buildings. These land types are well-suited for evaluating the effec-
tiveness of the proposed method. The Oakland test site encompasses the same land cover
types found in the San Fernando Valley test site, which provides a similar environment for
evaluating the proposed method. Compared with the first two test areas, the third research
area, located in Guangdong Province, China, covers more fragmented ground categories.
Experiments using three PolSAR images covering targets with different characteristics can
more strongly demonstrate the role of the proposed parameters in land-cover classification.
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4. Experimental Results and Analysis
4.1. San Fernando Valley Test Site

To reduce speckle noise, a multi-look operation was applied to the images. The final
azimuth and range resolutions are 13 m and 12 m, respectively. Figure 4a shows the
Pauli color-coded image, while the ground truth map is shown in Figure 4b. It can be
observed that for the orthogonal building area, the double-bounce scattering contribution
is significant, which is different from the chaparral area. However, for the oriented building
area, strong volume scattering contribution makes it difficult to distinguish from the
chaparral area.
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Figure 4. San Fernando Valley test site: (a) the Pauli color-coded image of ALOS1 PALSAR data;
(b) ground truth map.

The classification results of {Ps, Pd, Pv} are shown in Figure 5a. It is important to note
that the three scattering powers were calculated by the reflection symmetry algorithm [37].
In Figure 5a, many oriented buildings are misclassified as chaparral areas, indicating
that using only scattering power cannot effectively distinguish oriented buildings from
chaparral areas. To analyze the reason for this result, the decomposition results of the
reflection symmetry algorithm are shown in Figure 6. In the areas with oriented buildings,
the double-bounce scattering power is weak, while the volume scattering power is strong,
resulting in similar scattering characteristics to the chaparral area. Thus, oriented buildings
are difficult to distinguish from forests.
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Figure 6. San Fernando Valley test site: Decomposition result obtained by the reflection symmetry
algorithm. The ratio between total power and (a) surface scattering power, (b) double-bounce
scattering power, and (c) volume scattering power.

The classification results from {Ps, Pd, Pv, POA randomness [40]} are shown in
Figure 5b. In Figure 5b, in addition to the misclassification between oriented buildings
and chaparals, many oriented buildings are misclassified as orthogonal buildings. As
Figure 7a shows, some oriented buildings have POA randomness as low as that of the
orthogonal buildings, while buildings oriented otherwise have very high POA randomness,
like chaparrals. This leads to difficulty in learning clear features of oriented buildings for
the classifier. The reason for this is that POA randomness generally regards buildings and
chaparals with a difference of 40◦ in the POA as the same label, which cannot effectively
reflect the difference between orthogonal buildings, oriented buildings, and chaparals.
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The classification results from {Ps, Pd, Pv, POA, and HA variances} are shown in
Figure 5c. We can observe that the proposed parameters effectively improve the classifi-
cation accuracy of orthogonal buildings, oriented buildings, and chaparals. To conduct
further analysis, the POA variance and HA variance are shown in Figure 7b,c. The POA
variance is small in the orthogonal building area and large in the chaparral area. Such
differences make it possible to distinguish chaparals from oriented buildings. The HA
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variance of the orthogonal building area is smaller than that of the oriented building area
and chaparral area, which can be used to identify the orthogonal buildings. By introduc-
ing POA and HA variance, the proposed method can provide better classification results
than POA randomness. The reason for this advantage is that firstly, all POA values are
divided into 10 groups, which better reflects the detailed information of different categories
compared to dividing POA values into 5 groups in the literature [40]. In addition, variance
is more conducive to extracting detailed information than randomness. According to the
definition of these two parameters, the value range of variance is much larger than that of
randomness. Secondly, the texture information of POA and HA can reflect the differences
between these three kinds of ground targets, but the scattering power is limited in terms of
this aspect.

