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Abstract: The 2014 Mw 6.2 Ludian earthquake exhibited a structurally complex source rupture pro-
cess and an unusual spatial distribution pattern of co-seismic landslides. In this study, we constructed
a spatial database consisting of 1470 co-seismic landslides, each exceeding 500 m2. These landslides
covered a total area of 8.43 km2 and were identified through a comprehensive interpretation of
high-resolution satellite images taken before and after the earthquake. It is noteworthy that the
co-seismic landslides do not exhibit a linear concentration along the seismogenic fault; instead, they
predominantly extend along major river systems with an NE–SW trend. Moreover, the southwest-
facing slopes have the highest landslide area ratio of 1.41. To evaluate the susceptibility of the Ludian
earthquake-triggered landslides, we performed a random forest model that considered topographic
factors (elevation, slope, aspect, distance to rivers), geological factors (lithology), and seismic factors
(ground motion parameters, epicentral distance, distance to the seismogenic fault). Our analysis
revealed that the distance to rivers and elevation were the primary factors influencing the spatial
distribution of the Ludian earthquake-triggered landslides. When we considered the directional
variation in ground motion parameters, the AUC of the model slightly decreased. However, incorpo-
rating this variation led to a significant reduction in the proportion of areas classified as “high” and
“very high” landslide susceptibility. Moreover, SEDd emerged as the most effective ground motion
parameter for interpreting the distribution of the co-seismic landslides when compared to PGAd,
PGVd, and Iad.

Keywords: 2014 Mw 6.2 Ludian earthquake; co-seismic landslide susceptibility; random forest;
ground motion parameters; directional effect

1. Introduction

Earthquakes occurring in hilly regions can trigger extensively destructive landslides,
which has aroused widespread concerns worldwide [1–6]. Notably, the damage caused
by co-seismic landslides may sometimes exceed that resulting from violent shaking and
fault ruptures [7–12]. Over the past decades, numerous studies have been conducted
on co-seismic landslides in mountainous areas, such as the 2004 Mw 6.6 mid-Niigata
earthquake [13], the 2005 Mw 7.6 Northern Pakistan earthquake [14], the 2008 Ms 8.0
Wenchuan earthquake [15], the 2018 Mw 6.6 Hokkaido Eastern Earthquake [16], and the
2020 Mw 6.9 Samos earthquake [17].

The distribution of co-seismic landslides is influenced by various factors, such as to-
pography, hydrology, lithology, seismic factors, and human activity, etc. [1,18]. Numerous
studies have shown that the magnitude of an earthquake influences the probability of
landslide occurrence (e.g., Keefer [1,19]; Rodriguez et al. [20]). Therefore, seismic factors,
including ground motion parameters, epicentral distance, and distance to the seismogenic
fault are closely related to the spatial distribution of co-seismic landslides. Through sta-
tistical analysis of historical co-seismic landslides, some scholars have proposed that, in
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determining the extent of co-seismic landslides, the distance from the surface projection of
the seismogenic fault is a more crucial factor compared to epicentral distance [21–23].

In addition, the correlation between ground motion parameters (i.e., Peak Ground
Acceleration (PGA); Peak Ground Velocity (PGV); Arias Density (Ia)) and the occurrence of
co-seismic landslides has been widely investigated [24–27]. Several studies have indicated
that sufficient energy is a prerequisite for landslide occurrence. Hence, Ia, which incorpo-
rates the amplitude, spectrum, and total duration characteristics of ground motion, can
more comprehensively reflect earthquake information [28]. As a result, it is considered
a reliable parameter for predicting co-seismic landslides compared to relying solely on
ground shaking amplitudes [29–34]. Similarly, the Specific Energy Density (SED), which
integrates velocity over the duration of an earthquake, has been pervasively used as a
ground motion parameter to quantify the intensity of seismic energy [35–38]. Moreover,
there is a positive correlation between SED and the intensity of earthquake damage [39,40].
Unfortunately, there is a lack of studies that specifically investigate the relationship between
the SED and the occurrence of co-seismic landslides.

It should be noted that the significant “directional effect” of the spatial distribution of
co-seismic landslides has been frequently reported after many large earthquakes, including
the 1999 Mw 7.6 Taiwan Chi-Chi earthquake, the 2005 Mw 7.6 Pakistani Kashmir earth-
quake [41], and the 2008 Mw 8.0 Wenchuan earthquake [42]. This effect implies that slopes
facing towards the earthquake source are less susceptible to landslides compared to slopes
aligned in the same dip direction as the propagation of seismic waves. Some researchers
attribute this phenomenon to the fact that seismic waves exhibit varying responses on
slopes in different directions, resulting in different degrees of instability [43–45]. Chen
et al. [46] provided insight into the “directional effect” of the co-seismic landslides in the
2018 Mw 6.6 Hokkaido earthquake using Discontinuous Deformation Analysis (DDA) and
demonstrated that the difference of seismic energy in different slope aspects determines
whether a landslide will occur or not. This finding is consistent with the spatial distribution
of co-seismic landslides and seismic wave characteristics observed in this earthquake. In
addition, the researchers discovered that the preferred collapse direction of houses during
earthquakes is highly related to the direction of the highest seismic energy [47–50].

