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Abstract: The widespread distribution of karst landforms has led to a shortage of water resources
in Southwest China. Understanding the spatiotemporal variations in and driving factors of evap-
otranspiration (ET) in this area is crucial for understanding and predicting severe water resource
shortage. This study conducted trend analysis using meteorological data from 2003 to 2020 as well as
remote sensing products such as Penman–Monteith–Leuning equation version 2 (PML-V2) ET. The
factors influencing the spatial distribution pattern of average ET were identified using a geographical
detector. Partial correlation analysis was performed to characterize the relationships between ET
and the factors governing its variations, determined using the random forest model. The results
demonstrated the following: (1) The average ET decreased with increasing latitude and altitude, pri-
marily affected by the landform type in terms of longitude and displaying “W”-shaped fluctuations.
Overall, the annual ET exhibited a significant (p < 0.05) increasing trend, with 72.63% of its area under
the increasing trend. (2) The results of the geographic detector indicated sunshine duration as the
strongest explanatory factor of the spatial distribution of ET, followed by enhanced vegetation index
(EVI), landform type, precipitation, elevation, slope, and aspect. Instead of an individual factor, the
interplay between multiple factors more considerably influenced the spatial distribution pattern of
ET. (3) The EVI exhibited an overall increasing trend, with a significant increase over 73.59% of the
study area and a positive correlation with ET. Thus, the increase in EVI had the strongest impact
on ET in the study area, which was further confirmed by the results of the random forest model for
42.92% of the study area. Thus, the present findings clarify the spatiotemporal variations in and
driving factors of ET in Southwest China and can serve as a benchmark for policies aiming to develop
and manage water resources in this region.
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1. Introduction

Land evapotranspiration (ET) is a vital process involved in biogeochemical cycles
and serves as a nexus of the water, energy, and carbon cycles affecting the climate system.
Globally, land ET returns ~60% of the annual land precipitation to the atmosphere [1]. Thus,
variations in ET can impact precipitation and the dynamic water resources available to
inland water bodies such as lakes and rivers [2,3]. Additionally, it can cause fluctuations
in the availability of surface water in terrestrial regions [4,5]. Therefore, understanding
the spatiotemporal variations, mechanisms, and interactions of historical ET is crucial for
solving a wide range of problems related to hydrology, geographical ecology, and water
resource management, especially in water-scarce regions such as arid and semiarid regions
with low precipitation [6], and karst areas with abundant precipitation but characterized
by geological peculiarities that cause water scarcity [7].
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Recently, extensive research has been conducted on the variations in ET and its driving
forces. Existing research indicates a global upward trend in terrestrial ET [8–11], primar-
ily caused by vegetation greening [10] and climate change [8]. Furthermore, ET varies
across multiple climatic regions owing to climate change [12]. The trend of ET in typical
semiarid regions exhibited a diminishing trend from 1984 to 2013, which was primarily
attributed to a considerable decline in relative air humidity [6]. Prior research conducted
on 110 humid watersheds in China from 1982 to 2016 revealed an increasing trend in ET
in the majority of these watersheds, primarily influenced by temperature variations [13].
In regions with typical underlying surface characteristics, such as the climate-sensitive
Qinghai–Tibet Plateau, the fundamental factors influencing the increasing trend in ET were
global warming and increasing precipitation over the past 30 years [14,15]. On the Loess
Plateau with extensive vegetation restoration, vegetation greening is the primary driver
of rises in ET relative to climate change [16,17]. Thus, the driving factors governing the
spatiotemporal variations in ET vary across regions with distinct climate zones and varying
underlying surface characteristics. Nonetheless, the factors affecting ET can be classified
into two categories: climate conditions (e.g., water and energy supply) and land surface
characteristics (e.g., terrain, landform, and vegetation) [7,18,19].

To date, several scholars have conducted research to determine the variations in ET
and its driving factors across various climatic regions as well as areas with typical natural
geographical features. Consequently, a wealth of knowledge related to this has been
accumulated. However, Southwest China covers a widespread distribution of thin soil
layers with a strong permeability of bedrock in its karst topography. Although the karst
region spans over a humid area, it is deficient in water resources [20,21]. Moreover, the
majority of research in this area focuses on potential ET [22,23], and only a few studies
focus on actual ET in this region. According to the limited research on actual ET, it has
been found that in Southwest China, the overall ET generally increases as the latitude
decreases, with the cloud cover percentage acting as the most important factor [24]. In
particular, karst landforms are widely distributed throughout Southwest China, and their
proportion has a significant influence on ET in the basin, making them the most influencing
factor affecting the elasticity of actual ET in that region [7]. A recent case study on the
karst basins in Southwest China reported that ET increased substantially after vegetation
restoration [25]. Although these studies provide a basic understanding of the variations in
and factors of ET in Southwest China, further research is required to optimize the water
resource management in this region. Therefore, it is still worthwhile to answer the question
of what the latest spatiotemporal variations in ET are in Southwest China, and what are the
dominant factors influencing the spatial distribution pattern of and temporal variations
in ET.

