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Abstract: Floods are natural events that can have a significant impacts on the economy and society of
affected regions. To mitigate their effects, it is crucial to conduct a rapid and accurate assessment of
the damage and take measures to restore critical infrastructure as quickly as possible. Remote sensing
monitoring using artificial intelligence is a promising tool for estimating the extent of flooded areas.
However, monitoring flood events still presents some challenges due to varying weather conditions
and cloud cover that can limit the use of visible satellite data. Additionally, satellite observations may
not always correspond to the flood peak, and it is essential to estimate both the extent and volume
of the flood. To address these challenges, we propose a methodology that combines multispectral
and radar data and utilizes a deep neural network pipeline to analyze the available remote sensing
observations for different dates. This approach allows us to estimate the depth of the flood and
calculate its volume. Our study uses Sentinel-1, Sentinel-2 data, and Digital Elevation Model (DEM)
measurements to provide accurate and reliable flood monitoring results. To validate the developed
approach, we consider a flood event occurred in 2021 in Ushmun. As a result, we succeeded to
evaluate the volume of that flood event at 0.0087 km3. Overall, our proposed methodology offers
a simple yet effective approach to monitoring flood events using satellite data and deep neural
networks. It has the potential to improve the accuracy and speed of flood damage assessments, which
can aid in the timely response and recovery efforts in affected regions.

Keywords: flood; water bodies; computer vision; remote sensing

1. Introduction

Floods are one of the most catastrophic natural disasters, affecting millions of people
globally and resulting in significant economic and environmental damage. Traditional
methods of flood monitoring, such as ground-based surveys and aerial photography, can be
time-consuming, costly, and hazardous [1]. The use of remote sensing data and computer
vision techniques can provide a faster and more efficient solution for flood monitoring and
damage assessment [2].

Over the past few decades, remote sensing data has become increasingly accessible and
has been widely used for monitoring and mapping both vegetation cover [3], infrastructure
objects [4], and water bodies [5]. Remote sensing imagery can provide a synoptic view
of the flooded area, and by analyzing the image data, it is possible to estimate the extent
of the flooded area. For instance, in [6], Hernandez et al. showed how accurately flood
boundaries can be assessed in real-time using unmanned aerial vehicles (UAVs). Feng et al.
applied UAVs to monitor urban flood in [7] using a random forest algorithm. The authors
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achieved the overall accuracy of 87.3%. In [8], Hashemi-Beni et al. also proposed a deep
learning approach for flood monitoring with processing of optical images.

Although UAV-based measurements provide detailed information about flooded areas,
such observations are not always available during a disasters due to factors such as limited
flight time, poor weather conditions, or logistical constraints. Satellite remote sensing is
more suitable in particular cases. A growing body of research has explored the use of data
from various apparatus and sensors for water body monitoring. Several satellite missions
are commonly used for water body monitoring, including Terra, Aqua, Landsat, Ikonos,
WorldView-1, WorldView-2, GeoEye-1, Radarsat-2, Sentinel-1, and Sentinel-2 [9]. These
missions vary in terms of spatial and spectral resolution, as well as revisit time, and are
used for different purposes. For instance, low resolution data are typically used for flood
alerts on a regional scale, due to large spatial coverage [10], while higher resolution and
more expensive data can be applied for precise analysis and damage assessment. In [11],
Moortgat et al. utilized commercial satellite imagery with very high spatial resolution
in combination with deep neural networks to develop a hydrology application. Another
source of high-resolution close-to-real-time satellite observations is Chinese GaoFen mis-
sion, which provides data for governmental and commercial organizations. Zhang et al.
also demonstrated flood detection on the territory of China during the summer period
using datasets collected from Chinese mission satellites GaoFen-1, GaoFen-3, GaoFen-6 and
Zhuhai-1 in [12]. Water indices based on multispectral data are also significant for flood
assessment based on missions such as Sentinel-2 [13] and Landsat imagery [14]. In addition
to the trainable models, rule-based methods are also used, such as the method proposed by
Jones in [15]. The author presented several rules for determining the water surface based
on the raw values of Landsat images, as well as indices calculated on their basis. However,
due to the use of rules that were investigated only based on the existing data, such an
approach becomes more complicated to generalize for new satellite sensors that might be
highly actual at present time. The service inspired by this approach is available in [16].