On 3 August 2014, a moment magnitude of 6.2 (Ms 6.5) earthquake struck Ludian
County in Yunnan Province, southwestern China, at 08:30:11 UTC (16:30:10.2 Beijing
Standard Time). The earthquake’s epicenter was located at coordinates 27.11◦N and
103.35◦E [51,52]. It had a shallow focal depth of 12 km and was characterized by a complex
faulting process involving Riedel shear structures [53,54], resulting in a massive surface
rupture zone [55] and a large number of the co-seismic landslides [2]. The largest land-
slide triggered by the Ludian earthquake was the Hongshiyan landslide, with a volume
of approximately 12.24 Mm3. Interestingly, the opposite slope, which has a similar geo-
logic structure but steeper topography, does not show obvious deformation associated
with the earthquake [56]. By utilizing the high-quality seismic metadata from 28 strong
motion stations provided by the China Earthquake Administration, we were able to ob-
tain measurements of PGA, PGV, Ia, and SED in four cardinal directions (i.e., east, west,
south, and north). It was found that the values of the aforementioned parameters in the
direction facing the Hongshiyan slope are significantly larger than those in the opposite
slope. Zou et al. [57] performed a spatial analysis using GIS to investigate and characterize
the correlations between the landslide occurrence and various influencing factors in the
2014 Ludian earthquake. Their results suggested that two factors, namely distance to
the seismogenic fault and slope gradient, are the most critical in determining the spatial
distribution of co-seismic landslides. However, their study utilized intensity as the ground
motion parameter instead of any of commonly used parameters such as PGA, PGV, Ia,
or SED. Chen et al. [58] used only the critical acceleration in the Newmark method to
assess the susceptibility of co-seismic landslides triggered by the Ludian earthquake due
to the unavailability of seismic record. The critical acceleration took into account various
geological factors, including terrain, lithology, physical properties of rock and soil, and
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other relevant factors. On the other hand, statistical models [59,60], which encompass
support vector machine (SVM) [61,62], logic regression (LR) [63,64], and random forest
(RF) [65,66], are currently widely used methodologies for co-seismic landslide hazard
assessment. The mathematical relationships between landslides and their triggering factors
are derived using co-seismic landslide inventories in these models. An overview of the
state-of-the-art techniques for earthquake-induced landslides susceptibility assessment is
presented by Shao et al. [67]. In this study, we constructed a spatial database of the 2014
Ludian earthquake-triggered landslides. Then, we used a random forest model to conduct
co-seismic landslide hazard assessment, where SED was first considered as the ground
motion parameter. The primary objectives of the study are as follows: (1) to elucidate
the spatial distribution pattern of co-seismic landslides in the earthquake, an earthquake
caused by a complex faulting process; (2) to determine the ground motion parameter that
most significantly contributes to co-seismic landslides in the earthquake among PGA, PGV,
Ia, and SED; and (3) to examine the relationship between seismic energy variations in
different directions and the corresponding varying degrees of slope instability.

2. Study Area and Materials
2.1. Study Area

The 2014 Ludian earthquake occurred in the western segment of the Zhaotong–Lianfeng
fault zone. The study area is located to the east of the Xianshuihe–Xiaojiang fault system,
which lies between the Sichuan–Yunnan block, southeastern Tibetan Plateau. Previous
investigations indicated that this region is characterized by numerous faulting activities
and a frequent occurrence of large earthquakes [68]. The primary active faults in the study
area are the NW-trending Baogunao–Xiaohe fault and the NE-trending Zhaotong–Ludian
fault, as shown in Figure 1. The Baogunao–Xiaohe fault was the seismogenic fault of the
Ludian earthquake and is characterized by a complex faulting process associated with
Riedel shear structures [53,54].

The study area features a “V-shaped” high mountain valley landscape with an average
stream slope of 1.22% and a natural drop of approximately 220 m. The exposed strata in the
area range from the Sinian System to Quaternary System, except for the Cretaceous System.
In particular, the Paleozoic Erathem is the most widespread stratum in the area, with the
Permian System having the largest area of exposure, followed by the Cambrian System. The
epicenter of the 2014 Ludian earthquake is within the Permian stratum. The lithology of
the Paleozoic Erathem is primarily composed of sandstone, shale, limestone, and dolomite.
Substantial joints and cracks develop in these strata and are most commonly observed in
the northeast and southeast regions of the study area. The Mesozoic System in the study
area is characterized by continental detrital deposits, with sandstone and mudstone being
the predominant lithological composition. In contrast, the Cenozoic System is scattered
in intermountain basins, such as the Ludian basin, and is primarily composed of fluvio-
lacustrine facies of clayey rock and sandy gravel beds. Intensive crustal deformation has
resulted in strong faulting and rock fracturing in the region, with weathering particularly
evident along faults and crush belts [69,70].

A total of 115 earthquakes with magnitudes equal to or greater than 4.7, occurring
between 624 CE and 2014 CE within a 200 km radius around the epicenter of the 2014
Ludian main shock, were extracted by the China Earthquake Administration. It is evident
that while the Ludian earthquake is classified as a moderate event, it is also considered a
low-frequency seismic occurrence in this region, with an estimated recurrence interval of
about 100 years [52].

The main watercourse in the study area is the Niulan River, which flows predominantly
from southeast to northwest, carving steep valleys and penetrating the mountains to depths
ranging from 1200 to 3300 m. Meanwhile, the Shaba and Longquan rivers run from
northeast to southwest, creating numerous terraces at various elevations. The altitude of
the study area varies from 500 to 3900 m. Approximately 60% of the slopes have gradients
between 10◦ and 30◦, and those steeper than 40◦ are mainly distributed along the Niulan
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River. The terrain in the northern and eastern regions is predominantly flat, with low
mountains and hills characterized by slopes generally less than 20◦.
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Figure 1. Maps showing the geological setting of the study area and the location of the 2014 Ludian
earthquake. The following faults are indicated: HYF: Huize–Yanjin fault; ZLF: Zhaotong–Ludian
fault; LSF: Longshu fault; LF: Lianfeng fault; BXF: Baogunao–Xiaohe fault. Intensity map published
by the China Earthquake Administration. Source: http://www.gov.cn/xinwen/2014-08/07/content_
2731360.html, accessed on 1 October 2022. The fault map was derived from Luo et al. [52,53].