The key to correctly answering the above questions lies in selecting appropriate
methods to identify the dominant factors that determine the spatial distribution of and
temporal variation in ET. This study utilized the Geographic Detector to assess the impact
of different environmental factors on the spatial distribution pattern of ET. The Geographic
Detector had been widely employed in detecting the spatial heterogeneity of ET and
similar research elements (e.g., soil moisture) [26,27]. The principle of this method is
straightforward: it determines whether the independent variable has an influence on the
dependent variable and the magnitude of the impact by detecting whether the spatial
distribution of the dependent variable and the independent variable is consistent [28]. The
identification of driving factors behind the dynamic variations in ET has received much
attention, leading to the development of various methods. Although some studies have
used partial correlation and multiple linear regression analysis to quantify the driving
factors of ET, there are commonly issues of multicollinearity among these factors, and the
relationship between the factors and ET may not be linear [25,29]. Therefore, these methods
are not perfect. With the advancement of artificial intelligence technology, machine learning
algorithms have been increasingly employed to explore complex nonlinear relationships in
Earth science. Recently, random forest regression analysis has made valuable contributions
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in identifying the complex relationship between ET variations and driving factors, showing
promising application prospects [30]. However, random forest is not easily interpretable as
it functions like a black box with limited control. To provide comprehensive visibility of ET
variations and the driving factors, we complementarily used partial correlation analysis to
explain the relationships between ET and the various driving factors.

Therefore, this study aims to: (1) investigate the spatial distribution pattern of ET in
Southwest China from 2003 to 2020 and the factors influencing this distribution pattern,
and (2) analyze the trends in ET variations and identify the main driving factors behind ET
variations. In order to answer these two questions, we first analyze the spatial distribution
pattern of multi-year average ET in three dimensions: longitude, latitude, and altitude.
Based on the geographic detector, the main controlling factors of the spatial heterogeneity
of multi-year mean ET were quantified. Secondly, we use trend analysis and partial
correlation analysis to analyze the dynamic variations in ET and their driving factors
and the relationship between them. Finally, based on random forest regression analysis,
the dominant factors leading to the dynamic variations in ET in Southwest China are
further determined.

2. Materials and Methods
2.1. Study Area

This study focused on the region of Southwest China, including the provinces of Yun-
nan, Guizhou, and Guangxi (Figure 1a). The total area of the study region is ~796,773 km2,
among which 35% is covered by karst landforms—a mixture of pure and impure carbonate
rock formations (Figure 1b). Notably, this is one of the largest contiguous karst areas in
the world. Owing to early intensive human activity, the eco-sensitive karst landforms
have been subjected to ecological degradation. However, considerable efforts have been
made through ecological engineering to mitigate this degradation, eventually affording
progressive improvements in local environmental conditions [31,32]. The average eleva-
tion of the study area is 1276 m, which tends to increase in the northwest and decrease
over the southeast region. Specifically, Yunnan and Guizhou constitute the major regions
of the Yunnan–Guizhou Plateau, and Guangxi is a hilly area of relatively low elevation
(Figure 1c). Owing to the complex terrain, the slope and aspect of this region exhibit high
spatial heterogeneity (Figure 1d,e). The study area is dominated by a monsoon climate
with adequate precipitation and temperature. The annual average temperature and total
annual precipitation are 17.6 ◦C and 1021 mm, respectively (Figure 1f,g). However, this
region receives less sunlight, with the lowest sunshine duration in China, i.e., the annual
sunshine duration is only 1713 h (Figure 1h). Consequently, vegetation growth is affected
by climatic elements such as light, temperature, and water, displaying a high spatial density
of vegetation in the south and sparse vegetation cover in the north (Figure 1i). Although
the study area receives abundant rainfall, it experiences limited vegetation growth with
deficient water resources available for human production and domestic usage owing to
climate change and geological factors. Thus, it has been identified as one of the areas that is
most vulnerable to drought and water shortage in China.
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Figure 1. (a) Location of the study area in China. (b) Spatial distribution patterns of landform types,
(c) elevation, (d) slope, (e) aspect, (f) average annual temperature, (g) total annual precipitation,
(h) total annual sunshine duration, (i) average annual enhanced vegetation index (EVI) in the
study area.