Although solutions based on visible satellite data show high performance, they can
be limited due to varying weather conditions and cloud cover [17]. In [18], Dong et al.,
demonstrate the possibility of segmenting floods on the territory of China using Sentinel-1
satellite images and convolutional neural networks. In [19], Bonafilia et al. collected and
annotated the dataset accompanied by Sentinel-1 data to map flooded areas in various
geographical regions. Bai et al. show, in [20], the potential for identifying temporarily
flooded areas and permanent water bodies using the modern Boundary-Aware Salient
Network (BASNet) architecture [21], which utilizes a predict-refine architecture and a
hybrid loss, allowing highly accurate image segmentation, achieving an accuracy of 76%
Intersection over Union (IoU) in the above-described task. In [22], Rudner et al. propose
to implement a modern approach for segmenting flooded buildings by using data jointly
from different dates and sensors of various satellites. However, the use of SAR data alone
does not give results as good as the use of multi-spectrum data, and such approaches have
significant limitations, for example, if there is urban development in the studied region due
to re-reflections of the radar signal from the walls of buildings, objects, etc.

In addition, estimating the extent of a flood alone may not be sufficient for effective
flood management. It is necessary to estimate both the extent and volume or depth of the
flood. The importance of depth estimation of flooded areas is highlighted by Quinn et al.
in [23]. It is shown that depth can be used for economical loss computation. Estimating
water volume during floods also holds critical significance for multiple reasons. Firstly,
it provides essential inputs for hydrological models that simulate flood behavior, aiding
in understanding how floodwaters propagate through watersheds. This information,
combined with accurate flow rate calculations, is pivotal for assessing flood severity,
designing hydraulic structures, and predicting rapid water level rises in flash floods.
Moreover, precise water volume estimates contribute to real-time stream gauging, enabling
timely flood monitoring and early warnings to safeguard communities. Additionally,
these estimates serve as foundational data for hydrological research, advancing flood
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forecasting techniques and enhancing our understanding of climate change impacts on
flood occurrences. Approaches for estimating water volume usually involve auxiliary
topographic data. Rakwatin et al. explored spatial data acquisition and processing for flood
volume calculation in [24]. In [25], Cohen et al. used flood maps with a Digital Elevation
Model (DEM) to estimate floodwater depth for coastal and riverine regions. The approach
relies on selecting the nearest boundary cell to the flooded domain and subtracting the
inundated land elevation from the water elevation value [26]. The calculated water depth
is then compared with hydraulic model simulation. The authors suggest using floodwater
extent maps derived from remote sensing classification. A similar approach is explored
in [27], where Budiman et al. used Sentinel-1 data and DEM to estimate flash flood volume
by multiplying depth and each pixel size. However, these approaches do not involve usage
of such advanced algorithms as convolutional neural networks.

In our research, we assume that using several models that utilize different sets of
input data allow us to have several options for making predictions taking into account the
availability and quality of the data. Floods occur quickly, thus, such variability in models
ensures relevant and more accurate results. Therefore, our objective is to design an ML-
based approach for flood extent and volume monitoring that overcomes current limitations
and involves several stages. To deliver both high-quality and prompt results, we combine
multispectral and radar data derived from Sentinel-2 and Sentinel-1 satellites, respectively.
This enables high model performance in cloudy conditions and detailed mapping on
cloudless dates. Additionally, feature space selection plays a vital role in developing a
robust model, so we considered different spectral indices in addition to the initial satellite
bands. To create flood volume maps, we use a combination of model predictions with flood
extent and DEM measurements. To evaluate the proposed methodology, we conducted
experiments using various popular neural network architectures, such as U-Net, MA-Net,
and DeepLabv3. We also assessed their quality on a real-life case involving a flood that
occurred in Ushmun, Russia, in 2021. The annotations for this event were created manually.
The main contributions of the work are the following:

• We proposed a flood extension estimation pipeline based on Sentinel-1 and Sentinel-2
data that utilizes neural network technology;

• We took into account possible real-life limitations such as satellite data availability
and cloud coverage during flood events;

• We explored different deep learning architectures and investigated feature spaces to
optimize our approach;

• Additionally, we developed a method for flood volume estimation that utilizes both
DEM and predicted flood extent.

