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Abstract: Rapid global economic development, population growth, and increased motorization have
resulted in significant issues in urban traffic safety. This study explores the intrinsic connections
between road environments and driving safety by integrating multiple visual landscape elements.
High-resolution remote sensing and street-view images were used as primary data sources to obtain
the visual landscape features of an urban expressway. Deep learning semantic segmentation was
employed to calculate visual landscape features, and a trend surface fitting model of road landscape
features and driver fatigue was established based on experimental data from 30 drivers who com-
pleted driving tasks in random order. There were significant spatial variations in the visual landscape
of the expressway from the city center to the urban periphery. Heart rate values fluctuated within
a range of 0.2% with every 10% change in driving speed and landscape complexity. Specifically,
as landscape complexity changed between 5.28 and 8.30, the heart rate fluctuated between 91 and
96. This suggests that a higher degree of landscape richness effectively mitigates increases in driver
fatigue and exerts a positive impact on traffic safety. This study provides a reference for quantitative
assessment research that combines urban road landscape features and traffic safety using multiple
data sources. It may guide the implementation of traffic safety measures during road planning
and construction.

Keywords: deep learning; semantic segmentation; traffic safety; driving performance; remote sensing;
street view image; visual landscape elements

1. Introduction

With the rapid growth of the global population and economy, urban road networks
continue to expand, and the number of vehicles on the road is steadily increasing each year.
As a consequence, traffic accidents are becoming more frequent. According to a report by
the World Health Organization (WHO) in 2018, over 1.3 million people die in road traffic
accidents every year. This leads to significant loss of life, property damage, and adverse
environmental impacts, all of which are detrimental to the sustainable development [1,2].
During the process of driving on roads, the increasing frequency of traffic accidents caused
by visual landscapes [3,4] necessitates the exploration of a new approach to integrate a
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large amount of data to represent the visual environment of drivers on the road and to
investigate its impact on driving safety [5].

In previous studies examining the influence of visual landscapes on traffic safety, re-
searchers have primarily focused on how drivers perceive visual environments on roads [6]
by contrasting people’s reactions to natural elements versus artificial elements and uni-
form environments versus diverse environments during road usage [7,8], researchers have
gained insights into the preferences of car users for road environments [9]. In recent years,
research on the effects of road environments on driver behavior and safety has become a
focus. Studies using driving simulators have investigated the impact of road environments
on driving speed and reaction time, demonstrating that the environment is an essential
factor that influences driver workload and performance [10]. Based on a survey, researchers
revealed the significant influence of driving environments on speeding and overtaking vio-
lations [11]. Poor highway landscapes can lead to adverse driving performance, dangerous
driving behavior, and traffic accidents [12]. Conversely, a well-designed road landscape
can positively impact the physical and mental states of drivers, thereby promoting traffic
safety and reducing accident occurrences [13]. Research examining the influence of trees
on collision frequency in urban areas has shown that a higher tree density can reduce
traffic accidents [14]. In a study conducted on the Qinghai-Tibet Highway, researchers
used plant landscape color values and driver blink frequency as analysis indicators, reflect-
ing how a pleasant road landscape environment can provide drivers with a comfortable
visual experience.

In recent years, extracting road information from remote sensing images has be-
come the primary method for updating road information, ensuring both accuracy and
automation [15,16]. High-quality road information updates are important for intelligent
urban planning, sustainable urban development, vehicle management, and traffic navi-
gation [17,18]. These algorithms require a high resolution, road curvature, and boundary
conditions [19–21]. With the availability of increasingly rich street-view map resources [22],
which provide new perspectives and research methods, researchers can supplement the
details of urban perception from a human perspective [23]. Street-view images, such as
those with temporal and spatial information, comprehensively display road landscapes and
provide a sense of immersion [24]. Consequently, more studies have begun utilizing street-
view images to visually represent landscape features and explore people’s visual perception
of open environments [25,26]. Companies like Google and Baidu have used street-view
images for road detection, classification, and mapping [27,28]. The digital resources of
urban road networks are crucial for industrial applications and are key requirements for
digital cities to reduce road traffic accidents [29]. The rapid development of computer
vision applications has provided powerful feature extraction capabilities, enhancing the
understanding of semantic information contained in street-view images and significantly
improving the ability to perceive urban scenes [30], thereby providing a new quantitative
means for obtaining road landscape features.

In the field of driving safety research, deep learning algorithms were first employed
to calculate traffic volume and detect traffic speeds [31]. Subsequently, they have rapidly
advanced in areas such as vehicle kinematics, vehicle behavior tracking, and place infor-
mation extraction. Some studies have utilized detection and tracking algorithms to obtain
vehicle trajectories and calculate surrogate safety measures [32,33]. Others have provided
obstacle avoidance solutions by observing the collision rates of vehicles in intersection
environments [34]. Tanprasert et al. developed an algorithm for extracting information
regarding objects surrounding roads from street-view images based on distance perception
accumulation, thereby enabling the assessment of traffic environment safety [35]. Mooney
et al. found a significant correlation between environmental infrastructure and the number
of accidents and evaluated the impact of the environment on crash frequency [36]. Li et al.
developed an algorithm to depict the visual glare situation for drivers and estimate the
time window of sun glare by calculating the sun’s position and the relative angle between
the driver and the sun at different locations [37]. These studies achieved high-precision
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results and involved extensive video and image collection. However, many important
factors related to the driver’s field of view have not been extracted from videos and images,
and their impact on safety has not been explored. Therefore, there is an opportunity to
further explore the application of deep learning to driving safety.

This study employs a method that integrates street view imagery with deep learning
to propose an effective framework for extracting road visual elements, capturing both
clustering and depth information from images [38]. To further enrich our data sources,
we have utilized the latest 2023 version of remote sensing data from geographic data
repositories, such as OpenStreetMap. This is done to complement the structural features
of road networks and capture other essential details. These details encompass elements
such as green spaces, urban features, architectural diversity, and more, enabling us to
comprehensively examine a variety of landscapes and visual elements within the driv-
ing environment from multiple perspectives [39]. The outcomes of this study can offer
valuable insights for formulating detailed measurement indicators pertaining to urban
road environment characteristics. Moreover, this research takes a holistic approach by
considering environmental features and the driver’s physical condition, resulting in the
construction of a quantitative relationship model to explore the correlation between driving
speed, landscape complexity, and driver heart rate. This model is utilized to evaluate the
extent to which the visual environment impacts road safety. We hope that the outcomes
of this study will introduce novel insights for enhancing road traffic safety by addressing
road visual landscapes. Furthermore, the study aims to provide theoretical support for
enhancing road landscape planning, thus contributing to the achievement of sustainable
development objectives.

In the following section, this study presents the research area and the data collection
process used in the study. Section 3 discusses the distribution characteristics of urban
road landscape elements, presents the model-fitting results, and conducts an analysis of
the findings. Section 4 summarizes the contributions of this research and proposes paths
for further exploration using the conclusions obtained in this study. The final section
discusses the novelty of the research outcomes and strategies for applying them in practical
applications, combining the research findings with real-world practices.

2. Data and Methods
2.1. Study Area

As shown in Figure 1 (https://search.asf.alaska.edu/#/, accessed on 20 April 2023),
Xi’an is the capital of the Shaanxi Province in China and has a temperate monsoon cli-
mate [40–42]. It is an important central city in Western China, a core city in the Guanzhong
Plain urban agglomeration, and a demonstration city promoting new energy vehicles [43].
At the end of 2022, the population of Xi’an was 12.96 million people, with a total of
4.8588 million motor vehicles, representing the seventh-highest number of vehicles in the
country. The Traffic Health Index refers to an indicator that measures the percentage of
proximity to the optimal traffic conditions. It has consistently remained at around 40%,
indicating a significant gap compared to the ideal state. The suboptimal traffic health issue
in Xi’an City is becoming increasingly prominent. In addition, as a city with a history of
being the ancient capital of thirteen dynasties, Xi’an attracts a large number of tourists with
its abundant tourism resources. This influx of tourists has also significantly contributed to
the substantial traffic volume in the city.