2.2. Data Acquisition and Processing
2.2.1. PML-V2 ET Data Product

This study used an ET data product based on the Penman–Monteith–Leuning equa-
tion version 2 (PML-V2), with 8-day and 500 m resolutions [33]. Developed on the PML
model [34], the PML-V2 model simulates the coupled vegetation transpiration and gross
primary production processes according to the stomatal conductance theory, which im-
proves the accuracy of estimating ET [35]. The product has undergone extensive vali-
dation in terms of flux towers and water balance [36], and several studies have applied
this product in multiple regions, establishing its reliability [15,37]. Herein, the 8-day-
interval ET data were converted into an annual time scale using the Google Earth engine
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to obtain the PML-V2 ET annual product for Southwest China from 2003 to 2020 (https:
//developers.google.cn/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017 ac-
cessed on 4 September 2023).

2.2.2. Static Geographical Variables

Based on the characteristics of the factors affecting the spatial distribution patterns of
ET, they can be classified into static geographical variables and dynamic environmental
variables. Static geographical variables refer to variables with a fixed value at a specific
time and location. Notably, the values of these variables do not exhibit considerable
temporal fluctuations and primarily vary with spatial location. Considering the widespread
distribution of karst landforms and the complex mountain topography in Southwest
China, we selected four static geographical variables: landform, altitude, slope, and aspect
(Figure 1b–e). The landform data were obtained from the Chinese Academy of Geological
Sciences (https://geocloud.cgs.gov.cn/ accessed on 4 September 2023). The elevation data
were sourced from the United States Geological Survey (USGS) Shuttle Radar Topography
Mission Version 3.0 digital elevation model (SRTM3 DEM) product (https://earthexplorer.
usgs.gov/ accessed on 4 September 2023). The slope and aspect data were calculated using
the DEM data extracted using the “slope” and “aspect” tools in the ArcGIS 10.8 software.

2.2.3. Dynamic Environmental Variables

Dynamic environmental variables are environmental variables undergoing temporal
variations and affecting the interannual fluctuations in ET. Based on the characteristics of
climate change and vegetation restoration in the study area, we selected four representative
dynamic environmental variables: annual average temperature, annual total precipitation,
annual total sunshine duration, and annual average EVI (Figure 1f–i). The meteorological
data were acquired from 280 stations located in Southwest China and its surrounding
regions, as accessed from the China Meteorological Data Service Centre (http://www.data.
cma.cn accessed on 4 September 2023). The station data for precipitation and sunshine
duration were interpolated in space using the thin-plate spline method implemented in
ANUSPLIN 4.2 software, considering longitude and latitude as independent variables [38].
As temperature and altitude are highly correlated, DEM was considered a covariate to
interpolate temperature using the same method.

The EVI data were extracted from the MOD13A1 and MYD13A1 products (https:
//lpdaac.usgs.gov accessed on 4 September 2023), generated based on the L1-level data
from Terra and Aqua satellites. These two products offer the same temporal and spatial
resolutions, i.e., 16-day and 500 m, respectively. To eliminate cloud contamination and
obtain high-quality EVI data, the cloud-contaminated pixels in MOD13A1 and MYD13A1
were filled in with high-quality pixels from each other. Furthermore, the maximum value
synthesis method was employed to generate monthly EVI data with less cloud contam-
ination. The remaining cloud-contaminated pixels that could not be eliminated were
reconstructed following the HANTS method [39] and merged with quality control files to
obtain higher-quality monthly EVI data without cloud contamination. Finally, the EVI for
each month was averaged to obtain the annual data.

2.3. Data Analysis Methods
2.3.1. Trend Analysis

The trend of temporal variations in ET and its driving factors was estimated using
the Theil–Sen estimator, and a significance test of the trend was conducted using the
Mann–Kendall (MK) non-parametric test. In principle, the Theil–Sen estimator is a slope
estimator based on a non-parametric median. In comparison, the MK non-parametric test
is less sensitive to missing data, irregular data distribution, and outliers, providing a solid
foundation of statistical theory for testing the significance level. Previous studies have

https://developers.google.cn/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017
https://developers.google.cn/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017
https://geocloud.cgs.gov.cn/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.data.cma.cn
http://www.data.cma.cn
https://lpdaac.usgs.gov
https://lpdaac.usgs.gov
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widely combined these two methods for estimating the trend of temporal variations in ET,
its associated factors, and their significance tests [40–42].

Sen = Median
( xj − xi

j− i

)
, 2003 ≤ i < j ≤ 2020 (1)

In the above equation, Sen indicates the slope and xi and xj denote the data values at
instant i and j, respectively.