2. Materials and Methods
2.1. Dataset
2.1.1. Data Description

The training and testing datasets are formed based on the labels from the open dataset
Sen1Floods11 [19]. The original dataset includes only raw Sentinel-1 images. We separately
collected and additionally preprocessed data from Sentinel-1 and Sentinel-2 satellites for
the associated dates (preprocessing details are provided in Section 2.1.2). The original
dataset was collected across six continents and covers territories with different climatic,
topographic, and natural factors. The dataset includes 11 floods worldwide that occurred
from 2016 to 2019. The labeling contains three classes: water bodies, non-water areas, and
clouds. Examples of RGB composites and ground truth labeling are provided in Figure 1.
The total area of the considered territory is 120,406 km2, of which only about 10,000 km2

are manually labeled. For labeling the rest of the areas, indices based on Sentinel-1 and
Sentinel-2 data are used. However, it was noticed that the labeling in the Sen1Floods11
dataset based on the indices is less accurate. Therefore, we used only more precise manual
annotation in present research. The dataset statistics are presented in Table 1.
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(a) (b)

Figure 1. Examples of flood annotation from Sen1Floods11 dataset [19] and additionally collected
Sentinel-2 data: RGB channels of Sentinel-2 satellite (a), manual original markup with additional
cloud mask from Sentinel-2 product (b). Legend: water, background, clouds.

Table 1. Sen1Floods11 Dataset’s statistics.

Area Number of Images

Train area 6553.6 km2 250 images
Test area 2175.8 km2 83 images

Validation area 2175.8 km2 83 images

2.1.2. Image Processing

The SentinelHub service [28] was used to download images from Sentinel-1 and
Sentinel-2 satellites, which provides all the latest images as well as archives dating back
to November 2015 (for Sentinel-1 and Sentinel-2 L1C) or January 2017 (for Sentinel-2
L2A). Both Sentinel-1 and Sentinel-2 satellites provide up-to-date data with a latency of
approximately two days depending on the product level. Revisit time might differ for
different territories, but officially the revisit frequency of Sentinel-1 is up to 4 days and the
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revisit frequency of Sentinel-2 is 5 days. For Sentinel-1 images, the following preprocessing
steps were applied: images were taken from the Interferometric Wide (IW) swath mode with
VV and VH polarizations at the GRD processing level, and then the image underwent an
ellipsoid correction with the backscatter coefficient SIGMA0_ELLIPSOID. Orthorectification
was also applied. The COPERNICUS DEM with a resolution of 10 and 30 m (depending
on the region) was used as a digital elevation model. For Sentinel-2 images, we extract all
spectral channels except the B10 channel. Reflectance multiplied by 105 is used as units for
all channels.

Additionally we calculate five water indices based on Sentinel-2 multi-spectral channels:

• NDWI—Normalized Difference Water Index. It emphasizes water bodies and vegeta-
tion water content [29];

• MNDWI—Modified Normalized Difference Water Index. It is similar to NDWI, but
reduces sensitivity to dense vegetation, making it more effective for open water body
detection [30];

• SWI—Standardized Water-Level Index. It estimates soil moisture content by analyzing
the difference between near-infrared and shortwave infrared reflectance [31];

• AWEIsh, AWEInsh—Automated Water Extraction Index. Both AWEIsh and AWEInsh
are indices tailored for water body detection, with AWEIsh leveraging shortwave
infrared data for enhanced accuracy and AWEInsh offering an alternative when short-
wave data are lacking [32].

The formulas are the following:

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(1)

MNDWI =
ρgreen − ρSWIR

ρgreen + ρSWIR
(2)

SWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(3)

AWEIsh = 4 × ρgreen − (0.25 × ρNIR + 6.75 × ρSWIR) (4)

AWEInsh = ρgreen + ρred − 2 × ρSWIR (5)

2.1.3. External Test Data

For the external test, we selected an area near Ushmun village (Zabaykalsky Krai,
Russian Federation). The geography of chosen territory is shown in Figure 2. The flood
occurred there in 2021. We collected available data for time before, after, and during flood.
In total, we collected data for 4 days. These days are shown in Table 2. Hereinafter, we
use indices BF and DF for labeling images collected beyond and during flood, respectively.
For quality metric calculations, we manually labeled the area for some dates. The coordinates
of the studied area are as follows: ((118.266, 51.565), (118.266, 51.754), (118.446, 51.754),
(118.446, 51.565)).

Table 2. Dates for which satellite images were collected for the flood event in Ushmun.

Date Manual Markup Position Relative to Flooding

22 April 2021 Yes Beyond Flood
4 June 2021 No During Flood
6 June 2021 Yes During Flood

11 June 2021 No Beyond Flood
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Figure 2. Geography of external test territories, Ushmun village, Zabaykalsky Krai, Russia.