The Xi’an Ring Expressway forms a circular high-speed thoroughfare around the
outskirts of the city, connecting the national trunk roads. For this study, we selected a
section of the G3002 Ring Expressway within the Yanta District of Xi’an, from the Lihua
Shui Interchange to the Chanhe East Road intersection, as the study area. The Yanta District
is a nationally renowned area for science, education, culture, and tourism. The selected
section of the expressway is 26 km long, with a roadbed width of 35 m. It is a fully enclosed,
all-interchange, six-lane highway with a green area of 1.683 million m2 on both sides of the
road. The area passes through industrial clusters, integrates cultural tourism, encompasses
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major historical sites, and emphasizes ecological functionality [44–46], providing a diverse
environment. Traffic accidents on the Ring Expressway account for 0.5% of the total
number of accidents in the Yanta District, indicating a relatively high accident rate. The
road network also experiences prolonged delays owing to high traffic demand. With the
growth of the city’s population and economy, the imbalance between transportation supply
and demand exerts significant pressure on traffic safety on the Ring Expressway.
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2.2. Research Framework

The characteristics of the road environment are relevant to risk factors in driver fatigue
development during driving. In order to extract urban road environment features and
quantitatively analyze the impact of landscapes on driving behavior, this paper constructs
the research framework as illustrated in Figure 2. Firstly, prior road knowledge, such
as OSM data (Open Street Map) [47], is utilized to extract road morphology, assisting in
generating street view sampling points while excluding construction and closed roads,
thereby obtaining clear road lines in street view. Subsequently, street view collection points
are uniformly segmented every 50 m along the road lines to acquire street view images. A
convolutional neural network algorithm is then employed to segment the images, extracting
features of visual landscape elements in road street view images, including the green-
looking ratio, street openness, building view index, and landscape complexity, representing
the driver’s visual landscape characteristics [48]. These features are accurately displayed
on the map (http://guihuayun.com/maps/index.php, accessed on 20 April 2023).

http://guihuayun.com/maps/index.php
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The mean heart rate (MHR) is closely associated with driver fatigue and is commonly
used to identify driver fatigue status [49–51]. Therefore, the next step involved collect-
ing physiological signals of driver heart rate in driving environments to investigate the
combined effects of highway landscape and driving speed on driver heart rate. To estab-
lish a joint relationship model among the three factors, we chose landscape complexity
and driving speed as independent variables, while driver heart rate was considered the
dependent variable.

2.3. BSVI Data Collection

The application of street-view images to the analysis of urban road networks and
environmental quality has become increasingly common in the field of urban science [52].
Street-view data provide unique opportunities for human-centered observations in urban
environments [53,54].
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To comprehensively assess the environmental features of the Xi’an Ring Expressway,
we retrieved Baidu Street View Images based on locations from the Baidu Map Open
Platform and sampling points. First, the street network coordinate system downloaded
from OSM (https://www.openstreetmap.org/, accessed on 20 April 2023) was calibrated.
We randomly generated 1002 street-view sampling points at 50-m intervals, with latitude
and longitude coordinates as the basis for input parameters in the Baidu Street View Map
Application Programming Interface (API). Subsequently, to ensure a correct and complete
view in all directions from each street-view point, a Python program was used to access the
Baidu Map API and collect the panoramic images (Figure 3).
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Interface.

To accurately simulate the perception of driver driving, we used the following specific
parameter settings to retrieve Baidu Street View Images (BSVIs) from the API. Geographical
latitude and longitude coordinates were converted to the Baidu Street View Map standard
BD09, the vertical angle (pitch) was set to 0◦, the field of view was set to 360◦, and the
maximum pixel size was set to 1024× 512 to ensure high-quality access to images. To ensure
the reliability of the analysis of the environmental characteristics of the Ring Expressway,
invalid access results and blurry images were filtered out, and duplicate sampling points
were cleaned. Finally, using Python and the Baidu Street View Map API, 990 street-view
images were obtained based on the sampling points.

2.4. Extraction of Drivers’ Visual Environment Elements from BSVIs

To extract information from images and compute it, we applied deep learning tech-
niques, particularly the image semantic segmentation [54]. As a key technology for the
understanding of a visual scene, semantic image segmentation accurately identifies dif-

https://www.openstreetmap.org/
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ferent objects in an image instance by assigning classification labels to each pixel. The
scale of the training dataset primarily determines the number of object categories that
the segmentation model can recognize [55]. Considering the remarkable performance of
the deep learning fully convolutional network (FCN) image segmentation technique in
urban exploration in China, we employed the publicly-available ADE-20K dataset, which
was released by the Massachusetts Institute of Technology, for precise recognition and
pixel-level classification, as well as semantic segmentation of elements in 150 everyday
life scenes, including sky, road, car, and plants. Using this dataset, the fundamental visual
environmental elements and environmental characteristics of the study area were obtained.
Figure 4 shows the original BSVIs along with the corresponding results of visual element
segmentation, identifying distinct objects in the images, and computing the coverage per-
centage of each visual element in the street-view images through cluster analysis. The color
matrix at the bottom represents the semantic segmentation information of the extracted
visual elements.
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semantic segmentation models.

The primary visual landscape elements of urban road environments are the green-
looking ratio, street openness, building view index [56], and landscape complexity [57]. The
level of greenery is meaningful for driving performance in terms of creating a sense of re-
laxation [58,59] and controlling driving speed [60]. In high-density urban environments, an
adequate sky view plays a significant role in shaping the visual landscape experience [61].
The impact of the sky openness on urban traffic planning has become a prominent is-
sue, particularly in the context of ongoing global warming and rapid urbanization. The
built environment [62] affects driving safety through driver line-of-sight guidance [63]
and perception of speed differences [64]. The landscape complexity of different driving
environments influences traffic collisions by affecting driver decision-making, attention
restoration [65], and traffic conflict [66]. Based on this, we extracted and analyzed the
semantic segmentation results of street-view images to obtain basic information on the
visual landscape elements of the Xi’an Ring Expressway (Table 1).
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Table 1. Definitions and equations for four visual landscape elements.

Order
Number

Feature Elements
of Road Space Concrete Content Objective Score Equations (Based on Their Operational

Definitions)

1 Proportion of road
elements

VIfeature denotes the view
index of a physical feature
(proportion of the visual

element’s pixels in a street
view imagery),

VIfeature =
∑n

i=1 PixeI f eature

∑n
i=1 PixeItotal

= 1
n ∑n

i=1 PixeI f eature,
f eature ∈ (tree, building, sky, grass, etc)

(1)

2 Green-looking
ratio

The ratio of street visible
greening to all pixel points

in street view images.
Greenxi = VItree + VIgrass + VIplant (2)

3 Street openness
The proportion of sky

elements in the pixels of
street view images.

Skyxi = VIsky (3)

4 Building view
index

The proportion of buildings,
houses, skyscrapers in all

pixel points in street
view images.

Bldgxi = VIbuilding + VIhouse + VIskyscraper + VItower (4)

5 Complexity

The visual richness of a
place, which depends on the
variety of the numbers and

types of buildings,
ornamentation, landscape
elements, street furniture,

signage, and human activity

Cmplxi =
Greenxi+VIrail+VIsignboard+VIpole+VIcar+VImoutain

Bldgxi+VIroad

(5)

2.5. Driver Heart Rate Indicator Experiment
2.5.1. Data Collection from Field Experiments

To advance this research, a model was developed to analyze the impact of visual
landscape features on the driving states of drivers. We conducted a real road experiment on
a specific section of the Xi’an Ring Road, namely the Lihuashui Interchange to the Chanhe
East Road intersection in the Yanta District of Xi’an. During the experiment, we collected
relevant heart rate data to assess driver fatigue levels. Our objective was to examine the
influence of visual landscape complexity on driving safety and determine the parameters
within the relationship model.

To obtain comprehensive and objective data, the experiment was conducted during
daytime hours with a lower traffic volume to minimize the impact of non-road environmen-
tal factors on drivers. To ensure safety, we required the participating drivers in the driving
experiment to be in good physical condition, maintain regular sleep patterns, possess a
valid driver’s license, have ample driving experience, and fall within the age range of 23 to
40 years, with no history of adverse driving records or involvement in serious accidents.
Among the 30 participants, the ratio of male to female drivers was 1:1, with an average
age of 31.2 years and an average driving experience of 4.7 years. On the day before the
experiment, their sleep conditions were normal, and in the 12 h leading up to the trial, they
abstained from consuming any medication, alcohol, coffee, or other stimulating beverages.
Prior to the start of the experiment, the experimenter provided the participants with basic
information about the purpose of the study, the experimental procedure, and any relevant
instructions. Throughout the entire duration of the experiment, participants were not
allowed to use their phones or other electronic devices, and the experimenter maintained a
quiet environment. To ensure driving safety, the participants were given designated rest
periods when they felt fatigued.
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As shown in Figure 5, to ensure synchronous data acquisition and facilitate subsequent
matching of visual environmental complexity with street views, a camera was placed inside
the vehicle (below the windshield, in front of the passenger seat) to continuously record
roadside landscapes. The design speed range of the Xi’an Ring Expressway is between
60 km per hour and 120 km per hour. As a crucial part of the urban expressway network,
this road segment experiences relatively dense traffic flow and operates at a slower driving
pace. To conduct safe experiments while the vehicle was in motion, upon entering the
experimental section, the vehicle maintained an initial speed of 60 km per hour for 1 km.
After confirming a stable heart rate, the speed was increased by 1 km per hour every 2 min.
Data collection for the measured heart rate and vehicle speed was performed at 2-min
intervals. Considering individual differences, multiple individuals simultaneously read
and recorded data to obtain an average heart rate value to reduce measurement errors.
Figure 5 illustrates the details of the experimental equipment and field experiments.
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2.5.2. Construction of a Relationship Model for the Effect of Highway Visual Landscape
Complexity on Heart Rate Considering Driving Speed

Heart rate reflects the rhythmic activity of the human heart and is a relatively stable
physiological signal that varies continuously over time. Under different external stimuli,
the characteristics of heart rate values may vary, reflecting the impact of visual landscape
features on an individual’s level of excitement, fatigue, and concentration at different
driving speeds.