The Z-statistic for the MK test was determined as follows:

Z =


s−1√

n(n+1)(2n+5)/18
for s > 0

0 for s = 0
s+1√

n(n+1)(2n+5)/18
for s < 0

(2)

where

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xi − xj

)
(3)

sgn
(
xi − xj

)
=


1, i f

(
xi − xj

)
> 0

0, i f
(
xi − xj

)
= 0

−1, i f
(
xi − xj

)
< 0

(4)

The Z-statistic represents the standard normal distribution, where |Z| > 1.96 indi-
cates significance at the 95% confidence level. Finally, the two results of Sen and Z were
compiled in ArcGIS 10.8 software. As such, the combined results can be classified into
four classes: significant decreasing (Sen < 0, |Z| > 1.96), nonsignificant decreasing (Sen < 0,
|Z| ≤ 1.96), nonsignificant increasing (Sen ≥ 0, |Z| ≤ 1.96), and significant increasing
(Sen ≥ 0, |Z| > 1.96).

2.3.2. Geographical Detector

Spatial heterogeneity is a fundamental characteristic of geographic phenomena. The
geographic detector model is a set of statistical methods that detects spatial stratified het-
erogeneity and reveals its key factors [28]. In principle, we assumed that if an independent
variable (among those depicted in Figure 1b–i) exerts a considerable effect on the dependent
variable (ET), then the spatial distribution of the independent and dependent variables
should be similar. Therefore, to detect the spatial heterogeneity in ET and its driving
factors, the geographic detector “GD” package developed by Song [43] was applied in R.
Specifically, the geographical detector comprises four detectors for risk, factors, ecological
balance, and interaction. Herein, we selected the factor and interaction detectors.

The factor detector characterized the relative significance of these factors toward the
spatial distribution of ET based on q values, q ∈ [0, 1]. Specifically, a high value of q indicates
a stronger influence of an independent variable on a dependent variable (ET) and yields a
spatial distribution with higher homogeneity. q can be evaluated as follows:

q = 1−
L

∑
h=1

Nhσ2
h /Nσ2 (5)

where h = 1, . . ., L is a stratification of dependent or independent variables; Nh and N
denote the numbers of units in layer h and the study area, respectively; and σh

2 and σ2

represent the variances in layer h and the study area, respectively.
The interaction detector identified the influence of interaction between multiple factors,

i.e., whether two factors can strengthen or weaken the explanatory power for ET or whether
the influences of these two factors on ET are independent of each other.
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2.3.3. Partial Correlation Analysis

The relationships between the variables in multivariate correlation analysis may not
be accurately characterized with simple correlation coefficients because of the complex
relationships between the variables and the influence of multiple variables [44]. Therefore,
partial correlation coefficients were computed between ET and each dynamic environmental
variable to measure the spatiotemporal magnitude and direction of the linear relationship
with ET while controlling the influence of the remaining three variables [25,45]. The partial
correlation coefficient was calculated as follows:

Rxy,z =
Rxy − RxzRyz√

(1− Rxz)
2
√(

1− Ryz
)2

(6)

where x, y, and z denote three distinct variables; Rxy,z denotes the partial correlation be-
tween the factors x and y while controlling the influence of factor z; Rxy represents the
linear correlation coefficient between factors x and y; and Rxz and Ryz represent equiva-
lent meanings. A significance level of p < 0.05 was constructed. The partial correlation
coefficient R and p-value of significance were reclassified into four categories: significant
negative correlation (R < 0, p < 0.05), nonsignificant negative correlation (R < 0, p ≥ 0.05),
nonsignificant positive correlation (R ≥ 0, p ≥ 0.05), and significant positive correlation
(R ≥ 0, p < 0.05).

2.3.4. Random Forest Model

The random forest model is a powerful non-parametric machine learning algorithm
proposed by Breiman in 2001, and can be used for classification and regression. The
model exhibits a simple and easy-to-explain structure, and its high stability prevents
overfitting [30]. The random forest model can evaluate the significance of each independent
variable because it is not concerned with multicollinearity and can quantitatively analyze
the contribution of each independent variable to the dependent variable [46,47]. Therefore,
it has been widely employed in interdisciplinary research related to ecology and remote
sensing [48,49].

Herein, we used the “randomForest” package in R language to conduct a random
forest regression analysis on ET with four dynamic environmental variables—temperature,
precipitation, sunshine duration, and EVI as the independent variables. Accordingly, the
percentage increase in the mean-squared error (%IncMSE) was computed to quantify the
relative significance of the independent variables. In the random forest model, %IncMSE is
defined as the reduction in model accuracy in cases of excluding a variable. Therefore, a
higher value of %IncMSE implies the significance of a given independent variable.