2.2. Landslide Inventory

Landslide inventories play a crucial role in analyzing the spatial distribution of land-
slides, evaluating their causative failure mechanisms, and generating susceptibility maps.
The interpretation of the 2014 Ludian earthquake-triggered landslides was conducted by
using an extensive collection of high-resolution satellite images captured before and after the
earthquake. These images comprised Sentinel-2A images (10 m resolution), GF-1 images (2
m resolution), GF-2 images (1 m resolution), Google Earth data (0.5 m resolution), and UAV
(0.2 m resolution) (Table 1). All images were subjected to geometric correction, enhancement,
and coordinate system conversion. In order to address the potential overestimation of total
landslide volumes that can occur with automated methods when nearby individual events are
inadvertently combined into a single entity, we opted for manual digitization over automated
extraction techniques to identify landslides in this study. The boundaries of landslides were
manually digitalized into polygons using satellite images within a GIS environment. To
guarantee the accuracy of the landslide inventory derived from remote sensing interpretation,
we conducted an extensive field investigation within the densely populated area affected by
co-seismic landslides, lasting for approximately 30 days. Based on the analysis of satellite
images and the findings from the field investigations, we identified a total of 1470 landslides
larger than 500 m2 within a rectangular area of approximately 360 km2. The total area covered
by these landslides is estimated to be around 8.43 km2. The landslide number density (LND)
obtained in this study is 1470/360 km2 = 4.083/km2 and the landslide area percentage (LAP)
is (8.43 km2/360 km2) × 100% = 2.34%.

http://www.gov.cn/xinwen/2014-08/07/content_2731360.html
http://www.gov.cn/xinwen/2014-08/07/content_2731360.html
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Table 1. Information of data used.

No. Data Type Date Resolution (m)

1 Sentinel-2A 1 August 2014 10
2 GF-1 26 October 2014 2
3 GF-2 14 February 2015 1
4 Google Earth data 30 January 2014, 20 August 2014 0.5
5 UAV 15 September 2015 0.2

After the 2014 Ludian earthquake, some researchers interpreted the co-seismic land-
slides. The most comprehensive interpretation of landslides to date was performed by
Wu et al. [71] in 2020, which yielded a landslide number of 12,817. They also compared
these with other results in terms of the quality and resolution of remote sensing images,
coverage, interpretation method, landslide number, and landslide area, indicating that
their results are more complete, detailed and objective. The coverage area interpreted in
their study was larger than that of our study. Additionally, in our study, all the interpreted
landslide targets had an area greater than 500 m2. Despite these differences, it is noteworthy
that the LAP obtained in our study (2.34%) is relatively close to the result of their study
(2.71%). This similarity suggests that the landslide database we established possesses a
certain level of representativeness and can be considered reliable for assessing co-seismic
landslide susceptibility.

Since the primary focus of landslide susceptibility analysis revolves around the identi-
fication of potential landslide source areas, only the source areas can be used to analyze
the spatial distribution pattern of landslides and to train the susceptibility model [72].
Therefore, on the basis of the above co-seismic landslide database, a landslide source area
database was established based on Google Earth satellite images and UAV images to differ-
entiate between the source area, circulation area, and accumulation area of the landslide.
Specifically, in cases where it was challenging to clearly identify the provenance area of a
landslide, we selected the upper 50% of the landslide based on the elevation values and
designated it as the provenance area [73]. Subsequently, mass points corresponding to
the identified provenance areas were then extracted and employed as landslide sample
points for further analysis. In addition, it is crucial to emphasize that all the landslide areas
mentioned below specifically refer to the landslide source areas.

To ensure a balanced model, an equal number of negative samples were generated in
our study. There are various methods available for generating negative samples. Selecting
negative samples from areas with lower landslide occurrence probabilities is a valuable ap-
proach that can greatly enhance the reliability of landslide susceptibility prediction [16,18].
Two commonly used methods for negative sample selection are random sampling [74,75]
and buffer-controlled sampling [76,77]. However, these methods have a limitation in that
they cannot guarantee the selection of non-landslide samples from areas with extremely
low susceptibility levels. To overcome this limitation, the Information Value model [78,79]
and the Mean Clustering model [80] have been preliminarily applied to study of landslide
negative sample selection. The Fuzzy c-means algorithm (FCM) possesses the capability
to classify the study area into different levels of landslide susceptibility based on the ge-
ographical attributes of landslide controlling factors. This categorization allows for the
generation of non-landslide samples from areas with low susceptibility levels. Notably,
FCM is not influenced by subjective factors and operates independent of any specific model.
In a comparative analysis conducted by Liang [80] on selecting non-landslide samples
for assessing shallow landslide susceptibility using machine learning, FCM outperformed
the K-means algorithm in terms of sampling reliability. Consequently, this study chose to
utilize the FCM for the extraction of non-landslide samples. We employed FCM to cate-
gorize landslide susceptibility in the study area into five classes, i.e., “Very low”, “Low”,
“Moderate”, “High”, and “Very high” (Figure 2). The “Very low” and “Low” areas were
selected as non-landslide sampling areas, from which a total of 1470 negative samples were
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randomly generated. This approach ensures a representative set of non-landslide samples
for our analysis.
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2.3. Spatial Distribution Pattern
2.3.1. Landslide Number Density

Figure 3 shows the graphical representation of the number density of landslides trig-
gered by the 2014 Ludian earthquake. The results reveal that the highest LND, landslides/km2),
which is up to 50, is primarily concentrated in the region southeast and west of the epicenter,
specifically at a distance of 5–9 km. The northern zone of the epicenter exhibits a lower LND
compared to the southern zone. Notably, these co-seismic landslides are not distributed
linearly along the seismogenic fault nor clustered around the epicenter region. Instead,
the landslides primarily spread along the Niulan, Shaba, and Longquan rivers. When
investigating the underlying formation mechanism behind this specific distribution pattern,
it is essential to consider the following factors. Firstly, almost 60% of the slopes in the study
area range from 10◦ to 30◦, while slopes steeper than 40◦ are mainly distributed along the
Niulan, Shaba, and Longquan rivers. The topographic amplification of seismic responses
significantly increases the susceptibility of these steeper slopes to instability. Secondly, due
to the process of valley incision, the slopes along the riverbanks exhibit steep terrain and
undergo substantial weathering and unloading. Consequently, shallow landslides, which
represent the primary type of landslides induced by the Ludian earthquake [58], are highly
prone to occur. Lastly, the proximity of the rivers to the epicenter and seismogenic fault
implies that the intense shaking also affects the slopes along the riverbanks. However,
in areas closer to the epicenter and seismogenic fault, the landscape is predominantly
characterized by gentle slopes. This suggests that more intense shaking is required to
initiate sliding and that there is relative stability under dynamic seismic conditions. This
finding coincides with the results revealed by Chen et al. [81].