To ensure the effectiveness of the analysis, the study collected 31 sets of data. The
processed variables x, y and z were subjected to regression analysis, resulting in z = f (x, y).
When the minimized residual sum of squares (Q), where the squared difference between
the actual values zi and the predicted values f (xi, yi) is the smallest, indicates a trend
surface fitting in the sense of the least squares method. Therefore, the trend surface analysis
method was used to fit the equation.

Q = ∑n
i=1[zi − f (xi, yi)]

2 (6)

In practical scenarios, the MHR of drivers is influenced by both driving speed and
environmental features. Hence, we employed a trend surface analysis approach utilizing
mathematical computations and polynomial regression fitting equations to investigate the
combined impact of driving speed and road visual landscape complexity. This analysis
measured the correlation between these factors and the occurrence of driver fatigue while
uncovering their changing trends. The measured data included heart rate values (denoted
as z), driving speeds (denoted as x), and landscape complexity values (denoted as y,
calculated as described in Section 2.4).

z = a0 + ∑n
i=1

(
aix + biy

)i
(7)
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By conducting an in-depth analysis of the model constructed based on these three
factors, we can unveil the variability of driver heart rate and comprehensively assess
the patterns of physiological changes during the driving process. This research holds
significant implications for enhancing driving safety, optimizing driving environment
design, and monitoring driver health, as it helps to establish the correlation between
driving environment and physiological data.

To investigate the extent of driver heart rate variation with changes in road landscape
complexity and driving speed, a sensitivity analysis was performed on the constructed
model. Sensitivity analysis encompasses both single and multi-factor sensitivity analyses.
Single-factor sensitivity analysis focuses on studying the impacts of individual parameter
variations on the target, whereas multi-factor sensitivity analysis considers the combined
effects of various parameter combinations on the target. The distinction between single
and multi-factor sensitivity analyses lies in the consideration of the interactions between
the parameters [16]. Because there is no interaction between driving speed and landscape
complexity, we opted for a single-factor sensitivity analysis. Using the sensitivity coefficient
Formula (8), with the driver’s heart rate as the evaluation metric and driving speed and
landscape complexity as influencing factors, we explored the sensitivity of each metric to
the other influencing factors under the condition of holding one influencing factor constant.

E = ∆H/∆F (8)

In this equation, E represents the sensitivity coefficient, ∆F represents the change rate
of the influencing factor F, and ∆H represents the corresponding change rate of the target
when the influencing factor varies.

3. Results

After analyzing the 990 BSVIs used in the case study, the coverage rate of 24 frequently
occurring object categories was close to 92%. These categories can be considered funda-
mental visual elements that constitute the driver’s highway environmental landscape. The
classification and proportions of visual elements are shown in Figures 6 and 7. Within
static and dynamic elements, there are both natural features and man-made structures. Sky,
roads, buildings, and vegetation are the most common elements encountered by drivers
while driving on a circumferential highway.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 23 
 

 

𝑧 = 𝑎 + (𝑎 𝑥 + 𝑏 𝑦)  (7) 

By conducting an in-depth analysis of the model constructed based on these three 
factors, we can unveil the variability of driver heart rate and comprehensively assess the 
patterns of physiological changes during the driving process. This research holds signifi-
cant implications for enhancing driving safety, optimizing driving environment design, 
and monitoring driver health, as it helps to establish the correlation between driving en-
vironment and physiological data. 

To investigate the extent of driver heart rate variation with changes in road landscape 
complexity and driving speed, a sensitivity analysis was performed on the constructed 
model. Sensitivity analysis encompasses both single and multi-factor sensitivity analyses. 
Single-factor sensitivity analysis focuses on studying the impacts of individual parameter 
variations on the target, whereas multi-factor sensitivity analysis considers the combined 
effects of various parameter combinations on the target. The distinction between single 
and multi-factor sensitivity analyses lies in the consideration of the interactions between 
the parameters [16]. Because there is no interaction between driving speed and landscape 
complexity, we opted for a single-factor sensitivity analysis. Using the sensitivity coeffi-
cient Formula (8), with the driverʹs heart rate as the evaluation metric and driving speed 
and landscape complexity as influencing factors, we explored the sensitivity of each met-
ric to the other influencing factors under the condition of holding one influencing factor 
constant. E = ∆H/∆F (8) 

In this equation, E represents the sensitivity coefficient, ΔF represents the change rate 
of the influencing factor F, and ΔH represents the corresponding change rate of the target 
when the influencing factor varies. 

3. Results 
After analyzing the 990 BSVIs used in the case study, the coverage rate of 24 fre-

quently occurring object categories was close to 92%. These categories can be considered 
fundamental visual elements that constitute the driver’s highway environmental land-
scape. The classification and proportions of visual elements are shown in Figures 6 and 7. 
Within static and dynamic elements, there are both natural features and man-made struc-
tures. Sky, roads, buildings, and vegetation are the most common elements encountered 
by drivers while driving on a circumferential highway. 

 
Figure 6. Proportional distribution of visual features of the road environment. Note: The numbers 
in the chart are in permille (‰) units. 

Figure 6. Proportional distribution of visual features of the road environment. Note: The numbers in
the chart are in permille (‰) units.



Remote Sens. 2023, 15, 4437 11 of 23
Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 23 
 

 

 
(a) Low percentage visual landscape elements 

 
(b) Moderate percentage visual landscape elements 

 
(c) High percentage visual landscape elements 

 

Figure 7. Distribution of visual landscape elements in Baidu Street View Images as a percentage of 
the score area. 

3.1. Spatial Distribution Characteristics of Urban Street Visual Landscape Elements 
3.1.1. Spatial Distribution of Different Visual Landscape Elements 

The main visual landscape elements of the urban road environment are the green-
looking ratio, street openness (sky view ratio), building view index, and landscape 

Figure 7. Distribution of visual landscape elements in Baidu Street View Images as a percentage of
the score area.



Remote Sens. 2023, 15, 4437 12 of 23

3.1. Spatial Distribution Characteristics of Urban Street Visual Landscape Elements
3.1.1. Spatial Distribution of Different Visual Landscape Elements

The main visual landscape elements of the urban road environment are the green-
looking ratio, street openness (sky view ratio), building view index, and landscape complex-
ity. According to the descriptive statistical analysis, the average values of the green-looking
ratio, street openness, building view index, and landscape complexity were 0.067, 0.580,
0.080, and 0.351, respectively (Table 2). This indicates that the overall greenery level in the
urban areas traversed by the highway was relatively low, with high openness, building den-
sity and moderate landscape complexity. The green-looking ratio, street openness, building
view index, and landscape complexity varied significantly at different locations, indicating
spatial heterogeneity and richness of visual landscape elements in the area (Figure 8).

Table 2. Basic information of visual landscape elements (n = 990).

Mean Max Min STDEV

Green-looking ratio 0.067241 0.276717 0.000063 0.064517

Street openness 0.579668 0.710748 0.001417 0.095404

Building view index 0.075982 0.248327 0.000003 0.054918

Complexity 0.351175181 8.3073563501 0.8013822653 0.436496803
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The areas along the peripheral expressway generally exhibited a lower green-looking
ratio, with a spatial distribution showing an “east high, west low” pattern (Figure 9a). There
was a significant spatial heterogeneity in the green-looking ratio within the region, indicat-
ing substantial differences in the green perceptions of drivers passing through this area.
Regions with a higher building view index tended to have lower green-looking ratios, pos-
sibly because of the limited green spaces as a result of high-density architectural clusters.