3. Results
3.1. Temporal and Spatial Distribution of ET
3.1.1. Spatial Distribution Pattern of ET

The multi-year mean ET in Southwest China exhibited significant spatial heterogeneity
from 2003 to 2020 (Figure 2). Throughout the research period, the average ET in the study
area amounted to 703.48 mm. Areas with ET values exceeding 800 mm constituted 45.17%
of the total area, primarily located in southern Yunnan and Guangxi. Conversely, regions
with ET values below 600 mm accounted for 22% of the total area, mainly distributed
in Guizhou.
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To analyze the spatial distribution patterns of ET, we considered three geospatial
dimensions: longitude, latitude, and elevation. The spatial patterns revealed a prevalence of
high ET values in the southern regions and lower values in the northern areas. Furthermore,
ET displayed an overall increase with decreasing latitude, as illustrated in the statistical
plots on the left panel of Figure 2. The spatial distribution of ET exhibited W-shaped
fluctuations with increasing longitude, as depicted in the bottom panel of Figure 2. Upon
comparing the landform types of the study area (Figure 1b) with the spatial distribution of
ET, it becomes evident that the landform types have a considerable influence. Notably, the
longitude corresponding to the ET low valley is characterized by abundant karst landforms.
This observation is supported by statistical analysis, which demonstrates that ET in non-
karst landforms is considerably higher than that in karst landforms, with respective values
of 751.13 mm and 661.32 mm. Additionally, elevation plays a crucial role in shaping the
spatial distribution of temperature, precipitation, and EVI (Figure 1c,f,g,i), impacting the
distribution of ET. This relationship causes a decline in ET with increasing altitude, as
illustrated in the right panel of Figure 2.

3.1.2. Trends in Annual ET Variations

The annual ET in the study area ranged from 668 to 744 mm between 2003 and 2020,
exhibiting a statistically significant linear increase of 2.79 mm per year (p < 0.05) (Figure 3).
Over the past two decades, ET has undergone considerable fluctuations. Notably, during
the period of 2008–2010, a significant low valley in ET was observed, which may have been
caused by severe droughts and snow disasters in Southwest China during that time [50,51].
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Figure 3. Temporal trends in ET in the study area from 2000 to 2019.

Figure 4a presents the pixel-based variation rates of ET from 2003 to 2020, ranging from
−37.49 to 41.3 mm per year. The western regions exhibited relatively stronger variations
in ET compared to the eastern regions. Furthermore, the analysis revealed that 72.63% of
the study area showed an increasing trend in ET, while 27.37% showed a decreasing trend.
Among them, the significant increase regions accounted for 36.99% of the total area, the
significant decrease regions accounted for 5.44%, and the remaining 57.57% of the areas
did not exhibit any significant variations in ET (Figure 4b).

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 3. Temporal trends in ET in the study area from 2000 to 2019. 

Figure 4a presents the pixel-based variation rates of ET from 2003 to 2020, ranging 
from −37.49 to 41.3 mm per year. The western regions exhibited relatively stronger varia-
tions in ET compared to the eastern regions. Furthermore, the analysis revealed that 
72.63% of the study area showed an increasing trend in ET, while 27.37% showed a de-
creasing trend. Among them, the significant increase regions accounted for 36.99% of the 
total area, the significant decrease regions accounted for 5.44%, and the remaining 57.57% 
of the areas did not exhibit any significant variations in ET (Figure 4b). 

 
Figure 4. Spatial distribution of (a) ET trends and (b) their significance test in the study area from 
2003–2020. SI: significant increase; NSI: nonsignificant increase; NSD: nonsignificant decrease; SD: 
significant decrease. 

3.2. Analysis of Geographical Detector Results 
3.2.1. Independent Effects of Each Influencing Factor on Spatial Distribution Pattern of 
ET 

Figure 5 depicts the application of factor detection in the geographical detector to 
quantify the influence of each contributing factor on the spatial distribution of ET. The 
results demonstrate that all the examined determinants (p < 0.05) significantly influenced 
the spatial distribution of ET in Southwest China. Specifically, sunshine duration and EVI 
exhibited a high explanatory power, with q values exceeding 0.3. Landform type, temper-
ature, precipitation, and elevation demonstrated a moderate impact on ET, as indicated 
by their respective q values ranging from 0.05 to 0.3. Conversely, the impact of slope and 
aspect on ET was relatively small, with q values below 0.05. Among the four static geo-
graphical variables considered, landform type emerged as the primary determinant influ-
encing ET. 

Figure 4. Spatial distribution of (a) ET trends and (b) their significance test in the study area from
2003–2020. SI: significant increase; NSI: nonsignificant increase; NSD: nonsignificant decrease; SD:
significant decrease.