2.3.2. Landslide Area Percentage

In addition to LND, landslide size is another critical parameter for investigating the
distribution characteristics of co-seismic landslides. This is because the size of a landslide
can determine the extent of damage and the type of mitigation measures required. Based
on the classification of landslide source areas presented in Figure 4, it was found that 67%
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of the large landslides were primarily concentrated in the region southeast of the epicenter.
The provenance area of the largest landslide is approximately 0.2 km2.
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Figure 5 displays the spatial distribution of co-seismic landslides in the study area,
with landslide-affected areas divided into squares of 0.1 km2. Each square provides com-
prehensive information on the LND and LAP.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 27 
 

 

 
Figure 4. Area distribution of co-seismic landslides in the Ludian earthquake. The ellipses are the 
standard deviation ellipse plotted with the landslide source area as weight. 

 
Figure 5. The LAP–LND distribution of the Ludian co-seismic landslides. The provenance areas of 
landslides are divided into square grids of 0.1 km2 each. Figure 5. The LAP–LND distribution of the Ludian co-seismic landslides. The provenance areas of

landslides are divided into square grids of 0.1 km2 each.

The parameters LND and LAP were effectively connected by employing a color scale
that integrated the two individual color scales, as shown in Figure 5. The color scale
combined four classes for each parameter, with LND ranging from 1 to 4 (increasing
number density) and LAP ranging from “a” to “d” (increasing area percentage). This
resulted in a total of 16 classes, ranging from 1a (low number density of small landslides)
to 4d (high number density of large landslides). The size of the classes for both landslide
density and dimension distribution was carefully selected using the Jenks natural breaks
classification method to define the optimal value distribution between the classes [82].

The regional classification of co-seismic landslides reveals that their distribution is
primarily characterized by landslides with high density but relatively small dimensions.
This feature is remarkably obvious in the regions west and east to the epicenter. Large
landslides with low density are mainly concentrated in the southeastern river valley,
which is the farthest from the epicenter. There are no high density and large dimension
landslides distributed.

2.3.3. Standard Deviational Ellipse

The Standard Deviational Ellipse (SDE) of LND and LAP was used to quantify the
spatial pattern of co-seismic landslides, as shown in Figures 3 and 4. The results indicate
that both densities have an NE–SW trend (Table 2). Furthermore, the ellipse center of LAP
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is shifted to the southeast, suggesting that this region encompasses the highest number
of large landslides. The lengthening of the X-axis and shortening of the Y-axis, together
with the reduction in elliptical flatness and the increase in centripetal force, indicate a
distinct directional trend of LAP. The increase in the spatial rotation angle and the rotation
of the ellipse direction from SEE to SSE suggest that landslides are more concentrated in
the southeast. Additionally, the decrease in elliptical area demonstrates that the spatial
dispersion of landslide source area was reduced and became more concentrated.

Table 2. Standard Deviational Ellipse of the spatial distribution of LND and LAP.

CenterX CenterY XStdDist (m) YstdDist (m) Angle Area (km2)

SDE (LND) 103.349 27.082 8210.6 5861.1 118.3 150.4
SDE (LAP) 103.358 27.074 8757.5 5144.5 122.1 140.8

CenterX: longitude of the ellipse center; CenterY: latitude of the ellipse center; XStdDist: length of the X-axis;
YstdDist: length of the Y-axis; Angle: direction angle of the ellipse; Area: the area of the ellipse.

2.3.4. Slope Aspect

Chigira et al. [83] demonstrated that the slope aspect (slope facing direction) has a
strong control on the distribution of co-seismic landslides, and some slope aspects are more
susceptible to co-seismic landslides than others. To accurately assess the susceptibility of
co-seismic landslides to different slope aspects in the study area, we used the landslide
area ratio proposed by Chen et al. [81] to eliminate the influence of the area ratio of slope
aspect. The slope aspect was divided into eight data sections based on different azimuths:
N (337.5, 360.0) and (0, 22.5◦), NE (22.5, 67.5◦), E (67.5, 112.5◦), SE (112.5, 157.5◦), S (157.5,
202.5◦), SW (202.5, 247.5◦), W (247.5, 292.5◦), and NW (292.5, 337.5◦). Based on this, we
calculated the landslide area ratio of each section, excluding the areas with flat terrain
(Table 3 and Figure 6).

Table 3. Landslide area ratios for different data sections of slope aspect.

Aspect Ai (km2) DAi (km2) Ai/A DAi/DA Ri

N 40.557813 0.368961 0.111869 0.086252 0.771013
NE 38.280625 0.237103 0.105588 0.055428 0.524946
E 41.409688 0.509088 0.114218 0.119010 1.041950

SE 53.787188 0.825668 0.148359 0.193017 1.301016
S 43.641719 0.631193 0.120375 0.147555 1.225792

SW 43.391094 0.721878 0.119684 0.168754 1.410000
W 50.311563 0.570736 0.138772 0.133421 0.961443

NW 51.168438 0.413066 0.141136 0.096563 0.684184
Ai : the area of portion of data section i with the slope aspect; DAi : the landslide source area with the data section
i of the slope aspect; A: the total area of the study area (360 km2); DA: the total landslide source-occupying area
in the study area (4.28 km2); Ri : the local landslide area ratio for the data section i of a slope aspect.

The study area exhibits a generally uniform slope aspect distribution, with the slopes
facing SE, NW, and W accounting for approximately 15% of the total area, while the
remaining slope aspects account for approximately 11%. The Ri values for slopes facing SE,
S, and SW are 1.30, 1.23, and 1.41, respectively. In contrast, the Ri values for other slope
aspects are less than or close to 1. Particularly, the Ri values for N-, NW-, and NE-oriented
slopes are as low as 0.77, 0.68, and 0.52, respectively, indicating a low susceptibility to
landslides in these areas. In total, the percentage of landslide source area on slopes facing
south is much larger than that on slopes facing north, indicating a higher susceptibility to
co-seismic landslides on slopes facing SW, SE, and S.