The spatial distribution of street openness showed an increasing trend with increasing
distance from the city center (Figure 9b). Higher street openness values were primarily
concentrated along the Chan River and Yanming Lake areas, which are typically linear
waterfront areas and leisure parks with lower building density and wider visibility [67,68].
Notably, despite the relatively high green-looking ratio in the Qujiang Cultural Tourism and
Residential Integration Zone, street openness was relatively low [69]. Previous studies have
suggested that complex street trees can affect sky openness and decrease street openness,
which is consistent with the findings of this study [22]. These findings highlight the
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influence of greenery on street openness and provide guidance for balancing greenery and
visual openness in the planning of peripheral expressways. These findings highlight the
influence of greenery on street openness and provide guidance for balancing greening and
visual openness in the planning of the peripheral expressway.

Higher building view index values were concentrated in the central and western
parts of the Yanta District (Figure 9c), such as Taibai South Road, Electronics South Street,
Zhuque Avenue South Section, Chang’an South Road, Cuihua Road, and Yanta South Road.
These areas are mainly high-tech industrial development zones, financial centers, business
districts, historical and cultural quarters, and residential communities. High-density
architectural clusters increase the proportion of buildings from a human perspective and
create a sense of enclosure. In contrast, the eastern section of the road passes through a
large heritage protection area characterized by a sparser urban structure and more open
spaces, such as scenic spots, squares, parks, and rivers [70]. Consequently, the building
view index remains at a lower level in this region.

Figure 9d shows the distribution trend of landscape complexity, with lower values
in the western region and higher values in the eastern region. This trend was generally
opposite to the distribution trend for green-looking ratio but exhibits similar heterogeneity
characteristics as street openness and building view index. This distribution pattern was
influenced by factors such as billboards, signboards, and construction barriers, as observed
in the analysis of street-view images. Additionally, the natural environment and population
density influenced landscape complexity. Areas closer to urban rivers and lakes had higher
landscape complexity [71], while areas near dense residential zones tended to have stable
landscape complexities.
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Figure 9. Spatial distribution of visual landscape elements. (a) Distribution of green-looking ra-
tio; (b) Distribution of street openness; (c) Distribution of building view index; (d) Distribution
of complexity.

3.1.2. Cluster Analysis and Spatial Distribution of Visual Landscape Elements

To investigate the spatial distribution patterns of the visual landscape elements
along the ring road, a K-means cluster analysis was conducted on the green-looking
ratio, street openness, building view index, and landscape complexity. According to the
Elbow method [72], the appropriate number of clusters was determined to be 4. The
analysis yielded four clusters representing areas dominated by high-complexity green
spaces, low-complexity grey spaces dominated by buildings, medium-complexity blue
spaces dominated by the sky, and balanced spaces with relatively even distributions of
the three elements (Figure 10). The cluster centroids were as follows: 0.166, 0.009, 0.574,
and 5.562 for green-dominated high-complexity spaces; 0.032, 0.135, 0.541, and 2.231 for
building-dominated low-complexity spaces; 0.081, 0.027, 0.620, and 4.263 for sky-dominated
medium-complexity spaces; and 0.057, 0.078, 0.589, and 3.134 for balanced spaces.
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Figure 10. Cluster analysis results. (a) Cluster distribution results; (b) Examples of clustered street
view images; (c) Box diagrams of 4 clusters; (d) Rose charts of 4 clusters. Notes: **** in (c) indicates a
significant difference in the levels of visual landscape element indicators within the group.



Remote Sens. 2023, 15, 4437 16 of 23

3.2. Impact of Visual Landscape on Driving Fatigue
3.2.1. Model Fitting and Model Validation

There are two types of fatigue: active and passive [73]. Active fatigue arises from
factors such as a lack of subjective engagement, monotonous external environments, or a
dearth of stimulation. Prolonged or intense stress responses are the root causes of active
fatigue. Under active fatigue, sympathetic nervous system tension increases, leading to
an increase in MHR. Driving fatigue falls under the category of active fatigue because it
is triggered by driving demands. According to the experimental data from the 31 driver
groups (Figure 11), when the vehicle was traveling at speeds of 60–64 km/h, the road
landscape complexity was concentrated between 1.000 and 2.000. During this stage, the
overall values of the average heart rate were relatively high and stable, indicating that the
barren and unchanging landscape did not have a significant positive effect on alleviating
driver fatigue. However, when the driving speed was in the range of 65–83 km/h, the
landscape elements became more varied, and the complexity distribution ranged from
1.298 to 8.307. The MHR values fluctuated between 91.760 and 98.560, suggesting that as
the road landscape gradually became richer and more visible, the average heart rate values
underwent significant changes and showed a sustained decrease in overall levels. This
indicates that road landscape complexity has a positive effect on alleviating driver fatigue.
Overall, as the driving speed increased and the landscape complexity fluctuated, fatigue
was alleviated, leading to a downward trend in the driver’s MHR.
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Ridge regression analysis of the 31 datasets revealed that the variance inflation fac-
tor values were <10, indicating the absence of multicollinearity among the independent
variables. The data trends also conformed to trend surface fitting using the least-squares
method. By applying regression analysis to the processed data, the following non-linear
regression equation was obtained: z = f (x, y), where x represents driving speed (km/h), y
represents landscape complexity, and z represents heart rate (beats/min). The coefficient
for x2 was 0.859; for y2, it was −0.582; for xy, it was −0.613; for x, it was −1.270; and for y,
it was 0.348. The constant term was 0.844.

Correlation tests were conducted to assess the goodness of fit and evaluate the fitting
performance of the model. The root mean square error (RMSE) of the fitting model was
0.16, indicating a small error. The coefficient of determination (R2) was 0.465, indicating a
large determination coefficient and good regression effect. This confirmed that the fitting
equation could be applied to the model. The model achieved the purpose of analyzing
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driving activities to some extent. From the analysis, it can be inferred that, in general,
both independent variables had a positive effect on alleviating driving fatigue. As the
driving speed and landscape complexity increased, the MHR tended to decrease in an
overall downward trend, with the magnitude of change increasing. Driving speed had
a greater impact on MHR than landscape complexity. The constructed model effectively
expressed the combined influence of landscape complexity and driving speed on MHR in
the peripheral visual environment of the expressway.

3.2.2. Sensitivity Analysis

As shown in Figure 12, several scenarios were tested to examine the rate of change
in heart rate values with variations in landscape complexity and driving speed at fixed
increments of 100%. This allowed us to determine the sensitivity coefficients of the heart
rate values to the influencing factors. The increment in heart rate was relatively larger with
changes in driving speed, indicating a greater sensitivity of heart rate to driving speed. This
suggests that heart rate values can effectively reflect driver fatigue. Landscape complexity
was found to be closely related to fluctuations in heart rate values. Driver fatigue induced
by landscapes is classified as active fatigue. With an increase in the magnitude of landscape
complexity fluctuations, the amplitude of heart rate value fluctuations also increased to
some extent, indicating that drivers are less prone to fatigue in such situations. Overall,
by comparing E(MHR, complexity) and E(MHR, driving speed), E(MHR, complexity) was
smaller than E(MHR, driving speed), indicating that heart rate values were more sensitive
to driving speed than landscape complexity. The effect of driving speed on driver fatigue
was greater than that of landscape complexity.
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4. Discussion

Driving is a demanding task, and road landscapes heavily consume driver attention
through visual perception [74,75]. In highly urbanized areas, landscapes with little to no
visual elements require drivers to exert significant directional attention, leading to adverse
driving reactions [76]. Driving performance decreases when attention fatigue sets in [77].
Therefore, the impact of the environment on drivers is crucial because prolonged exposure
to monotonous environments can result in visual fatigue, ultimately affecting driving safety.
Well-designed road landscapes help alleviate adverse reactions caused by long-duration
driving. Visual contact with landscapes helps restore attention and mitigate driving fatigue.
Consequently, landscapes can improve driving performance by alleviating driver fatigue.
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Previous studies have shown that using large-scale street-image datasets and deep-
learning algorithms can expand the extent of our understanding of the influence of land-
scape attributes on perception [78,79]. Using computer vision techniques, various pieces
of information can be extracted from street-view images, such as road morphology, road
feature composition, and road greening [80]. The detection of red, green, and blue bands
from street-view images and the calculation of the differences between these bands can
assess the greening status at the street level and determine the area of green vegetation [81].
Other studies have utilized photographic methods to quantify several visual factors of
street canyons, such as the sky, trees, and buildings.