2.2. Methods
2.2.1. Flood Extent

One of the fundamental limitations for detecting water boundaries during floods is
the long time intervals between satellite imagery acquisitions (approximately 6 days for
each type of the considered satellite) and the presence of cloud cover. To address this issue,
we propose the simultaneous use of three models, each trained on its own configuration
of input data—solely on multispectral data and the products derived from them, solely
on radar data, and on their combination. Thus, we can provide an extension of temporal
coverage for territories and overcome cloud cover by utilizing radar data. Often, the
satellite observation dates for different satellites (for instance, Sentinel-1 and Sentinel-2)
do not coincide day by day, but are available on neighboring days. Due to the dynamic of
natural events such as flooding, we suggest combining only those images that were taken
on the same day, otherwise using the appropriate models for the data available at that time.
Moreover, it is not possible to estimate in advance the exact number of available cloudless
images taken during the flood due to the weather conditions, slight variation in revisit time
for the same territory, as well as the duration of the flood itself.

The proposed approach is illustrated in Figure 3. We employ the dataMask band from
the raw image data of Sentinel-1 and Sentinel-2 to extract the availability masks for Synthetic
Aperture Radar (SAR) and Multispectral (MS) data, respectively. Additionally, for cloud
masking, we utilize the Scene Classification (SCL) band obtained from the Sentinel-2 image,
which is generated using the Sen2Cor processor [33]. The SCL band provides a scene classi-
fication that enables us to identify and filter out various cloud-related elements, including
cloud shadows, clouds with low, medium, and high probabilities, and cirrus clouds. These
identified cloud regions are marked as clouds for subsequent analysis. These three masks
are processed simultaneously to generate SAR mask, SAR + MS mask, and MS mask. These
masks are utilized to delineate specific regions where the respective model should be applied.

For each of the three data configurations, we train different combinations of input channels.
Additionally, we apply per-channel min–max normalization to the data, with global minimum
and maximum values calculated beforehand based on the available data for each channel.

MINMAX(s[i]) =
s[i]− globalmin[i]

globalmax[i]− globalmin[i]
(6)

where s[i] is the i-th channel s, and globalmin and globalmax are arrays with global per-
channel minimum and maximum values.
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Figure 3. Proposed approach for recognizing water bodies based on remote sensing data and fusion
of multispectral and radar data.

In constructing our solution, we conduct experiments using various neural network ar-
chitectures: U-Net [34], MA-Net [35], and DeepLabV3 [36], which have proven themselves
in remote sensing tasks [37] and, more generally, in segmentation tasks [38]. The U-Net
stands out as a pioneer in its ability to capture intricate spatial features and retain fine-
grained details. Its architecture, inspired by the encoder–decoder framework, facilitates the
preservation of both local and global context within the segmented regions. This design
choice is particularly suited for our remote sensing context, where retaining the intricate
details of land cover and features is crucial for accurate interpretation. Complementing the
U-Net, we incorporate the MA-Net architecture. MA-Net has exhibited remarkable perfor-
mance in previous remote sensing tasks by explicitly modeling multi-scale features. This
capability allows it to effectively account for the varying scales present in remote sensing
images, capturing everything from large geographical features to smaller, finer structures.
The MA-Net’s focus on multi-scale feature integration aligns well with the heterogeneous
nature of remote sensing data. In addition to the U-Net and MA-Net, we embrace the
DeepLabV3 architecture to enrich our segmentation toolkit. The distinguishing feature of
DeepLabV3 is its employment of atrous (or dilated) convolutions, which effectively enlarge
the receptive field without sacrificing resolution. This characteristic proves invaluable
in remote sensing segmentation, where comprehensive context integration is essential to
distinguish between diverse land cover classes accurately.

To enhance the adaptability and robustness of our models, we strategically integrate
pretrained on ImageNet [39] encoders into our architecture selections. MobileNetV2 [40],
renowned for its efficiency and effectiveness in feature extraction, enriches our models with
a diverse range of low- to high-level features, thus bolstering their capacity to discern and
understand intricate remote sensing patterns. Similarly, ResNet18 [41], with its deep archi-
tecture and skip connections, ensures the integration of both local and global information,
enhancing the models’ contextual awareness.

Thus, the input data of the CNN models are three-dimensional arrays consisting of the
specified combination of preprocessed channels of multispectral or radar images, as well
as calculated indices. A set of input features varies depending on the experimental setup.
As a model output, we have a two-dimensional array consisting of 0 and 1 values. Pixels
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with value 0 represent the surface without water objects; pixels with label 1 show areas
with water objects. Clouds are additionally masked for this post-processing as a separate
class for multispectral images.