The distribution pattern of LND, LAP, and landslide slope aspect indicate that the
Ludian earthquake-triggered landslides have obvious “directional effects”, both in terms
of their locations and the corresponding slope aspects. Therefore, the directional differ-
ence of seismological signals should be considered when evaluating the susceptibility of
co-seismic landslides.
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3. Methodology
3.1. Selection and Analysis of Landslide Controlling Factors
3.1.1. Selection of Landslide Controlling Factors

The reasonable selection of controlling factors significantly impacts the accuracy and
authenticity of landslide susceptibility assessment results. However, there is currently no
unified standard for choosing controlling factors. Ayalew et al. [63] suggested that the crite-
ria for selecting controlling factors should be based on their similarity to landslide locations,
measurability, non-redundancy, and knowledge of the geo-environmental conditions of the
study area. Therefore, taking guidance from the previous research on the co-seismic
landslide susceptibility assessment [43,67,72,73], we carefully identified and selected
10 factors that are strongly associated with the occurrence of co-seismic landslides, consid-
ering three key perspectives: seismic, topographic, and geological aspects (Tables 4 and 5).
Remarkably, in this study, SED was introduced as one of the ground motion parameters
to assess co-seismic landslide susceptibility at the regional scale unprecedentedly. The
digital elevation model (DEM) utilized in this study was acquired from the Advanced Land
Observing Satellite (ALOS) with a spatial resolution of 12.5 m. From the DEM, we derived
raster maps of aspect, slope, Topographic Roughness Index (TRI), and Topographic Wetness
Index (TWI), which provided crucial information into the topographic characteristics of
the study area. Meanwhile, raster maps of epicentral distance, distance to the seismogenic
fault, and distance to rivers were generated with a 1 km buffer unit. The Lithology data
used in the analysis were obtained from the China Geological Survey (Table 4). The ground
motion parameters, including PGA, PGV, Ia, and SED, were derived from the high-quality
metadata from 28 strong motion seismic stations provided by the China Earthquake Admin-
istration. To generate raster maps of the ground motion parameters, Kriging interpolation
was employed.

SED is defined as the squared velocity at any given time, integrated over the entire
time range. The definition of SED is as follows:

SED =
∫ T

0
[v(t)]2dt (1)

where v is the velocity, T is the entire time.
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Table 4. Descriptions of categorized lithology in the study area.

No. Stratum Lithology Description

1 D1 Lower Devonian System. Clastic rocks
2 D2 Middle Devonian System. Quartz sandstone, siltstone, dolomite
3 O1 Lower Ordovician System. Fine sandstone, dolomite, mica siltstone
4 O2 Middle Ordovician System. Dolomite, sandstone with shale and argillaceous limestone
5 O3 Upper Ordovician System. Dolomite, sandstone with shale and argillaceous limestone
6 P1 Lower Permian System. Siltstone, shale, limestone
7 P2 Upper Permian System. Mudstone, porphyritic basalt, volcanic breccia
8 S2 Middle Silurian System. Shale, carbonatite, clastic rocks
9 T1 Lower Triassic System. Siltstone, argillaceous siltstone with fine sandstone
10 Z1 Lower Sinian System. Basal conglomerate, pebbly sandstone, sandstone, quartz sandstone
11 Z2 Upper Sinian System. Dolomite, dolomite limestone, dolomitic shale
12 Є1 Lower Cambrian System. Sandstone, shale, dolomite, argillaceous limestone
13 Є2 Middle Cambrian System. Gray dolomite, shale with siltstone, clastic rock, argillaceous limestone
14 Є3 Upper Cambrian System. Gray dolomite, shale with siltstone, clastic rock, argillaceous limestone

Table 5. Information on landslide controlling factors.

Factor Variable Data Source Resampled
Resolution

Seismic factor

PGA

China Earthquake
Administration

12.5 m
PGV ′′

SED ′′

Ia ′′

PGAd ′′

PGVd ′′

SEDd ′′

Iad ′′

ED ′′

DSF ′′

Topographic factor

Elevation

ALOS DEM

′′

Aspect ′′

Slope ′′

TRI ′′

TWI ′′

DR ′′

Geological factor Lithology China Geological Survey ′′

′′: It is stated that the resolution of all the data below is the same as the resolution of the first row, which is
12.5 meters.

Ia represents the integral of the squared acceleration history, which is expressed
as follows:

Ia =
π

2g

∫ t2

t1

[a(t)]2dt (2)

where a is acceleration history (m/s2), t1 and t2 define the total duration of the acceleration
history, and g is the gravity (m/s2).

The four cardinal directions were defined as follows: (0, 45◦) and (315, 360◦) as north,
(45, 135◦) as east, (135, 225◦) as south, and (225, 315◦) as west. The different values of
PGA, PGV, SED, and Ia in each of these four cardinal directions were extracted separately.
Subsequently, the ground motion factor maps considering the directional effects were
combined using the raster mosaic tool in ArcGIS. This process generated raster maps of
direction-dependent PGA, PGV, SED, and Ia, which were abbreviated as PGAd, PGVd,
SEDd, and Iad, respectively (Table 5). The raster maps of PGA, PGV, SED, and Ia, as well
as their corresponding direction-dependent factors are shown in Figure 7, while those of
other factors are presented in Figure 8. It should be noted that topographic roughness
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index, topographic wetness index, epicentral distance, distance to the seismogenic fault,
and distance to rivers are abbreviated as TRI, TWI, ED, DSF, and DR for convenience in the
following figures, tables, and context.