However, previous research often lacked sufficient data, with street-image sampling
locations primarily limited to specific communities or captured manually using cameras.
However, such surveys are costly, time-consuming, and have limited sample sizes. Most
studies investigating the influence of urban physical environments on individuals rely on
participant ratings [82] or geographical information system-derived measures [83], with
limited literature on perceptions and behaviors observed after viewing visual road environ-
ments. Given the significant differences in regulations and speeds between highways and
local roads and streets [84], most research on the impact of landscapes on highway driving
has focused on driver–vehicle dynamics and kinematic principles, with studies involving
human visual perception concentrating on eye movement observations [85,86]. Therefore,
research that combines multiple visual landscape elements and interprets their relation-
ships with driver perception, which is linked to traffic safety, is unique when conducted on
peripheral expressways.

Based on the developed FCN model, this study proposes a framework for effectively
extracting road visual elements from street view images. Referring to 151 elements from
previous research as input, the model is trained for image segmentation with proportions.
Furthermore, specific landscape and visual elements, including buildings, roads, trees,
grass, and the sky, are found to have the highest weights, indicating their significant impact
on drivers’ states. Utilizing 31 sets of data from real vehicle experiments, a quantitative
model is established to study the influence of road visual landscape on driving fatigue.
Sensitivity analysis is conducted, validating that urban traffic landscape elements can affect
driving fatigue and, consequently, road safety. The influence of buildings and the sky on
visual surroundings, as well as the fatigue-reducing effect of greenery, are confirmed. These
findings can contribute to improving the driving experience in practice and provide new
perspectives for urban planning and road design with a focus on road traffic safety.

This study had several limitations. The research utilized the semantic segmentation
results of road landscape cross-sections as variables for the fitting model, with limited
consideration of urban landscape changes along the road’s longitudinal section. Future
work could explore longitudinal landscape variations and examine the influence of spatial
autocorrelation of surrounding parks, communities, and campuses. Street-view images are
not frequently updated; thus, they fail to capture changes related to time, weather, and
other factors [87], whereas human states can be influenced by factors beyond visual stimuli.
This research attempted to overcome the limitations of fixed time and single perspectives
in street-view images by incorporating different groups representing seasonal changes,
weather conditions, and other relevant factors to enhance the realism of the investigation.

5. Conclusions

Road landscapes provide a variety of visual experiences, and quantifying their per-
ceptual characteristics has always been a challenge. This study utilizes deep learning
techniques to interpret street-view images, achieve quantification and spatial distribution
analysis of visual perception in road environments, and make initial efforts to understand
the impact of road landscapes on driver psychological states. The study revealed the fol-
lowing conclusions. First, the spatial distribution characteristics of road visual landscapes
exhibited a pattern of aggregation according to urban functional features. Overall, the
level of street openness was good, whereas the abundance of green visual elements was
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relatively low, especially in residential communities closer to the city center. Second, the
spatial distribution of visual landscape elements shows obvious variations, with central
areas having a dense and balanced building distribution, higher complexity, and better
quality of landscapes as the proximity to urban rivers and lakes increases [88]. Third,
the 31 sets of data collected from the experiment demonstrate that roadside landscapes
have a significant impact on driving states, primarily through the influence of landscape
complexity on the driver’s heart rate. When passing through areas with higher complexity,
a change of approximately 10% in the landscape complexity resulted in a fluctuation of
approximately 0.2% in the driver’s heart rate. Specifically, when the landscape complexity
ranges from 5.28 to 8.30, the heart rate showed noticeable fluctuations between 91 and 96.
This change in heart rate may help drivers alleviate fatigue, reduce suppressed driving
fatigue, and achieve the goal of maintaining alertness.

Road landscape is an essential component of highway infrastructure, providing a
buffer for driving activities in high-density urban environments and demonstrating mea-
surable benefits in reducing fatigue. This research contributes to the transportation field
by offering valuable insights for policymakers and design professionals. It advocates a
people-centric approach in planning roadside landscapes, focusing on their impact on
driver health and safety. Emphasizing the expansion of green vegetation and enhancing
landscape complexity effectively improves the driving environment. Road infrastructure
departments can utilize the research findings to ensure a rational layout of road landscape,
creating visually pleasant experiences for drivers and ultimately reducing the likelihood of
traffic accidents through strengthened traffic safety management. From a driver’s perspec-
tive, this study promises a safer and more comfortable driving experience. Well-planned
road landscapes not only alleviate visual fatigue but also enhance driver alertness, miti-
gating driver fatigue and boosting driving safety. Considering the support of open-source
street view imagery data, this study’s proposed methods can further quantify perceptions
of different types of traffic landscape spaces. This extension enhances the application of
landscapes in traffic safety, providing fresh ideas and approaches to promote driver and
passenger health and safety at a macroscopic level. Overall, this research contributes to the
sustainable development of the transportation field and offers valuable guidance for driver
safety and well-being.

Author Contributions: Conceptualization, L.L. and P.L.; methodology, L.L., P.L. and Z.G.; validation,
Z.G. and M.H.; formal analysis, Z.G.; data curation, Z.G.; writing—original draft preparation, L.L.,
Z.G. and M.R.R.M.A.Z.; writing—review and editing, L.L., P.L., M.H.Z. and W.D.; visualization, Z.G;
supervision, L.L., P.L., M.H. and W.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the 2023 Social Science Planning Fund Project in Xi’an City
(No.: 23LW184), the Research Project on Ecological Space Governance Key Project of Shaanxi Province
(No.: 2022HZ1861), the 2022 Social Science Planning Fund Project in Xi’an City (No.: 22LW156), China
Scholarship Council (Grant No.: Liujinmei [2022] No. 45; Liujinxuan [2022] No. 133; Liujinou [2023]
No. 22), International Education Research Program of Chang’an University (300108221102), Project of
Ningxia Natural Science Foundation (2022AAC03700; 2022BEG03059), 2022 Guangdong University
Youth Innovation Talent Program (2022KQNCX143) and Yinshanbeilu Grassland Eco-hydrology
National Observation and Research Station, China Institute of Water Resources and Hydropower
Research, Beijing 100038, China, Grant NO.YSS2022004.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully thank the editors and anonymous reviewers for their
valuable advice in improving this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 4437 20 of 23

References
1. Guo, B.; Wu, H.; Pei, L.; Zhu, X.; Zhang, D.; Wang, Y.; Luo, P. Study on the spatiotemporal dynamic of ground-level ozone

concentrations on multiple scales across China during the blue sky protection campaign. Environ. Int. 2022, 170, 107606.
[CrossRef] [PubMed]

2. Wang, X.; Luo, P.; Zheng, Y.; Duan, W.; Wang, S.; Zhu, W.; Zhang, Y.; Nover, D. Drought Disasters in China from 1991 to 2018:
Analysis of Spatiotemporal Trends and Characteristics. Remote Sens. 2023, 15, 1708. [CrossRef]

3. Naik, B.; Tung, L.-W.; Zhao, S.; Khattak, A.J. Weather impacts on single-vehicle truck crash injury severity. J. Saf. Res. 2016, 58,
57–65. [CrossRef] [PubMed]

4. Zhao, S.; Khattak, A.J. Injury severity in crashes reported in proximity of rail crossings: The role of driver inattention. J. Transp.
Saf. Secur. 2018, 10, 507–524. [CrossRef]

5. Yijun, X.; Junfeng, G.; Yong, Y.; Xiaolin, Y.; Wentao, H. Classifying Driving Fatigue Based on Combined Entropy Measure Using
EEG Signals. Int. J. Control Autom. 2016, 9, 329–338.