3.2. Analysis of Geographical Detector Results
3.2.1. Independent Effects of Each Influencing Factor on Spatial Distribution Pattern of ET

Figure 5 depicts the application of factor detection in the geographical detector to
quantify the influence of each contributing factor on the spatial distribution of ET. The
results demonstrate that all the examined determinants (p < 0.05) significantly influenced
the spatial distribution of ET in Southwest China. Specifically, sunshine duration and
EVI exhibited a high explanatory power, with q values exceeding 0.3. Landform type,
temperature, precipitation, and elevation demonstrated a moderate impact on ET, as
indicated by their respective q values ranging from 0.05 to 0.3. Conversely, the impact of
slope and aspect on ET was relatively small, with q values below 0.05. Among the four static
geographical variables considered, landform type emerged as the primary determinant
influencing ET.
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3.2.2. Effects of Interaction between Influencing Factors on Spatial Distribution Pattern
of ET

The interaction between any two factors exhibited a higher explanatory power (q value)
on the spatial distribution pattern of the multi-year mean ET than any single factor. Fur-
thermore, most of the interaction effects between any two factors demonstrated nonlinear
enhancements (Figure 6). For instance, while the single-factor q values for elevation and
temperature were 0.0615 and 0.1101, respectively, their interaction considerably increased
their impact on the spatial distribution of ET, yielding a q value of 0.5073. Among all the
factor interactions, the interaction between sunshine duration and other influencing factors
appears relatively strong, with q values ranging from 0.4882 to 0.7581. Notably, the interac-
tion between sunshine duration and EVI displays the highest q value of 0.7581. This finding
highlights the primary role of sunshine duration in determining the spatial distribution
pattern of ET. Additionally, although landform type exhibits a higher single-factor influence
ranking than elevation, the interaction between elevation and other factors proves stronger.
These results indicate that the driving factors influencing the spatial distribution of ET are
interdependent, and their explanatory power is enhanced through interaction.
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3.3. Partial Correlation Analysis Results

To quantitatively analyze the relationships between dynamic environmental factors
and ET, we calculated the partial correlation coefficients between ET and temperature,
precipitation, sunshine duration, and EVI for each pixel. Figure 7 depicts considerable
spatial differences in the partial correlation between different factors and ET. Overall, ET
was found to exhibit positive correlations with temperature, sunshine duration, and EVI,
encompassing 62.57%, 71.72%, and 63.32% of the total study area, respectively. The positive
correlation between ET and temperature was mainly distributed in Yunnan. Conversely,
the positive correlation between ET and sunshine duration was primarily observed in the
eastern part of Yunnan, southern Guangxi, and northeastern Guizhou. The positive correla-
tion between ET and EVI was mainly concentrated at the junction of Guizhou, Yunnan, and
Guangxi. Conversely, precipitation displayed a negative correlation with ET, accounting
for 67.91% of the total study area, and was mainly distributed in eastern Guizhou, northern
Guangxi and the central part of Yunnan spanning northward and southward.
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3.4. Analysis of Random Forest Model Results

Figure 8a illustrates the spatial distribution patterns of the dominant factors influ-
encing ET variation, as indicated by the maximum %IncMSE value among temperature,
precipitation, sunshine duration, and EVI at each pixel. EVI accounted for 42.92% of
the entire study area and was the factor with the largest proportion of ET fluctuations,
particularly at the Yunnan–Guizhou border. These regions aligned with areas where EVI
increased (Figure A1d). Furthermore, EVI was generally found to exhibit a positive cor-
relation with ET (Figure 7d). Therefore, it can be concluded that the increase in EVI was
the main driver of the increase in ET. Sunshine duration, temperature, and precipitation
accounted for similar proportions in the study area, comprising 22.03%, 16.51%, and 18.54%,
respectively. Primarily, the factor of temperature induced alterations in ET in the southern
part of Yunnan, while precipitation and sunshine duration considerably affected the scat-
tered regions. Regarding landform types, EVI dominated the largest proportion of both
karst and non-karst landform areas, although the proportion was relatively higher in karst
landform areas.
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4. Discussion
4.1. Key Factors Affecting Spatial Distribution Pattern of ET in Southwest China

Previous studies primarily focused on investigating the temporal attribution of ET
variations, with limited research examining the spatial distribution patterns of ET. The
analysis of ET spatial distribution patterns gradually gained traction following the intro-
duction of geographic detectors [26]. The results obtained from the geographic detector
herein demonstrate that sunshine duration exerted the greatest influence on the spatial dis-
tribution pattern of ET in Southwest China, which aligned with our expectations. A strong
correlation exists between net radiation and sunshine duration, and empirical equations
incorporating sunshine duration were often used to estimate net radiation [52]. Moreover,
net radiation is a vital factor for estimating ET according to several empirical statistical
models [53,54] as well as the Penman–Monteith formula [55]. Therefore, sunshine duration
considerably impacted the spatial distribution of ET, wherein a greater sunshine duration
corresponded to longer periods of sunlight and higher net radiation. In areas characterized
by cloudiness and high precipitation, specifically in Guizhou where sunshine duration
was considerably low (Figure 1h), net radiation emerged as the primary limiting factor
for ET [56]. Conversely, regions with relatively higher sunshine duration, such as Yunnan,
experienced higher ET rates. Consequently, this explains why sunshine duration held a
substantial influence on the spatial distribution of ET in Southwest China. These findings
found support in previous research conducted at flux stations within the study area [57].
The second most influential factor shaping the spatial distribution of ET was EVI. This was
attributable to regions exhibiting vigorous vegetation growth where plant transpiration
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and interception evaporation became the dominant contributors to ET [58], resulting in
higher ET values, particularly in southern Yunnan. Conversely, regions with lower EVI,
such as eastern and northern Yunnan, demonstrated comparatively lower ET rates. Thus,
EVI considerably contributed to the spatial distribution pattern of ET.