3.1.2. Correlation Analysis of Landslides and Controlling Factors

To evaluate the potential contribution of individual controlling factors in predicting
landslide occurrences, a correlation analysis was conducted between the controlling factors
and the incidence of landslides. The relationship between the continuous factors (i.e.,
elevation, aspect, slope, TRI, TWI, ED, DSF, DR, PGA, PGV, SED, Ia, PGAd, PGVd, SEDd,
and Iad) and landslide occurrences was quantified using the point biserial correlation
coefficient (rpb) [84]. The correlation coefficient yields a value within the range of −1 to
1, where 0 denotes no correlation, −1 represents perfect anticorrelation, and 1 indicates
perfect correlation. On the other hand, Cramer’s V (V) was employed to analyze the
relationship between nominal factors (lithology) and landslide occurrences [85]. Cramer’s
V produces a value ranging from 0 to 1, with higher values approaching 1 indicating a
stronger relationship.

rpb =
M1 −M0

SN

√
n1n0

n2 (3)

where M1 and M0 represent the means of the two sets of data, respectively, n1 and n0
represent the number of data in each set, n represents the total number of data, and SN
represents the pooled standard deviation of all data.
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V =

√
x2

Mmin{(r− 1), (c− 1)} (4)

where x2 represents the Chi-square statistic, M represents the total sample size, r and c
represents the number of rows and columns, respectively.

The results of the correlation calculation between the controlling factors and landslide
occurrence are shown in Figure 9. Therefore, we eliminated TWI from the selected factors
due to its absolute correlation value being less than 0.1.

3.1.3. Correlation Analysis of Controlling Factors

To address the issue of parameter redundancy and mitigate model instability resulting
from multicollinearity among factors, it was necessary to perform correlation analysis as a
preprocessing step. Given the high correlation observed among the four ground motion
parameters, this section will focus on analyzing the correlation specifically among these
factors, using SED as an example. To visualize the correlations among the nine parameters,
a correlation matrix and a schema ball were generated and are presented in Figure 10.

During factor correlation analysis, we observed the highest positive correlation co-
efficient (0.89) between slope and TRI. As a result, we excluded TRI from the final set
of variables. Finally, we selected terrain factors (elevation, slope, aspect, DR), geological
factor (lithology), and seismic factors (SED, ED, DSF) to analyze their impact on landslide
distribution.

3.2. Model Strategy

The random forest algorithm, a robust machine learning technique consisting of mul-
tiple classification and regression trees, incorporates the bagging technique (bootstrap
aggregation) to randomly select samples from the training dataset and construct classi-
fication and regression trees accordingly. It also identifies the best splits from random
subsets of predisposing factors. The out-of-bag samples are used to evaluate the model’s
error. The outcome of the random forest combines the results from all classification and
regression trees, leading to smoother and more consistent predicted values by mitigating
the discontinuities often observed in individual trees. Despite the advantages of classifi-
cation and regression tree algorithms, there are limitations as an individual tree that can
potentially undermine their predictive accuracy. Firstly, the sensitivity of classification
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and regression trees to the training dataset implies that variations in the training data may
lead to significant differences in the constructed trees. Secondly, the constrained number
of leaf nodes within the tree restricts the range of predicted values, resulting in predic-
tions with discontinuities. To address these drawbacks, the random forest (RF) classifier
was introduced [86].
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Random forest algorithms have been successfully employed in several studies on
landslide susceptibility evaluation [66]. These algorithms have been proved to possess the
highest predictive capability and best performance compared to other shallow machine
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learning algorithms [87]. Therefore, we used the random forest function in Python Studio to
develop a model with the training dataset. This model enables us to calculate the landslide
susceptibility values at each location in the study area using the characterized predisposing
factors. To explore the effects of ground motion parameters on landslide distribution, we
employed eight evaluation strategies by combining each ground motion parameter with
seven other factors (Table 6).

Table 6. Combination strategy of eight evaluation models.

Model Model Formula

1 PGA + Elevation + Slope + Aspect + ED + DSF + DR + Lithology
2 PGV + Elevation + Slope + Aspect + ED + DSF + DR + Lithology
3 SED + Elevation + Slope + Aspect + ED + DSF + DR + Lithology
4 Ia + Elevation + Slope + Aspect + ED + DSF + DR + Lithology
5 PGAd + Elevation + Slope + Aspect + ED + DSF + DR + Lithology
6 PGVd + Elevation + Slope + Aspect + ED + DSF + DR + Lithology
7 SEDd + Elevation + Slope + Aspect + ED + DSF + DR + Lithology
8 Iad + Elevation + Slope + Aspect + ED + DSF + DR + Lithology

We extracted eight factors for 1470 landslide samples and 1470 non-landslide samples,
respectively. Subsequently, we employed all samples to train a random forest model with
a training-to-testing sample ratio of 7:3. By performing a grid search, we determined the
optimal model parameters that yielded the highest accuracy. Afterward, we randomly gen-
erated 3000 samples within the study area, considering the order of magnitude comparable
to the samples used for model training. We extracted attributes from all these samples
and utilized the trained model to predict outcomes for the 3000 samples. The predictions
generated values ranging from 0 to 1.

4. Results
4.1. Landslide Susceptibility Mapping

Figure 11 displays the landslide susceptibility distribution associated with the eight
evaluation strategies for the Ludian earthquake. The landslide susceptibility maps gener-
ated were categorized into five distinct classes using the Jenks natural breaks method: very
low (0–0.15), low (0.15–0.35), medium (0.35–0.6), high (0.6–0.8), and very high (0.8–1). Upon
visual inspection, the distribution patterns of landslide susceptibility generated from the
eight strategies exhibit similarities, with high susceptibility areas concentrated along the
Niulan, Longquan, and Shaba rivers. The distribution of landslide susceptibility resulting
from the first four strategies, which do not consider the directional variation in ground
motion parameters, shows similar patterns, with no significant differences in distribution
and consistent area sizes among all categories. However, when the directional variation
in ground motion parameters is considered, there are noticeable differences in the spatial
distribution of landslide susceptibility. Specifically, the high susceptibility range becomes
smaller, especially in the southwest region, while the low susceptibility range spreads out
further. These changes in distribution are more consistent with the actual distribution
pattern of the co-seismic landslides, indicating the importance of considering directional
variation in accurately assessing landslide susceptibility.