6. Parsons, R.; Tassinary, L.G.; Ulrich, R.S.; Hebl, M.R.; Grossman-Alexander, M. The View from the Road: Implications for Stress
Recovery and Immunization. J. Environ. Psychol. 1998, 18, 113–140. [CrossRef]

7. Froment, J.; Domon, G. Viewer appreciation of highway landscapes: The contribution of ecologically managed embankments in
Quebec, Canada. Landsc. Urban Plan. 2006, 78, 14–32. [CrossRef]

8. Wolf, K.L. Assessing Public Response to Freeway Roadsides: Urban Forestry and Context-Sensitive Solutions. Transp. Res. Rec.
2006, 1984, 102–111. [CrossRef]

9. Akbar, K.F.; Hale, W.H.G.; Headley, A.D. Assessment of scenic beauty of the roadside vegetation in northern England. Landsc.
Urban Plan. 2003, 63, 139–144. [CrossRef]

10. Edquist, J.; Rudin-Brown, C.M.; Lenné, M.G. The effects of on-street parking and road environment visual complexity on travel
speed and reaction time. Accid. Anal. Prev. 2012, 45, 759–765. [CrossRef]

11. Atombo, C.; Wu, C.; Zhong, M.; Zhang, H. Investigating the motivational factors influencing drivers intentions to unsafe driving
behaviours: Speeding and overtaking violations. Transp. Res. Part F Traffic Psychol. Behav. 2016, 43, 104–121. [CrossRef]

12. Anciaes, P. Effects of the roadside visual environment on driver wellbeing and behaviour—A systematic review. Transp. Rev.
2023, 43, 571–598. [CrossRef]

13. Antonson, H.; Jägerbrand, A.; Ahlström, C. Experiencing moose and landscape while driving: A simulator and questionnaire
study. J. Environ. Psychol. 2015, 41, 91–100. [CrossRef]

14. Marshall, P.E.W.E.; Coppola, N.; Golombek, Y. Urban clear zones, street trees, and road safety. Res. Transp. Bus. Manag. 2018, 29,
136–143. [CrossRef]

15. Lin, X.; Zhang, J.; Liu, Z.; Shen, J. Semi-automatic extraction of ribbon roads from high resolution remotely sensed imagery by
T-shaped template matching. In Proceedings of the Geoinformatics 2008 and Joint Conference on GIS and Built Environment:
Classification of Remote Sensing Images, Guangzhou, China, 29–29 June 2008; Volume 7147.

16. Kong, W.; Wang, T.; Liu, L.; Luo, P.; Cui, J.; Wang, L.; Hua, X.; Duan, W.; Su, F. A novel design and application of spatial data
management platform for natural resources. J. Clean. Prod. 2023, 411, 137183. [CrossRef]

17. Dai, J.; Zhu, T.; Zhang, Y.; Ma, R.; Li, W. Lane-Level Road Extraction from High-Resolution Optical Satellite Images. Remote Sens.
2019, 11, 2672. [CrossRef]

18. Liu, L.; Wu, R.; Lou, Y.; Luo, P.; Sun, Y.; He, B.; Hu, M.; Herath, S. Exploring the Comprehensive Evaluation of Sustainable
Development in Rural Tourism: A Perspective and Method Based on the AVC Theory. Land 2023, 12, 1473. [CrossRef]

19. Ali, F.; Ali, A.; Imran, M.; Naqvi, R.A.; Siddiqi, M.H.; Kwak, K.-S. Traffic accident detection and condition analysis based on social
networking data. Accid. Anal. Prev. 2021, 151, 105973. [CrossRef]

20. Treash, K.; Amaratunga, K. Automatic Road Detection in Grayscale Aerial Images. J. Comput. Civ. Eng. 2000, 14, 60–69. [CrossRef]
21. Schubert, H.; van de Gronde, J.J.; Roerdink, J.B.T.M. Efficient Computation of Greyscale Path Openings. Math. Morphol. Theory

Appl. 2016, 1, 189–202. [CrossRef]
22. Ito, K.; Biljecki, F. Assessing bikeability with street view imagery and computer vision. Transp. Res. Part C Emerg. Technol. 2021,

132, 103371. [CrossRef]
23. Larkin, A.; Gu, X.; Chen, L.; Hystad, P. Predicting perceptions of the built environment using GIS, satellite and street view image

approaches. Landsc. Urban Plan. 2021, 216, 104257. [CrossRef] [PubMed]
24. Pamukcu-Albers, P.; Ugolini, F.; La Rosa, D.; Grădinaru, S.R.; Azevedo, J.C.; Wu, J. Building green infrastructure to enhance urban

resilience to climate change and pandemics. Landsc. Ecol. 2021, 36, 665–673. [CrossRef] [PubMed]
25. Zuurbier, M.; van Loenhout, J.A.F.; le Grand, A.; Greven, F.; Duijm, F.; Hoek, G. Street temperature and building characteristics as

determinants of indoor heat exposure. Sci. Total Environ. 2021, 766, 144376. [CrossRef]
26. Zhou, H.; He, S.; Cai, Y.; Wang, M.; Su, S. Social inequalities in neighborhood visual walkability: Using street view imagery and

deep learning technologies to facilitate healthy city planning. Sustain. Cities Soc. 2019, 50, 101605. [CrossRef]
27. Balali, V.; Ashouri Rad, A.; Golparvar-Fard, M. Detection, classification, and mapping of U.S. traffic signs using google street

view images for roadway inventory management. Vis. Eng. 2015, 3, 15. [CrossRef]
28. Majidifard, H.; Adu-Gyamfi, Y.; Buttlar, W.G. Deep machine learning approach to develop a new asphalt pavement condition

index. Constr. Build. Mater. 2020, 247, 118513. [CrossRef]

https://doi.org/10.1016/j.envint.2022.107606
https://www.ncbi.nlm.nih.gov/pubmed/36335896
https://doi.org/10.3390/rs15061708
https://doi.org/10.1016/j.jsr.2016.06.005
https://www.ncbi.nlm.nih.gov/pubmed/27620935
https://doi.org/10.1080/19439962.2017.1323061
https://doi.org/10.1006/jevp.1998.0086
https://doi.org/10.1016/j.landurbplan.2005.05.004
https://doi.org/10.1177/0361198106198400110
https://doi.org/10.1016/S0169-2046(02)00185-8
https://doi.org/10.1016/j.aap.2011.10.001
https://doi.org/10.1016/j.trf.2016.09.029
https://doi.org/10.1080/01441647.2022.2133189
https://doi.org/10.1016/j.jenvp.2014.11.010
https://doi.org/10.1016/j.rtbm.2018.09.003
https://doi.org/10.1016/j.jclepro.2023.137183
https://doi.org/10.3390/rs11222672
https://doi.org/10.3390/land12071473
https://doi.org/10.1016/j.aap.2021.105973
https://doi.org/10.1061/(ASCE)0887-3801(2000)14:1(60)
https://doi.org/10.1515/mathm-2016-0010
https://doi.org/10.1016/j.trc.2021.103371
https://doi.org/10.1016/j.landurbplan.2021.104257
https://www.ncbi.nlm.nih.gov/pubmed/34629575
https://doi.org/10.1007/s10980-021-01212-y
https://www.ncbi.nlm.nih.gov/pubmed/33686321
https://doi.org/10.1016/j.scitotenv.2020.144376
https://doi.org/10.1016/j.scs.2019.101605
https://doi.org/10.1186/s40327-015-0027-1
https://doi.org/10.1016/j.conbuildmat.2020.118513


Remote Sens. 2023, 15, 4437 21 of 23

29. Cheng, G.; Zhu, F.; Xiang, S.; Pan, C. Road Centerline Extraction via Semisupervised Segmentation and Multidirection Nonmaxi-
mum Suppression. IEEE Geosci. Remote Sens. Lett. 2016, 13, 545–549. [CrossRef]

30. Gkolias, K.; Vlahogianni, E.I. Convolutional Neural Networks for On-Street Parking Space Detection in Urban Networks. IEEE
Trans. Intell. Transp. Syst. 2019, 20, 4318–4327. [CrossRef]

31. Lee, D.-H.; Chen, K.-L.; Liou, K.-H.; Liu, C.-L.; Liu, J.-L. Deep learning and control algorithms of direct perception for autonomous
driving. Appl. Intell. 2021, 51, 237–247. [CrossRef]

32. Wu, Y.; Abdel-Aty, M.; Zheng, O.; Cai, Q.; Zhang, S. Automated safety diagnosis based on unmanned aerial vehicle video and
deep learning algorithm. Transp. Res. Rec. 2020, 2674, 350–359. [CrossRef]

33. Xie, K.; Ozbay, K.; Yang, H.; Li, C. Mining automatically extracted vehicle trajectory data for proactive safety analytics. Transp.
Res. Part C Emerg. Technol. 2019, 106, 61–72. [CrossRef]

34. Cao, Z.; Yun, J. Self-Awareness Safety of Deep Reinforcement Learning in Road Traffic Junction Driving. arXiv 2022,
arXiv:2201.08116.