The ability of POA and HA variances to distinguish the three ground targets was
quantitatively analyzed, as shown in Tables 2–4. Compared with existing methods, the
classification accuracy obtained by the proposed method was improved by 23.78% and
5.98%, respectively. Thus, introducing POA and HA variances effectively improves the
distinction between different targets. The improvement in the classification accuracy of
orthogonal buildings and oriented buildings is the most obvious. The reason for this is that
the proposed parameters reflect the difference between buildings with different orientation
angles. As shown in Figure 8, the POA variance is small in the orthogonal buildings since
the SAR signal returns directly after interacting with the dihedral structure formed by
the ground and building walls. In oriented buildings, the SAR signal bounces between
buildings, so the POA variance increases. Therefore, the POA variance effectively improves
the distinguishability between orthogonal and oriented buildings. In addition, introducing
HA variance further improves the classification accuracy of the oriented buildings. In
addition to the rotation, the features of ground objects described by HA also include
structures with different distances from radar signals. Therefore, introducing POA and HA
variance can help to fully explore the distribution characteristics of different ground types.

Table 2. Quantitative classification results from {Ps, Pd, Pv}.

Classification Orthogonal Buildings Oriented Buildings Chaparral

Orthogonal buildings 58.91% 4.92% 0.99%
Oriented buildings 20.04% 29.23% 1.20%

Chaparral 21.05% 65.85% 97.81%

Overall accuracy 68.67% Kappa coefficient 0.50

Table 3. Quantitative classification results from {Ps, Pd, Pv, and POA randomness}.

Classification Orthogonal Buildings Oriented Buildings Chaparral

Orthogonal buildings 83.88% 6.57% 0.88%
Oriented buildings 10.62% 38.88% 1.30%

Chaparral 5.50% 54.55% 97.82%

Overall accuracy 80.20% Kappa coefficient 0.68

Table 4. Quantitative classification results from {Ps, Pd, Pv, POA, and HA variances}.

Classification Orthogonal Buildings Oriented Buildings Chaparral

Orthogonal buildings 89.39% 4.76% 1.37%
Oriented buildings 4.37% 51.39% 0.59%

Chaparral 6.24% 43.85% 98.04%

Overall accuracy 85.00% Kappa coefficient 0.76
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4.2. Oakland Test Site

The C-band GF-3 PolSAR data were used to further validate the proposed method. A
multi-look operation was applied to reduce the speckle noise. The final azimuth and range
resolutions were approximately 6 m and 5 m, respectively. The Pauli color-coded map and
ground truth map are shown in Figure 8.

The classification results obtained by different parameters are shown in Figure 9. As
expected, the results derived with the scattering power alone cannot effectively distinguish
orthogonal buildings, oriented buildings, and mixed hardwood forests (see Figure 9a).
Adding the POA randomness as a feature does not effectively improve the classification
accuracy (Figure 9b). To investigate the reasons behind this phenomenon, the POA ran-
domness of the orthogonal buildings area (red box), sparsely oriented buildings area (green
box), densely oriented buildings area (white box), and mixed hardwood forest area (black
box), were selected for analysis (Figure 10a). The POA randomness of orthogonal buildings
and sparsely clustered oriented buildings is very small, but that of the densely clustered
oriented buildings and mixed hardwood forests have large values. The oriented buildings
have two types of contradictory features, which causes the classifier to learn inaccurately.
Compared with other parameters (Figure 9a,b), combining the POA variance, HA variance,
and scattering power has better accuracy in discriminating these three types of ground
targets (Figure 9c). More specifically, the mixing of orthogonal and oriented buildings is
greatly reduced. This further validates the ability of the proposed parameters in PolSAR
image classification.

The quantitative classification results of different methods for C-band GF-3 data are
shown in Table 5. The overall accuracy increases from 73.37% and 75.78% to 81.30% with
the proposed method. In detail, the classification accuracy of oriented buildings increases
from 67.03% and 69.29% to 75.15%. This is mainly attributed to the detailed division of
the POA and HA variance. We divide the possible values of the POA into ten groups
and use the variance to calculate its texture features. The difference between orthogonal
and oriented buildings provides more detailed information for classification. It helps the
classifier to learn object features from different aspects. However, the proposed method
cannot effectively distinguish between densely clustered oriented buildings and forests
because they exhibit similar POA and HA variance. As shown in Figure 11, the POA
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and HA are very noisy in the densely oriented building area because SAR signals reflect
between buildings. As reflection increases, the spatial randomness of the POA increases.
However, in general, the POA and HA variance effectively increase the distinguishability
among the three types of ground targets.
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Table 5. Quantitative classification results of different methods for C-band GF-3 data.