Among the static environmental factors, landform types exerted the primary influ-
ence on the spatial distribution pattern of ET. This relationship is further illustrated by the
W-shaped distribution of ET with longitude (bottom panel in Figure 2). Non-karst and karst
landforms exhibit considerable differences in their underlying surface characteristics. In the
study area, karst landforms are predominantly found in regions affected by severe rocky
desertification, characterized by shrub vegetation and relatively low vegetation cover [59],
resulting in lower ET. Conversely, non-karst areas exhibit deeper underlying vegetation and
ecological preservation, with a higher prevalence of forests and greater vegetation cover.
The control of the vegetation canopy by plants enhances transpiration and interception
evaporation, affording higher ET rates. Altitude, as another static environmental factor,
influences the spatial distribution of ET as the second most influential factor. Southwest
China’s complex terrain contributes to similar spatial distribution patterns of tempera-
ture, precipitation, EVI, and altitude. Altitude plays a decisive role in shaping the spatial
distribution of these factors [60] and indirectly affects the spatial distribution of ET. Our
interaction detection results indicate that the combined effect of multiple factors enhances
the explanatory power of ET spatial distribution. Among all the interaction factors, the
interaction between sunshine duration and EVI emerges as the strongest interactive factor.
Areas with favorable water and heat conditions generally exhibit robust vegetation growth,
ample sunshine duration, and increased ET through plant transpiration and precipitation
interception. Furthermore, the interaction between sunshine duration and other factors
enhances the explanatory power of ET spatial distribution. These findings further un-
derscore the substantial impact of sunshine duration on the spatial distribution pattern
of ET. Although the landform type holds a stronger explanatory power for the spatial
distribution pattern of ET compared to elevation as an individual factor, the interaction
between the elevation and other factors demonstrates greater strength in the results of
detecting interaction among multiple factors. This may be attributable to the limited impact
of landform type on meteorological elements, whereas elevation exerts stronger control
over the distribution of other dynamic environmental factors [60]. Thus, the interaction
between elevation and other factors strongly governs the spatial distribution pattern of ET.

4.2. Dominant Factors of ET Variations in Southwest China

During 2003–2019, global ET exhibited a significant linear-growth trend primarily
attributed to global warming [61]. Similarly, in China, from 2000 to 2019, ET experi-
enced a statistically significant increase mainly owing to increased precipitation and wind
speed [62]. Our study examined ET fluctuations in Southwest China from 2003 to 2020 and
observed a significant overall increase, consistent with global and national trends. However,
our research revealed that the primary factors altering ET in Southwest China differ from
those at the global and national scales. Utilizing the random forest model, we identified
EVI as the dominant factor influencing ET variations in Southwest China, followed by
sunshine duration. Over the past two decades, extensive large-scale ecological engineering
projects have been implemented in Southwest China, resulting in significant vegetation
recovery [31,32]. The results of this study also confirmed that the EVI representing vegeta-
tion growth significantly increased in an area of 73.59% during this period (Figure A1d).
Vegetation recovery contributes to increased transpiration and precipitation interception,
leading to higher ET rates [25,63]. This observation is further supported by the overall
positive correlation between ET and EVI (Figure 7d). Compared to the non-karst regions,
a greater number of pixels was observed in the karst geomorphic area dominated by ET
fluctuations. This can be attributed to the higher investment in ecological engineering to
address issues such as rocky desertification in the karst region, resulting in more effective
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vegetation recovery and a higher rate of EVI increase [64,65]. In summary, EVI emerged as
the dominant factor increasing ET in the study area.

Furthermore, sunshine duration constituted a relatively significant proportion, ac-
counting for 22.03% of the temporal variations in ET within the study area. This proportion
exceeded that of temperature and precipitation, which were the primary factors of ET
variations. Sunshine duration exhibited an overall positive correlation with ET. However,
as the study period witnessed a general reduction in sunshine duration, and this reduction
was significant across 27.28% of the study area, it negatively impacted ET in the research
area. Although the sunshine duration persisted as the most influential factor for explaining
the spatial distribution of average ET over multiple years, it primarily influenced local
variations in ET rather than dominating its temporal variations.