35. Tanprasert, T.; Siripanpornchana, C.; Surasvadi, N.; Thajchayapong, S. Recognizing traffic black spots from street view images
using environment-aware image processing and neural network. IEEE Access 2020, 8, 121469–121478. [CrossRef]

36. Mooney, S.J.; DiMaggio, C.J.; Lovasi, G.S.; Neckerman, K.M.; Bader, M.D.; Teitler, J.O.; Sheehan, D.M.; Jack, D.W.; Rundle, A.G.
Use of Google Street View to assess environmental contributions to pedestrian injury. Am. J. Public Health 2016, 106, 462–469.
[CrossRef] [PubMed]

37. Li, X.; Cai, B.Y.; Qiu, W.; Zhao, J.; Ratti, C. A novel method for predicting and mapping the occurrence of sun glare using Google
Street View. Transp. Res. Part C Emerg. Technol. 2019, 106, 132–144. [CrossRef]

38. Wang, S.; Zhang, K.; Chao, L.; Chen, G.; Xia, Y.; Zhang, C. Investigating the Feasibility of Using Satellite Rainfall for the Integrated
Prediction of Flood and Landslide Hazards over Shaanxi Province in Northwest China. Remote Sens. 2023, 15, 2457. [CrossRef]

39. Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D. Urban flood numerical simulation: Research,
methods and future perspectives. Environ. Model. Softw. 2022, 156, 105478. [CrossRef]

40. Luo, P.; Zheng, Y.; Wang, Y.; Zhang, S.; Yu, W.; Zhu, X.; Huo, A.; Wang, Z.; He, B.; Nover, D. Comparative Assessment of Sponge
City Constructing in Public Awareness, Xi’an, China. Sustainability 2022, 14, 11653. [CrossRef]

41. Deng, H.; Pepin, N.C.; Chen, Y.; Guo, B.; Zhang, S.; Zhang, Y.; Chen, X.; Gao, L.; Meibing, L.; Ying, C. Dynamics of Diurnal
Precipitation Differences and Their Spatial Variations in China. J. Appl. Meteorol. Climatol. 2022, 61, 1015–1027. [CrossRef]

42. Liu, L.; Chen, M.; Luo, P.; Duan, W.; Hu, M. Quantitative Model Construction for Sustainable Security Patterns in Social—
Ecological Links Using Remote Sensing and Machine Learning. Remote Sens. 2023, 15, 3837. [CrossRef]

43. Wang, S.; Luo, P.; Xu, C.; Zhu, W.; Cao, Z.; Ly, S. Reconstruction of Historical Land Use and Urban Flood Simulation in Xi’an,
Shannxi, China. Remote Sens. 2022, 14, 6067. [CrossRef]

44. Duan, W.; Zou, S.; Christidis, N.; Schaller, N.; Chen, Y.; Sahu, N.; Li, Z.; Fang, G.; Zhou, B. Changes in temporal inequality of
precipitation extremes over China due to anthropogenic forcings. npj Clim. Atmos. Sci. 2022, 5, 33. [CrossRef]

45. Qin, J.; Duan, W.; Chen, Y.; Dukhovny, V.A.; Sorokin, D.; Li, Y.; Wang, X. Comprehensive evaluation and sustainable development
of water–energy–food–ecology systems in Central Asia. Renew. Sustain. Energy Rev. 2022, 157, 112061. [CrossRef]

46. Hu, Y.; Duan, W.; Chen, Y.; Zou, S.; Kayumba, P.M.; Qin, J. Exploring the changes and driving forces of water footprint in Central
Asia: A global trade assessment. J. Clean. Prod. 2022, 375, 134062. [CrossRef]

47. Li, Q.; Fan, H.; Luan, X.; Yang, B.; Liu, L. Polygon-based approach for extracting multilane roads from OpenStreetMap urban
road networks. Int. J. Geogr. Inf. Sci. 2014, 28, 2200–2219. [CrossRef]

48. Xia, Y.; Yabuki, N.; Fukuda, T. Development of a system for assessing the quality of urban street-level greenery using street view
images and deep learning. Urban For. Urban Green. 2021, 59, 126995. [CrossRef]

49. Chua, E.C.-P.; Tan, W.-Q.; Yeo, S.-C.; Lau, P.; Lee, I.; Mien, I.H.; Puvanendran, K.; Gooley, J.J. Heart rate variability can be used
to estimate sleepiness-related decrements in psychomotor vigilance during total sleep deprivation. Sleep 2012, 35, 325–334.
[CrossRef]

50. Mehler, B.; Reimer, B.; Wang, Y. A Comparison of Heart Rate and Heart Rate Variability Indices in Distinguishing Single-Task Driving
and Driving under Secondary Cognitive Workload, Driving Assesment Conference; University of Iowa: Iowa City, IA, USA, 2011.

51. Patel, M.; Lal, S.K.; Kavanagh, D.; Rossiter, P. Applying neural network analysis on heart rate variability data to assess driver
fatigue. Expert Syst. Appl. 2011, 38, 7235–7242. [CrossRef]

52. Campbell, A.; Both, A.; Sun, Q.C. Detecting and mapping traffic signs from Google Street View images using deep learning and
GIS. Comput. Environ. Urban Syst. 2019, 77, 101350. [CrossRef]

53. Rzotkiewicz, A.; Pearson, A.L.; Dougherty, B.V.; Shortridge, A.; Wilson, N. Systematic review of the use of Google Street View
in health research: Major themes, strengths, weaknesses and possibilities for future research. Health Place 2018, 52, 240–246.
[CrossRef] [PubMed]

54. Cai, Q.; Abdel-Aty, M.; Zheng, O.; Wu, Y. Applying machine learning and google street view to explore effects of drivers’ visual
environment on traffic safety. Transp. Res. Part C Emerg. Technol. 2022, 135, 103541. [CrossRef]

55. Zhang, F.; Zhang, D.; Liu, Y.; Lin, H. Representing place locales using scene elements. Comput. Environ. Urban Syst. 2018, 71,
153–164. [CrossRef]

56. Bosch, M.V.D.; Sang, A.O. Urban natural environments as nature-based solutions for improved public health—A systematic
review of reviews. Environ. Res. 2017, 158, 373–384. [CrossRef]

https://doi.org/10.1109/LGRS.2016.2524025
https://doi.org/10.1109/TITS.2018.2882439
https://doi.org/10.1007/s10489-020-01827-9
https://doi.org/10.1177/0361198120925808
https://doi.org/10.1016/j.trc.2019.07.004
https://doi.org/10.1109/ACCESS.2020.3006493
https://doi.org/10.2105/AJPH.2015.302978
https://www.ncbi.nlm.nih.gov/pubmed/26794155
https://doi.org/10.1016/j.trc.2019.07.013
https://doi.org/10.3390/rs15092457
https://doi.org/10.1016/j.envsoft.2022.105478
https://doi.org/10.3390/su141811653
https://doi.org/10.1175/JAMC-D-21-0232.1
https://doi.org/10.3390/rs15153837
https://doi.org/10.3390/rs14236067
https://doi.org/10.1038/s41612-022-00255-5
https://doi.org/10.1016/j.rser.2021.112061
https://doi.org/10.1016/j.jclepro.2022.134062
https://doi.org/10.1080/13658816.2014.915401
https://doi.org/10.1016/j.ufug.2021.126995
https://doi.org/10.5665/sleep.1688
https://doi.org/10.1016/j.eswa.2010.12.028
https://doi.org/10.1016/j.compenvurbsys.2019.101350
https://doi.org/10.1016/j.healthplace.2018.07.001
https://www.ncbi.nlm.nih.gov/pubmed/30015181
https://doi.org/10.1016/j.trc.2021.103541
https://doi.org/10.1016/j.compenvurbsys.2018.05.005
https://doi.org/10.1016/j.envres.2017.05.040


Remote Sens. 2023, 15, 4437 22 of 23

57. Guan, F.; Fang, Z.; Wang, L.; Zhang, X.; Zhong, H.; Huang, H. Modelling people’s perceived scene complexity of real-world
environments using street-view panoramas and open geodata. ISPRS J. Photogramm. Remote Sens. 2022, 186, 315–331. [CrossRef]

58. Calvi, A. Does Roadside Vegetation Affect Driving Performance?: Driving Simulator Study on the Effects of Trees on Drivers’
Speed and Lateral Position. Transp. Res. Rec. 2015, 2518, 1–8. [CrossRef]

59. Fitzpatrick, C.D.; Samuel, S.; Knodler, M.A. Evaluating the effect of vegetation and clear zone width on driver behavior using a
driving simulator. Transp. Res. Part F Traffic Psychol. Behav. 2016, 42, 80–89. [CrossRef]

60. Antonson, H.; Mårdh, S.; Wiklund, M.; Blomqvist, G. Effect of surrounding landscape on driving behaviour: A driving simulator
study. J. Environ. Psychol. 2009, 29, 493–502. [CrossRef]

61. Yi, Y.K.; Kim, H. Universal Visible Sky Factor: A method for calculating the three-dimensional visible sky ratio. Build. Environ.
2017, 123, 390–403. [CrossRef]

62. Dumbaugh, E.; Saha, D.; Merlin, L. Toward Safe Systems: Traffic Safety, Cognition, and the Built Environment. J. Plan. Educ. Res.
2020, 5, 0739456X20931915. [CrossRef]