All models are trained for 150 epochs. The learning rate is adjusted according to
the OneCycleLR [42] strategy throughout the training process, starting from a value of
5 × 10−4. FocalLoss [43,44] is utilized as the loss function. The batch size is consistent
across all models and set to 16.

2.2.2. Flood Volume

To estimate the volume of flooding, in addition to the area, it is necessary to have data
on the water level at each point, taking into account the available resolution. However,
DEM, such as a Copernicus product with a 10–30 m resolution, which describes the altitude,
cannot be used for estimating water level both before and during flood events due to low
temporal resolutions. Most of these maps are updated only once in several years. Thus,
DEM could be used only as general description of the surface. Cohen et al. proposed such
an approach in [26]. It describes a method for estimating water depth during the flood by
using DEM as general description of the surface. The method requires a local elevation
of floodwater. The elevation for each cell of the study area is assigned using the “Focal
Statistics” neighborhood approach. Then, the floodwater depth is estimated based on the
difference in surface flood water elevation and inundated land elevation. Inspired by this
research, we propose a new approach of volume estimation based on the prediction of the
area of flood and on a single DEM that describes the terrain.

Having a general description of the terrain, which we can assume represents the terrain
before the flood (we will call it “baseline”), the calculation of water levels in different points
of the terrain boils down to estimating the Absolute Level of the Water Surface (ALWS)
during the flood. Knowing which areas were flooded, as well as the baseline terrain, we
can accurately estimate the ALWS at the flood boundary, but interpolating the ALWS in
internal areas presents a more complex problem due to potentially complex terrain and the
overall direction of the river flow.

Assuming that the water level in the local area, due to the physics of water and the
river, changes so insignificantly that its change can be neglected, we propose to interpolate
the internal ALWS values by searching for the nearest flood boundary pixel whose ALWS
value is reliable.

Having obtained ALWS for the entire flooded area in this way, as well as knowing
the baseline level, we can calculate the water level in each point of the flood by simple
subtraction. Knowing the water level and the flooded area, the volume can be calculated
by summing the products of the area and water level for each point of the flood.

2.3. Evaluation Metrics

To evaluate the performance of water segmentation models, we utilize two metrics:
Intersection over Union (IoU, also known as Jaccard index) and F1-score (also known as
Dice Score). Equations for computing IoU and F1-score are the following:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 − score = 2 × Precision × Recall
Precision + Recall

(9)

IoU =
TP

TP + FP + FN
(10)
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where TP (True Positive) is the number of pixels correctly classified, FP (False Positive) is
the number of pixels incorrectly classified as the target class, and FN (False Negative) is the
number of pixels of the target class that were mistakenly classified as another class.

To evaluate, we use both metrics in “micro” mode, i.e., we concatenate all ground-truth
and predicted labels into two vectors along all the images, and then calculate metrics.

3. Results
3.1. Results on Sen1Floods11 Dataset

Experiments on various combinations of input channels were conducted. The results
for the test set of Sen1Floods11 dataset are presented in Tables 3–5. The best result was
obtained for combination all of Sentinel-2 multispectral channels and all of Sentinel-1 radar
channels. The F1-score for this model on the test set is 0.92, and the IoU is 0.851. This
result outperforms the use of multispectral and radar data separately. However, even
when only multispectral data are available, it is possible to achieve high results by all
of Sentinel-2 spectral channels. The accuracy of such a model by the F1-score metric is
0.917. The use of only radar measurements shows significantly lower results of 0.793 for
the F1-score metric and 0.657 for the IoU metric. The reason why a model trained on a
combination of all image channels and indices is not the best option lies in the fact that,
when training neural network models, an excessively large feature space can lead to a
more complex optimization problem and, consequently, to model divergence and poorer
results. For instance, in studies [45,46], it was demonstrated that a greater number of input
channels does not always lead to better outcomes, and the use of specialized indices can
yield results worse than the application of all available channels.

Table 3. Results of experiments with different input data configurations. Model: U-net.