Classification Orthogonal
Buildings

Oriented
Buildings

Mixed Hardwood
Forest Overall Accuracy Kappa Coefficient

{Ps, Pd, and Pv} 98.44% 67.03% 84.76% 73.37% 0.50
{Ps, Pd, Pv, and

POA randomness} 98.60% 69.29% 85.00% 75.78% 0.55

{Ps, Pd, Pv, POA,
and HA variances} 96.47% 75.15% 86.87% 81.30% 0.66

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

The quantitative classification results of different methods for C-band GF-3 data are 
shown in Table 5. The overall accuracy increases from 73.37% and 75.78% to 81.30% with 
the proposed method. In detail, the classification accuracy of oriented buildings increases 
from 67.03% and 69.29% to 75.15%. This is mainly attributed to the detailed division of the 
POA and HA variance. We divide the possible values of the POA into ten groups and use 
the variance to calculate its texture features. The difference between orthogonal and 
oriented buildings provides more detailed information for classification. It helps the 
classifier to learn object features from different aspects. However, the proposed method 
cannot effectively distinguish between densely clustered oriented buildings and forests 
because they exhibit similar POA and HA variance. As shown in Figure 11, the POA and 
HA are very noisy in the densely oriented building area because SAR signals reflect 
between buildings. As reflection increases, the spatial randomness of the POA increases. 
However, in general, the POA and HA variance effectively increase the distinguishability 
among the three types of ground targets. 

 
Figure 11. Oakland test site: (a) POA map. (b) HA map. 

Table 5. Quantitative classification results of different methods for C-band GF-3 data. 

Classification Orthogonal Buildings Oriented Buildings Mixed Hardwood Forest Overall Accuracy Kappa Coefficient 
{Ps, Pd, and Pv} 98.44% 67.03% 84.76% 73.37% 0.50 

{Ps, Pd, Pv, and POA randomness}  98.60% 69.29% 85.00% 75.78% 0.55 
{Ps, Pd, Pv, POA, and HA variances} 96.47% 75.15% 86.87% 81.30% 0.66 

4.3. Guangzhou Test Site 
The L-band SAOCOM data were also used to validate the effectiveness of the 

proposed POA and HA parameters. The PolSAR image was processed using the multi-
look operation to reduce the speckle noise. The azimuth and range resolutions are 
approximately 30 m × 30 m. The Pauli color-coded map and ground truth map are shown 
in Figure 12. 

The classification results from different polarization parameters are shown in Figure 
13. Firstly, it can be observed that all three methods can identify the water area well. 
Regarding other areas, the proposed method exhibits superior performance in land cover 

Figure 11. Oakland test site: (a) POA map. (b) HA map.

4.3. Guangzhou Test Site

The L-band SAOCOM data were also used to validate the effectiveness of the proposed
POA and HA parameters. The PolSAR image was processed using the multi-look oper-
ation to reduce the speckle noise. The azimuth and range resolutions are approximately
30 m × 30 m. The Pauli color-coded map and ground truth map are shown in Figure 12.

The classification results from different polarization parameters are shown in Figure 13.
Firstly, it can be observed that all three methods can identify the water area well. Regarding
other areas, the proposed method exhibits superior performance in land cover classification.
Specifically, Figure 13a,b show that some oriented buildings are misclassified as seasonal
tropical forests. Neither scattering power nor POA randomness can depict the difference
between buildings with different orientation angles and seasonal tropical forests. However,
the classification results obtained by the proposed method (see Figure 13c) indicate a
significant improvement compared to those of the other two methods (Figure 13a,b). These
results can be attributed to the introduction of the POA variance and HA variance. To
further analyze the potential of the proposed parameters, the quantitative evaluation results
were summarized, as shown in Table 6. The overall accuracy was increased from 74.62%
and 76.94% to 84.30% with the proposed method. In detail, the classification accuracies
increased from 91.42%, 69.12%, 32.90%, and 84.03% to 95.19%, 88.07%, 48.07%, and 91.10%
for water, orthogonal buildings, oriented buildings, and seasonal tropical forest areas,
respectively. These results further confirm the potential of the proposed parameters in land
cover classification.
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Table 6. Quantitative classification results of different methods for L-band SAOCOM data.