63. Theeuwes, J. Self-explaining roads: What does visual cognition tell us about designing safer roads? Cogn. Res. Princ. Implic. 2021,
6, 15. [CrossRef] [PubMed]

64. Charlton, S.G.; Mackie, H.W.; Baas, P.H.; Hay, K.; Menezes, M.; Dixon, C. Using endemic road features to create self-explaining
roads and reduce vehicle speeds. Accid. Anal. Prev. 2010, 42, 1989–1998. [CrossRef] [PubMed]

65. Jiang, B.; He, J.; Chen, J.; Larsen, L.; Wang, H. Perceived Green at Speed: A Simulated Driving Experiment Raises New Questions
for Attention Restoration Theory and Stress Reduction Theory. Environ. Behav. 2021, 53, 296–335. [CrossRef]

66. Frumkin, H. Urban Sprawl and Public Health. Public Health Rep. 2002, 117, 201–217. [CrossRef]
67. Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Nover, D.; Wang, Y. Overview assessment of risk evaluation and treatment

technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 134043. [CrossRef]
68. Chen, X.; Zhang, K.; Luo, Y.; Zhang, Q.; Zhou, J.; Fan, Y.; Huang, P.; Yao, C.; Chao, L.; Bao, H. A distributed hydrological model

for semi-humid watersheds with a thick unsaturated zone under strong anthropogenic impacts: A case study in Haihe River
Basin. J. Hydrol. 2023, 623, 129765. [CrossRef]

69. Lin, L.; Wei, X.; Luo, P.; Wang, S.; Kong, D.; Yang, J. Ecological Security Patterns at Different Spatial Scales on the Loess Plateau.
Remote Sens. 2023, 15, 1011. [CrossRef]

70. Chen, G.; Zhang, K.; Wang, S.; Xia, Y.; Chao, L. iHydroSlide3D v1. 0: An advanced hydrological–geotechnical model for
hydrological simulation and three-dimensional landslide prediction. Geosci. Model Dev. 2023, 16, 2915–2937. [CrossRef]

71. Cao, Z.; Zhu, W.; Luo, P.; Wang, S.; Tang, Z.; Zhang, Y.; Guo, B. Spatially Non-Stationary Relationships between Changing
Environment and Water Yield Services in Watersheds of China’s Climate Transition Zones. Remote Sens. 2022, 14, 5078. [CrossRef]

72. Ou, J.; Yang, S.; Wu, Y.J.; An, C.; Xia, J. Systematic clustering method to identify and characterise spatiotemporal congestion on
freeway corridors. IET Intell. Transp. Syst. 2018, 12, 826–837. [CrossRef]

73. Desmond, P.A.; Hancock, P.A. Active and passive fatigue states. In Stress, Workload, and Fatigue; CRC Press: Boca Raton, FL, USA,
2000; pp. 455–465.

74. Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [CrossRef]
75. Sullivan, W. Fostering reasonableness: Supportive environments for bringing out our best. In Search of a Clear Head; Michigan

Publishing: Ann Arbor, MI, USA, 2015; pp. 54–69.
76. Roe, J.; Aspinall, P. The restorative outcomes of forest school and conventional school in young people with good and poor

behaviour. Urban For. Urban Green. 2011, 10, 205–212. [CrossRef]
77. Oron-Gilad, T.; Ronen, A. Road characteristics and driver fatigue: A simulator study. Traffic Inj. Prev. 2007, 8, 281–289. [CrossRef]

[PubMed]
78. Rossetti, T.; Lobel, H.; Rocco, V.; Hurtubia, R. Explaining subjective perceptions of public spaces as a function of the built

environment: A massive data approach. Landsc. Urban Plan. 2019, 181, 169–178. [CrossRef]
79. Ramírez, T.; Hurtubia, R.; Lobel, H.; Rossetti, T. Measuring heterogeneous perception of urban space with massive data and

machine learning: An application to safety. Landsc. Urban Plan. 2021, 208, 104002. [CrossRef]
80. Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban form and composition of street canyons: A

human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [CrossRef]
81. Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a

modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [CrossRef]
82. Van den Berg, M.; Wendel-Vos, W.; van Poppel, M.; Kemper, H.; van Mechelen, W.; Maas, J. Health benefits of green spaces in the

living environment: A systematic review of epidemiological studies. Urban For. Urban Green. 2015, 14, 806–816. [CrossRef]
83. Nordbø, E.C.A.; Nordh, H.; Raanaas, R.K.; Aamodt, G. GIS-derived measures of the built environment determinants of mental

health and activity participation in childhood and adolescence: A systematic review. Landsc. Urban Plan. 2018, 177, 19–37.
[CrossRef]

84. Farahmand, B.; Boroujerdian, A.M. Effect of road geometry on driver fatigue in monotonous environments: A simulator study.
Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 640–651. [CrossRef]

85. Minaee, S.; Minaei, M.; Abdolrashidi, A. Deep-emotion: Facial expression recognition using attentional convolutional network.
Sensors 2021, 21, 3046. [CrossRef] [PubMed]

https://doi.org/10.1016/j.isprsjprs.2022.02.012
https://doi.org/10.3141/2518-01
https://doi.org/10.1016/j.trf.2016.07.002
https://doi.org/10.1016/j.jenvp.2009.03.005
https://doi.org/10.1016/j.buildenv.2017.06.044
https://doi.org/10.1177/0739456X20931915
https://doi.org/10.1186/s41235-021-00281-6
https://www.ncbi.nlm.nih.gov/pubmed/33661408
https://doi.org/10.1016/j.aap.2010.06.006
https://www.ncbi.nlm.nih.gov/pubmed/20728653
https://doi.org/10.1177/0013916520947111
https://doi.org/10.1016/S0033-3549(04)50155-3
https://doi.org/10.1016/j.jclepro.2022.134043
https://doi.org/10.1016/j.jhydrol.2023.129765
https://doi.org/10.3390/rs15041011
https://doi.org/10.5194/gmd-16-2915-2023
https://doi.org/10.3390/rs14205078
https://doi.org/10.1049/iet-its.2017.0355
https://doi.org/10.1016/0272-4944(95)90001-2
https://doi.org/10.1016/j.ufug.2011.03.003
https://doi.org/10.1080/15389580701354318
https://www.ncbi.nlm.nih.gov/pubmed/17710719
https://doi.org/10.1016/j.landurbplan.2018.09.020
https://doi.org/10.1016/j.landurbplan.2020.104002
https://doi.org/10.1016/j.landurbplan.2018.12.001
https://doi.org/10.1016/j.ufug.2015.06.006
https://doi.org/10.1016/j.ufug.2015.07.008
https://doi.org/10.1016/j.landurbplan.2018.04.009
https://doi.org/10.1016/j.trf.2018.06.021
https://doi.org/10.3390/s21093046
https://www.ncbi.nlm.nih.gov/pubmed/33925371


Remote Sens. 2023, 15, 4437 23 of 23

86. Xiao, H.; Li, W.; Zeng, G.; Wu, Y.; Xue, J.; Zhang, J.; Li, C.; Guo, G. On-road driver emotion recognition using facial expression.
Appl. Sci. 2022, 12, 807. [CrossRef]

87. Kang, Y.; Zhang, F.; Gao, S.; Lin, H.; Liu, Y. A review of urban physical environment sensing using street view imagery in public
health studies. Ann. GIS 2020, 26, 261–275. [CrossRef]

88. Zhu, W.; Cao, Z.; Luo, P.; Tang, Z.; Zhang, Y.; Hu, M.; He, B. Urban Flood-Related Remote Sensing: Research Trends, Gaps and
Opportunities. Remote Sens. 2022, 14, 5505. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app12020807
https://doi.org/10.1080/19475683.2020.1791954
https://doi.org/10.3390/rs14215505

	Introduction 
	Data and Methods 
	Study Area 
	Research Framework 
	BSVI Data Collection 
	Extraction of Drivers’ Visual Environment Elements from BSVIs 
	Driver Heart Rate Indicator Experiment 
	Data Collection from Field Experiments 
	Construction of a Relationship Model for the Effect of Highway Visual Landscape Complexity on Heart Rate Considering Driving Speed 


	Results 
	Spatial Distribution Characteristics of Urban Street Visual Landscape Elements 
	Spatial Distribution of Different Visual Landscape Elements 
	Cluster Analysis and Spatial Distribution of Visual Landscape Elements 

	Impact of Visual Landscape on Driving Fatigue 
	Model Fitting and Model Validation 
	Sensitivity Analysis 


	Discussion 
	Conclusions 
	References