4.2. Evaluation of the Models
4.2.1. Model Performance

The Receiver Operating Characteristic (ROC) curve, which was introduced by Man-
drekar [88], is a widely adopted statistical test to evaluate the accuracy of spatial prediction
models. It measures the true-positive rates of selected spatial prediction models and is
commonly used in landslide susceptibility mapping [89]. The Area Under the Curve (AUC)
is commonly employed as a metric to evaluate the accuracy of the models. Higher AUC
values indicate better accuracy, and those ranging from 0.5 to 1 are considered good ac-
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curacy [90]. The ROC curves of the eight strategies indicate a high level of prediction
accuracy for all models (Figure 12). However, the strategies that do not take into account
the directional variation in ground motion parameters exhibit higher prediction accuracy,
with AUC values as high as 0.93, compared to those that consider it. The AUC values of
the last four models, which include SEDd, PGVd, PGAd, and Iad, are 0.89, 0.88, 0.86, and
0.85, respectively. In addition, regardless of whether the directional variation in ground
motion parameter is considered or not, the models utilizing SED and PGV as ground
motion parameters show better predictive ability and goodness-of-fit compared to those
using Ia and PGA. In addition, the model performance between SED and PGV shows no
significant difference.
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ground motion parameters are as follows: SED (a), SEDd (b), Ia (c), Iad (d), PGV (e), PGVd (f), PGA
(g), and PGAd (h). The blue boxes highlight areas where significant changes occur in the landslide
susceptibility maps when considering the directional variation in ground motion parameters.

4.2.2. Comparison of Predicted Areas

The actual distribution of co-seismic landslides highlights the importance of minimizing
the total proportion of areas classified as “high” and “very high” in landslide susceptibility
mapping. As shown in Figure 13 and Table 7, the evaluation model considering the directional
variation in ground motion parameters exhibits a lower total proportion of areas susceptible
to landslides as “high” and “very high”, with the SEDd model exhibiting the lowest value
at 33.43%. In contrast, the models without considering the directional effect have a higher
overall percentage of areas classified as “high” and “very high” severity, with the PGA model
having the highest proportion at 37.33%. Among the eight strategies evaluated, the prediction
results using SEDd as the ground motion parameter demonstrate the lowest proportion of area
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susceptible to co-seismic landslides of “high” and “very high” severity, with proportions of
19.2% and 14.23%, respectively. Such results show a decrease of 3.2% and 0.51%, respectively,
compared to the prediction results obtained using SED as the ground motion parameter. This
finding demonstrates that the landslide susceptibility distribution generated by this model is
more consistent with the actual distribution of landslides.
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4.3. The Importance of Controlling Factors

This study analyzed the reasons for the unusual spatial distribution pattern of Ludian
co-seismic landslides from the perspective of controlling factors. The earlier discussion
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mainly focused on the influence of ground motion parameters on the accuracy of spatial
prediction models. In this section, we examine the combined influence of all factors on
the distribution of landslides. Figure 14 displays the importance ranking of each factor
in the prediction model. It is prominent that regardless of whether directional variation
is considered or not, the ground motion parameter is not the most significant factor. The
importance of DR and elevation is much greater than that of other factors, indicating that
these two factors play a crucial controlling role in the spatial distribution of landslides.
Furthermore, when the directional variation is considered, the importance of the ground
motion parameter decreases, while the importance of DSF increases. This comprehensive
analysis emphasizes the combined influence of seismologic, topographic, geomorphic,
hydrological, and lithological factors in controlling the unusual spatial distribution pattern
of the Ludian earthquake-triggered landslides.

Table 7. Area proportion of each susceptibility class.

Scheme Very Low Low Moderate High Very High High + Very High

SED 32.9 16.38 13.59 14.74 22.4 37.14
Ia 35.17 15.1 12.79 14.18 22.75 36.93

PGV 34.86 16.08 12.99 14.32 21.75 36.07
PGA 33.27 16.62 12.78 14.51 22.82 37.33
SEDd 33.33 18.39 14.85 14.23 19.2 33.43

Iad 30.28 19.84 14.11 15.38 20.4 35.78
PGVd 32.1 19.01 14.13 15.04 19.72 34.76
PGAd 30.57 18.46 14.62 14.66 21.69 36.35
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5. Discussion

Through landslide susceptibility mapping, this study provided new insights into the
factors contributing to the unusual distribution pattern of the Ludian earthquake-triggered
landslides. We focused on examining the influence of ground motion parameters on the
likelihood of co-seismic landslide occurrence, as well as exploring the association between
seismic energy variations in different directions and the corresponding degrees of slope
instability. Based on the results, there are two noteworthy points for discussion: (1) the
accuracy of the model and (2) the decreased importance of the ground motion parameter
when the directional effect is considered.

5.1. The Completeness of the Landslide Inventory

Creating a comprehensive and detailed co-seismic landslide inventory is crucial for
studying the spatial distribution of co-seismic landslides, assessing their susceptibility,
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and understanding their impact on the geomorphic evolution of earthquake-affected areas.
However, in this study, the resulting landslide inventory exhibits certain disparities in
terms of the number of landslides, due to the relatively limited coverage and the specific
criteria used for interpreting landslides with areas exceeding 500 m2. It is important to note
that despite these differences, the LAP obtained in our study (2.34%) is relatively close to
the result of other more comprehensive inventories (2.71%). This similarity suggests that
the landslide database we established possesses a certain level of representativeness and
can be considered reliable for assessing co-seismic landslide susceptibility. Nonetheless,
investigating the impact of inventory completeness, particularly in terms of the number of
landslides, in subsequent research is recommended.

5.2. Strategies for Selecting Landslide Samples and Prediction Models

Extensive research on the selection strategy of landslide samples and models has been
conducted over the past several years [90,91]. With the development of artificial intelligence,
more scholars are using deep learning models with complex architectures. Dou et al. [92]
analyzed the accuracy of four sampling strategies, (i.e., the centroid of landslide body,
the landslide scarp centroid, samples of the landslide body, and samples of the scrap
region) using logistic regression (LR), artificial neural network (NNET), and deep learning
neural network (DNN) models, in order to perform the co-seismic landslide susceptibility
mapping of the 2018 Hokkaido earthquake. Their results revealed that the most accurate
strategy was landslide scarp, followed by landslide body, centroid of scarp, and centroid
of body. However, the evaluation of the DNN model revealed that the accuracies of the
four types of samples were largely similar, suggesting that the sampling strategy had little
impact on the accuracy of DNN models with deep architecture. In contrast, Yi et al. [93]
discovered that the accuracy of Convolutional Neural Network (CNN) models with the
same deep architecture was influenced by the choice of sampling strategy at different scales,
suggesting that the selection of samples and models remains a topic of ongoing debate
within the field.