Classification Water Orthogonal
Buildings

Oriented
Buildings

Seasonal
Tropical Forest

Overall
Accuracy

Kappa
Coefficient

{Ps, Pd, and Pv} 91.42% 69.12% 32.90% 84.03% 74.62% 0.64
{Ps, Pd, Pv, and POA

randomness} 91.65% 81.50% 25.88% 87.36% 76.94% 0.68

{Ps, Pd, Pv, POA, and
HA variances} 95.19% 88.07% 48.07% 91.10% 84.30% 0.78

5. Discussion
5.1. The POA and HA Characteristics of Ground Targets

To validate the effectiveness of POA and HA variances for land cover classification,
POA and HA histograms of the ALOS1 PALSAR data over different areas were created, as
shown in Figure 14. The distribution of orientation angles in the forest area is flatter, that
of orthogonal buildings is sharper, and that of oriented buildings is in between. This is
consistent with the initial conjecture. The reason for this is that the orientations of scatterers
in the vegetation canopy are random, which increases the difference in orientations between
pixels, resulting in a larger POA variance. Orthogonal buildings are arranged along the
radar line of sight. SAR signals return to the radar sensor after being reflected by the ground
and building walls. The scattering process is regular, and the POA difference between
pixels is small, resulting in a small POA variance. The orientations of oriented buildings
are not as random as the vegetation canopy. However, because the arrangement direction
of oriented buildings is not along the radar line of sight, the SAR signals continue to reflect
between the walls, which increases the difference in POA, resulting in a moderate POA
variance. Chaparrals, orthogonal buildings, and oriented buildings have different POA
variances, which provides insight into the distinction among the three targets. Furthermore,
orthogonal buildings are the most concentrated, followed by directional buildings and
chaparrals. In addition, there are differences in HA distribution and POA distribution. In
such a case, combining POA and HA variances can explore more comprehensive orientation
information of ground targets.
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for forests.
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5.2. The Effect of Window Size on Classification Results

The window size affects the POA and HA variances, thus affecting the classification
accuracy. To analyze the impact of window size on classification results, three window
sizes of 3 × 3, 7 × 7, and 13 × 13 were selected for comparison. The classification results of
the POA variance calculated with three different windows are shown in Figure 15. It can be
observed that as the window size increases, the classification results become smoother. The
reason for this is that the larger the window, the more stable the statistical results of the
POA and HA variances. However, it is difficult to evaluate the optimal window suitable
for PolSAR image classification. The reason is that enlarging the window enlarges the
regions of correct classification and misclassification simultaneously. On the one hand, as
shown in the black rectangular areas, the area where the oriented buildings are misdivided
into orthogonal buildings increases with the increase in window size. On the other hand,
for the red rectangular areas, the increase in window size avoids the misclassification of
oriented buildings as chaparrals. However, if some ground truth data were available, the
relationship between window size and classification performance could be analyzed to
derive the optimal statistical window for POA and HA variances.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 14. POA and HA histograms for ALOS1/PALSAR1 data. (a) POA histogram for orthogonal 
buildings. (b) POA histogram for oriented buildings. (c) POA histogram for chaparrals. (d) HA 
histogram for orthogonal buildings. (e) HA histogram for oriented buildings. (f) HA histogram for 
forests. 

5.2. The Effect of Window Size on Classification Results 
The window size affects the POA and HA variances, thus affecting the classification 

accuracy. To analyze the impact of window size on classification results, three window 
sizes of 3 × 3, 7 × 7, and 13 × 13 were selected for comparison. The classification results of 
the POA variance calculated with three different windows are shown in Figure 15. It can 
be observed that as the window size increases, the classification results become smoother. 
The reason for this is that the larger the window, the more stable the statistical results of 
the POA and HA variances. However, it is difficult to evaluate the optimal window 
suitable for PolSAR image classification. The reason is that enlarging the window enlarges 
the regions of correct classification and misclassification simultaneously. On the one hand, 
as shown in the black rectangular areas, the area where the oriented buildings are 
misdivided into orthogonal buildings increases with the increase in window size. On the 
other hand, for the red rectangular areas, the increase in window size avoids the 
misclassification of oriented buildings as chaparrals. However, if some ground truth data 
were available, the relationship between window size and classification performance 
could be analyzed to derive the optimal statistical window for POA and HA variances. 