Features Combination
MobileNetV2 ResNet18

F1-Score IoU F1-Score IoU

SAR 0.777 0.636 0.781 0.641
SAR + NDWI 0.874 0.776 0.887 0.797

SAR + MNDWI 0.893 0.807 0.893 0.807
SAR + SWI 0.872 0.772 0.867 0.765

SAR + AWEIsh 0.85 0.74 0.857 0.75
SAR + AWEInsh 0.882 0.788 0.878 0.783

MS 0.917 0.847 0.913 0.84
MS + SAR 0.917 0.845 0.914 0.842

SAR + All indices 0.898 0.814 0.893 0.807
MS + All indices 0.903 0.824 0.895 0.809

MS + SAR + All indices 0.901 0.817 0.902 0.821
Bold font is for the best feature combination and encoder type (the highest metric).

Table 4. Results of experiments with different input data configurations. Model: MA-Net.

Features Combination
MobileNetV2 ResNet18

F1-Score IoU F1-Score IoU

SAR 0.792 0.655 0.792 0.655
SAR + NDWI 0.882 0.79 0.89 0.802

SAR + MNDWI 0.893 0.807 0.896 0.811
SAR + SWI 0.87 0.77 0.873 0.774

SAR + AWEIsh 0.856 0.748 0.851 0.741
SAR + AWEInsh 0.88 0.785 0.881 0.786

MS 0.915 0.843 0.909 0.833
MS + SAR 0.92 0.851 0.915 0.843

SAR + All indices 0.903 0.823 0.895 0.809
MS + All indices 0.896 0.811 0.897 0.813

MS + SAR + All indices 0.899 0.816 0.901 0.819
Bold font is for the best feature combination and encoder type (the highest metric).
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Table 5. Results of experiments with different input data configurations. Model: DeepLabV3.

Features Combination
MobileNetV2 ResNet18

F1-Score IoU F1-Score IoU

SAR 0.781 0.641 0.793 0.657
SAR + NDWI 0.848 0.736 0.86 0.753

SAR + MNDWI 0.874 0.776 0.874 0.776
SAR + SWI 0.853 0.744 0.843 0.728

SAR + AWEIsh 0.838 0.722 0.832 0.711
SAR + AWEInsh 0.86 0.755 0.864 0.761

MS 0.887 0.797 0.886 0.796
MS + SAR 0.891 0.803 0.888 0.799

SAR + All indices 0.873 0.774 0.878 0.782
MS + All indices 0.879 0.784 0.88 0.786

MS + SAR + All indices 0.882 0.789 0.883 0.79
Bold font is for the best feature combination and encoder type (the highest metric).

3.2. Results on External Data
3.2.1. Flood Extent

Predictions for Ushmun beyond flood (BF) and Ushmun during flood (DF) areas are
shown in Figures 4 and 5, respectively. The F1-score metrics are 0.705 and 0.99 for Ushmun
BF and Ushmun DF, respectively. Thus, the average value is 0.848. The difference in metrics
in water surface segmentation before and during flooding in this case can be explained
as follows. Typically, segmentation models find it difficult to distinguish areas with a few
pixels unless the boundaries are clearly discernible. This is the case when the river has a
normal water regime. That is, in our case, the river is quite narrow and the model has some
inaccuracies in the definition of the most bottlenecks (F1-score of 0.705). In case of flooding,
the water surface has a larger, more continuous and more distinct area, which allows the
model to segment the water body very accurately (F1-score of 0.99). Also, the reason is the
time of the year when the images were taken. Sometimes at the time of observations there
may still be snow in the studied region, which causes false positives of the model.

(a) (b) (c)

Figure 4. Test area: Ushmun (BF). Observation date: 22 April 2021. RGB (a), manual markup (b),
model prediction (c).
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(a) (b) (c)

Figure 5. Test area: Ushmun (DF). Observation date: 06.06.2021. RGB (a), manual markup (b), model
prediction (c).

For permanent surface water measurements, Pekel et al. provide freely available
data at the global scale [47]. For the analysis of natural objects and infrastructure objects,
OpenStreetMap (OSM) [48] data are also often used [49]. However, during emergencies
such as floods, these data can only be used to compare flooded areas with the initial area
of water bodies. Also, for some areas, labeling may be absent. Another source of data are
the mask supplied with Sentinel-2 data. It is calculated automatically by the data provider
based on multispectral channels.

Figure 6 shows a comparison of the mask predicted by the model and the mask
supplied with Sentinel-2 data. The advantage of the proposed approach to water body
recognition is the combination of multispectral and radar data. As shown in the image,
unlike the mask supplied with Sentinel-2 data, the predicted mask correctly processes areas
covered by clouds. Examples of complex areas are also presented, where the developed
algorithm provides greater recognition detail.

The developed algorithm allows for effective monitoring of rivers during floods.
Figure 7 shows an example of a river flood in June 2021 in Ushmun with the calculated
water surface area.