The present study employed the centroid of scarp as the sampling strategy, which has
been broadly used in previous studies. The evaluation model selected for the study was
random forest, which is also a well-established and extensively used model in landslide
susceptibility assessments.

However, it is worth exploring different sampling strategies and deep learning models
with complex architectures to gain a better understanding of the underlying causes of the
unusual spatial distribution patterns of co-seismic landslides in the 2014 Ludian earthquake.
Additionally, further analyses are required to investigate the possible reasons for the lower
AUC of the model when the directional variation in ground motion parameter was taken
into account.

5.3. Influence of Landslide Size

As mentioned earlier in this paper, the size of landslides triggered by the Ludian
earthquake exhibit a distinct spatial distribution pattern. Hakan and Luigi [94] emphasized
the importance of considering landslide size in co-seismic landslide assessments, a factor
that has often been neglected in previous studies. Despite significant advancements in
landslide susceptibility evaluation methods, ranging from traditional bivariate statistical
models to deep learning models, there is still a lack of spatially explicit data-driven models
that are capable of predicting the size of landslides in a specific study area. To address this
problem, Lombardo et al. [95] first introduced a novel approach by employing a traditional
statistical method called the Generalized Additive Model to predict the landslide area. This
methodology fills a significant gap in the current literature as there is a lack of available
maps that can statistically estimate the anticipated extent of slope failures. Following this
study, Aguilera et al. [96] proposed the Hierarchical Neural Network (HNN), which is the
first hierarchical data-driven model capable of simultaneously estimating both the potential
locations of landslides and the corresponding size classes.
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Incorporating landslide size into landslide susceptibility assessments requires the
acquirement of detailed information on the area, depth, and volume of the landslides,
which is challenging and may necessitate extensive fieldwork or remote sensing techniques.
However, databases of global co-seismic landslides that encompass detailed landslide size
information are limited. Although the emphasis of this study was placed on analyzing the
spatial locations of the landslides rather than their sizes, obtaining size information on the
landslides, particularly their volume, would be highly valuable for further investigating
the influence of directional variation in ground motion parameters on the distribution of
co-seismic landslides triggered by the Ludian earthquake.

6. Conclusions

Based on our investigation of the factors influencing the unusual landslide distribution
caused by the 2014 Mw 6.2 Ludian earthquake, several major conclusions are obtained,
which are outlined below:

(1) The Ludian earthquake-triggered landslides are not linearly concentrated along the
seismogenic fault, but rather dispersed along major river systems with an NE–SW
trend. The two most important factors that significantly affected the spatial distribu-
tion of these landslides were found to be the distance to rivers and elevation.

(2) The Ri values for slopes facing SE, S, and SW are 1.3, 1.23, and 1.41, respectively,
while slopes facing N, NW, and NE have much lower Ri values (0.77, 0.68, and 0.52).
Therefore, the percentage of landslide source area on the slopes facing south is much
larger than that on the slopes facing north, which is consistent with seismic energy
variations, i.e., the value of ground motion parameters in the south is larger than that
in the north.

(3) The model’s performance and its ability to accurately represent the spatial distribution
of co-seismic landslides were essentially the same, regardless of whether the analysis
incorporated PGA, PGV, Ia, or SED. However, in comparison to PGAd, PGVd and Iad,
SEDd emerged as the most effective ground motion parameter for interpreting the
distribution of co-seismic landslides.

(4) The occurrence of co-seismic landslides during the 2014 Ludian earthquake exhibits a
significant relationship between the directional variation in ground motion parameters
and different slope aspects. Although the AUC of the model slightly decreases when
the directional variation in ground motion parameters is taken into account, there is
a notable reduction in the proportion of areas of “high” and “very high” landslide
susceptibility. This adjustment results in a better accordance between the model’s
prediction and the actual distribution of landslides. Therefore, we suggest that the
directional variation in ground motion parameters plays an essential role and should
be taken into account in the co-seismic landslide susceptibility mapping for the
Ludian earthquake.

Author Contributions: All authors significantly contributed to the research. Conceptualization, J.L.;
data curation, J.L. and Y.D.; formal analysis, J.L. and Y.D.; funding acquisition, J.L.; methodology,
Y.D., J.L. and Z.L.; resources, X.P.; software, Y.D. and J.L.; supervision, X.P. and J.L.; visualization,
Y.D.; Writing—Original draft, Y.D. and J.L.; Writing—Review and editing, J.L. and X.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by [National Natural Science Foundation of China] grant number
[42107212] and [Natural Science Foundation of Sichuan Province] grant number [2022NSFSC1145].

Data Availability Statement: Data are available upon request from the corresponding author.

Acknowledgments: We gratefully acknowledge the provision of high-quality seismic metadata from
28 strong motion stations by the Institute of Engineering Mechanics, China Earthquake Administration.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 4444 24 of 27

References
1. Keefer, D.K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [CrossRef]
2. Xu, X.W.; Jiang, G.Y.; Yu, G.H.; Wu, X.Y.; Li, X. Discussion on seismogenic fault of the Ludian M (s) 6.5 earthquake and its tectonic

attribution. Chin. J. Geophys. 2014, 57, 3060–3068.
3. Huang, R.Q.; Li, W.L. Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China. Bull. Eng. Geol.

Environ. 2009, 68, 363–371. [CrossRef]
4. Cui, P.; Lin, Y.M.; Chen, C. Destruction of vegetation due to geo-hazards and its environmental impacts in the Wenchuan

earthquake areas. Ecol. Eng. 2012, 44, 61–69. [CrossRef]
5. Yin, Y.P.; Wang, F.R.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009,

6, 139–152. [CrossRef]
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