 
Figure 15. Classification results of the POA variance using different window sizes. (a) 3 × 3; (b) 7 × 
7; (c) 13 × 13. The black and red rectangular ares are oriented buildings misclassified as orthogonal 
buildings and forests respectively. 

Figure 15. Classification results of the POA variance using different window sizes. (a) 3× 3; (b) 7 × 7;
(c) 13 × 13. The black and red rectangular ares are oriented buildings misclassified as orthogonal
buildings and forests respectively.

5.3. Complementary Properties of Scattering Power and Proposed Parameters

Scattering power data derived from the PolSAR decomposition scheme are widely
used for land-cover classification. However, they only describe the scattering characteristics
of a single pixel. It is important to note that the different ground targets have different
texture features in space. The scattering power tends to describe the geometric and physical
properties in the resolution unit, while the texture features tend to describe the characteris-
tics of local ground targets. Thus, texture features are a complement to scattering power for
classification [43,44]. In such a case, we suggest combining scattering power and texture
features for classification.

Furthermore, considering that texture features can effectively improve the classifi-
cation accuracy of ground targets, more texture features will be proposed and used for
classification in the future. Texture features related to orientation angle are used in this
study. It is important to note that the scattering power also has texture information. For
example, the double-bounce scattering powers of orthogonal buildings have little vari-
ety. As the orientation angle increases, the randomness of the double-bounce scattering
intensity increases because the SAR signal is reflected back and forth on the wall. In the
vegetation areas, due to the discontinuity of the canopy gap, the double-bounce scattering
intensities have a large difference between neighboring pixels. The calculation processes
of the variances of {Ps, Pd, Pv} are similar to those of POA and HA variances. The ratio of
scattering power to total power is evenly divided into ten parts from 0 to 1, and a window
of size 3 × 3 is used to estimate scattering power variances.
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The ALOS1 PALSAR classification results of {Ps, Pd, Pv, and the variances of Ps, Pd,
Pv, POA, and HA} are shown in Figure 16 and Table 7. Compared with the classification
results by {Ps, Pd, Pv, POA, and HA variances}, the accuracy of oriented buildings has been
significantly improved. Further comparing Tables 4 and 7, it can be found that the total
accuracy has increased from 85% to 87.53%. The more surprising observation is that the
classification accuracy of oriented buildings has improved from 51.39% to 72.65%. This
further validates the role of texture feature parameters in land-cover classification.
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Table 7. Quantitative classification results from {Ps, Pd, Pv, the variances of Ps, Pd, Pv, POA, and HA}.

Classification Orthogonal Buildings Oriented Buildings Chaparral

Orthogonal buildings 92.04% 6.19% 1.02%
Oriented buildings 6.06% 72.65% 8.02%

Chaparral 1.90% 21.16% 90.95%

Overall accuracy 87.53% Kappa coefficient 0.81

6. Conclusions

Classifying forests and buildings with different orientations is important for urban
planning and forest parameter inversion. However, existing decomposition methods cannot
effectively distinguish buildings with different orientation angles from forests. The core
reason for this is the overestimation of volume scattering. Although novel decomposition
schemes have been proposed to reduce the volume scattering power for oriented buildings,
the volume scattering power for forest areas is also reduced. This does not effectively
improve classification accuracy. In such a case, a type of polarimetric parameter that
is capable of distinguishing oriented buildings from forests makes sense for land cover
classification. Therefore, polarization orientation angle (POA) variance and helix angle
(HA) variance are proposed. The two proposed parameters record the texture information
of ground targets, and they supplement the scattering power in classification. Between
adjacent pixels, the POAs of vegetation canopy scatterers are relatively random, the POAs
of orthogonal buildings are more regular, and the POAs of oriented buildings are slightly
higher than those of orthogonal buildings due to the continuous reflection of SAR signals
between walls. Thus, the variances in orientation angles are the largest for forested areas,
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followed by oriented buildings and forests. The introduction of POA and HA variances can
contribute to the efficacy of the decomposition method in classifying oriented buildings and
forests. The full polarization data obtained by different satellites working at different bands
are used to demonstrate the proposed parameters. The classification accuracy increased by
23.78%, attributed to the proposed polarimetric parameters. Furthermore, the proposed
parameters have deepened the understanding of POA and HA of different ground targets.
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