3.2.2. Flood Volume

To estimate the flood volume, we applied the proposed approach described earlier.
In Figures 5 and 7c, we present RGB images of the study area during and after the flood,
respectively, as well as the flood extent masks obtained using our approach. Figure 8
displays the intermediate results of the approach. The estimated flood volume using this
approach is 0.0087 km3.
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(a) (b) (c)

Figure 6. Ushmun test area. Observation date: 06 June 2021. RGB (a), model prediction (b), Sentinel-2
mask (c). Examples of areas where the developed model recognizes better than the basic Sentinel-2
mask are highlighted.

Figure 7. Cont.
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(a) (b) (c)

Figure 7. Demonstration of flood monitoring in Ushmun with series of images: RGB image and
predicted mask on 4 June 2021 (a), estimated water surface area—81.3 km2, RGB image and predicted
mask on 6 June 2021; (b) estimated water surface area—51.0 km2, RGB image and predicted mask on
11 June 2021; (c) estimated water surface area—8.9 km2. Legend: water, background, clouds.

(a) (b) (c) (d)

Figure 8. Intermediate calculation results in Ushmun: DEM (in meters) (a), ALWS (in meters) (b),
flood edge (c), estimated water depth (in meters) (d).

4. Discussion

In this study, we have developed a novel methodology for estimating flood extent
and volume by employing remote sensing data gathered from Sentinel-1 and Sentinel-2
satellites. Our approach integrates multi-spectral and radar data, utilizing deep neural
network algorithms to process and analyze these data. As a result, we have been able to
create an effective tool for flood monitoring, delivering reliable and accurate outcomes.
This has been demonstrated through our case study of the 2021 flood event in Ushmun,
further reinforcing the potential of our methodology. Moreover, we can state the superiority
of Sentinel-1 and Sentinel-2 combination over single data source usage, such as in [50,51].
We extended the original dataset described in [19] and added multispectral images and
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indices that leads to higher results. Further training of the proposed models on additional
relevant data might be beneficial for the northern regions. This will allow taking into
account the specifics of the northern regions, where floods can be observed in the case of
snow that is not fully dried. Accordingly, a more stable forecast is proposed where indices
may not work properly or require additional decision rules, such as in [15]. Our approach
can also benefit from the inclusion of more sophisticated machine learning techniques,
such as unsupervised learning algorithms [52] or zero-shot learning techniques [53]. These
algorithms can help to properly uncover patterns in visual data.

In addition, one of the advantages of the proposed approach is that we have shown
how to easily estimate the amount of water during floods. Such an approach, together
with hydrometeorological models, will allow a full analysis of the dynamics of evolving
emergencies. Previous works have already described approaches for flood water depth
estimation based on DEM products. The main limitations are associated with data avail-
ability and their spatial resolution for global mapping. In [25], the authors verified DEM
measurements derived from HydroSHEDS, Multi-Error-Removed Improved-Terrain DEM
(MERIT DEM) [54], and ALOS with spatial resolutions of 90, 90, and 30 m, respectively.
Another limitation is connected with spatial resolution of water bodies map. For instance,
Landsat-5 can be used for water bodies mapping with the spatial resolution of only 30 m
per pixel [26]. Therefore, in our study, we focus on developing methodology for flood
analysis with the spatial resolution of 10–30 m per pixel using Sentinel-1 and Sentinel-2
observations. Moreover, previous studies often leverage classification models based on
threshold rules [26], which might lead to inaccuracy in predictions. In [27], Budiman et al.
defined the range for dB values that represent flood areas on Sentinel-1 data. The authors
noted the challenging of such values estimation due to similar reflectance of other surfaces.
Our approach is developed to simplify flood areas mapping using convolutional neural
networks that is capable of automatic spatial features extraction.

Moreover, there is potential for our methodology to be complemented with existing
research on flood inundation mapping. For instance, in [55], Nguyen et al. demonstrated a
novel method for estimating flood depth using SAR data. Another important reference is
study [56], where mapping the spatial and temporal complexity of floodplain inundation
in the Amazon basin using satellite data was managed. The findings reveal a complex
interplay of factors influencing flood dynamics, offering valuable insights for enhancing
flood volume estimation methodologies.

In addition, the methodology could be expanded to incorporate other types of data
and modeling approaches. For example, the integration of hydrological models could help
in predicting the temporal evolution of floods [57]. Similarly, the inclusion of more detailed
topographical data could improve the estimation of flood volumes.

There is also the possibility to expand our methodology to other regions and types
of floods. For example, our approach could be adapted to study flash floods in urban
areas, which pose a significant risk to human lives and infrastructure. It can be also
integrated with other neural network solutions for building recognition for further damage
evaluation [58]. Knowledge of the level of water enables estimation of the number of
flooded floors in buildings.

Our proposed approach allows us to work with historical data and to combine the
results of models working on various subsamples of input data, focusing on real avail-
ability, within a single snapshot or region of interest. We focus specifically on Sentinel-1
and Sentinel-2 satellite images. The main advantage of these data are its high temporal
resolution and free availability. The multispectral bands of the Sentinel-2 satellite enable
us to compute additional indices to improve model performance. With a spatial reso-
lution of 10 m per pixel, it addresses most practical needs. However, in some cases, a
more detailed assessment may be required. When satellite images with higher spatial
resolution are available, one can adjust an initial markup with lower spatial resolution to
train a more precise CNN model without additional demands to annotated data [59]. A
lack of well-annotated data can be reduced by advanced approaches that generate both



Remote Sens. 2023, 15, 4463 15 of 19

images and their corresponding labels or that leverage classification markup instead of
semantic segmentation to automatically refine the labels for a segmentation task [60,61].
Our approach can be also supplemented by super-resolution techniques [62]. Additionally,
auxiliary bands can be artificially generated for high-resolution satellite images when the
spectral range is narrower [63].

One of the advantages of the proposed approach is the ability to combine various
sensors and apply corresponding models within a single region of interest, depending
on the availability of imagery for that area, as well as the current weather conditions.
We additionally examined the described pipeline for the cloudy date of the flood event in
the town of Golovinka (Krasnodar Krai, Russian Federation) on 6 July 2021. The water
body before the event is segmented using multispectral image (Figure 9). However, for the
flood event, the region is covered with clouds. Both multispectral and radar imagery are
available for that date. Figure 10 illustrates a case where radar observations play a crucial
role for flood extent estimation. Almost the entire study area is represented with the cloud
mask and cannot be used for a proper assessment based on visual bands.

(a) (b) (c)

Figure 9. Test area (BF): Krasnodar Krai, Russian Federation. Observation date: 1 July 2021. RGB
composite (a), manual markup (b), model prediction (c).

(a) (b) (c) (d)

Figure 10. Test area (DF): Krasnodar Krai, Russian Federation. Observation date: 6 July 2021.
RGB composite (a), manual markup (b), models (MS + SAR and SAR) prediction (c), model (MS)
prediction (d). Legend: water, background, clouds.

Our proposed methodology introduces a promising avenue for flood monitoring using
remote sensing data and deep neural networks. Future research should aim to build upon
our work and the research of others, with a focus on enhancing the accuracy and speed
of flood damage assessments. By doing so, it will significantly contribute to the timely
response and recovery efforts in affected regions, ultimately leading to better flood risk
management and mitigation strategies.
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5. Conclusions

In summation, this study has proposed and implemented a novel methodology for
assessing flood scenarios via the utilization of remote sensing data and advanced deep
learning techniques. Our method yielded an F1-score of 0.848, not only during the flood
event in Ushmun in 2021, but also beyond it. This high F1-score showcases a strong ability
to accurately predict the extent of water presence during and after a flood.

Moreover, our approach was capable of approximating the flood volume in Ushmun
to be about 0.0087 km3. This gives us a deeper comprehension of the flood’s magnitude
and lends insights into its implications for the area involved.

The methodology we developed also leverages the combined power of Sentinel-1 and
Sentinel-2 satellites. The benefit of this combination is twofold. It allows for an extended
period of time coverage, making it possible to assess the onset, peak, and recession of
flood events regardless of weather condition and cloud coverage. Secondly, it enhances our
capacity for estimating both the extent and volume of floods, as clearly demonstrated by
the Ushmun flood scenario.

The expedited and precise flood damage assessments that our method enables could
significantly bolster response and recovery initiatives. By swiftly and precisely pinpointing
the flood extent, decision-makers and first responders can distribute resources in a more
focused and efficient manner.

Going beyond immediate disaster mitigation, the utility of this tool can also greatly
aid in our understanding of flood phenomena, helping to mitigate their detrimental effects
and fortifying the resilience of impacted regions. Given its ability to perform effectively
under a variety of conditions, our methodology stands as a substantial contribution to the
realm of flood monitoring and management.
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