4.3. Potential Inaccuracies, Limitations, and Implications

The main source of uncertainty in this study lies in the accuracy of the ET and driving
factor data. ET estimation relies on complex models and various input data, introducing po-
tential uncertainties in the spatial distribution and temporal variations, thereby impacting
the accuracy of ET [66,67]. However, the PML-V2 ET product employed in this study has
undergone validation in previous research, encompassing site-scale flux tower measure-
ments and regional-scale water balance assessments. These validations have consistently
demonstrated that the PML-V2 ET product exhibits similar or higher accuracy compared to
other products [68–71]. For instance, validation using 95 global flux sites revealed a strong
correlation between ET and the flux station measurements, with correlation coefficients of
0.83. The validation results from 26 flux stations in China exhibited a correlation coefficient
of 0.87 [36]. Furthermore, the PML-V2 ET product offers a spatial resolution of 500 m,
making it suitable for studying regions characterized by significant spatial heterogeneity.
Therefore, the utilization of the PML-V2 ET product in this study substantially reduces the
associated uncertainties.

To further mitigate the uncertainty arising from the influence factor data, we employed
the thin-plate spline method to generate station data for temperature, precipitation, and
sunshine duration. This method is particularly suitable for mountainous areas [72]. Addi-
tionally, the EVI data utilized in this study were obtained from Terra and Aqua satellites,
and subjected to a rigorous cloud-pollution removal strategy, rendering it more applicable
to cloudy and foggy regions in Southwest China. Given the specific characteristics of the
study area, we employed appropriate data processing methods to reduce the uncertainty
inherent in our research results to a certain extent.

Although we strictly controlled the quality of the data, there is still ample room
for improving data accuracy, especially in the highly spatially heterogeneous areas of
Southwest China with diverse underlying surfaces. In the future, the reliability of research
results could be enhanced by estimating or utilizing higher-resolution and higher-precision
data products. Additionally, while we examined the most common meteorological factors,
vegetation index, terrain, and landform factors to analyze their impact on ET, these are not
the sole factors influencing ET. Relevant studies have indicated that leaf area index [73], soil
moisture [74], and other meteorological variables (such as relative humidity, wind speed,
atmospheric pressure, etc.) [62] may significantly affect ET. Therefore, future research
incorporating additional factors to analyze the spatiotemporal variation in ET is necessary
to obtain more comprehensive conclusions.

Our research results indicate that the spatial distribution pattern of ET in Southwest
China was primarily influenced by sunshine duration, while vegetation recovery emerged
as the dominant factor driving the temporal variation in ET. The implications of these
findings for conducting studies on ET in Southwest China suggest the need to consider
regional sunshine duration when engaging in plant cultivation or water resource man-
agement to determine appropriate planting or management strategies. ET and vegetation
growth exhibit a close relationship. In areas with limited sunshine duration and without
considering water resource constraints, such as in Guizhou, shade-tolerant species should
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be prioritized for plant growth, while regions with longer sunshine duration should be
utilized for cultivating sun-loving plants to facilitate plant growth. The rapid vegetation
restoration in Southwest China, coupled with ecological engineering, may exert significant
pressure on surface water resources through transpiration and interception evaporation,
particularly in karst areas where water storage is challenging [75]. Therefore, water-efficient
plants should be implanted in these areas to reduce water consumption, while enhancing
the ability to control desertification and improve soil and water conservation.

5. Conclusions

Based on the PML-V2 ET product, this study revealed the spatial distribution pattern
of average ET and the key factors affecting ET in Southwest China from 2003 to 2020. In
particular, we analyzed the trend of past ET variations and identified the dominant factors
causing such variations in the study region. The results indicated that the average annual
ET decreased with increasing latitude and altitude, displaying “W”-shaped fluctuations
in the longitudinal direction because of the karst landform. The attribution results of the
geographical detector suggested that sunshine duration has the most important impact
on the spatial distribution of average annual ET, followed by EVI. Among the four static
geographical factors, landform type has the greatest impact on the spatial distribution of
ET. However, the factors affecting the spatial distribution of ET were not independent,
and their interplay with each other strengthens their explanatory power for ET. During
the study period, ET exhibited a significant linear-growth trend and 70.03% of the study
area displayed an upward trend. Based on the relative significance ranking of dynamic
environmental factors using the random forest model, EVI was classified as the dominant
factor inducing fluctuations in ET across the study area, accounting for 42.92% of the total
area. This finding can be attributed to the significantly increasing trend of EVI in the
study area, which was positively correlated with ET. Therefore, vegetation restoration
increased ET in the study area. The present findings provide a new understanding of
the key factors of spatial and temporal variations in ET in the humid and water-deficient
regions of Southwest China. Overall, this study provides theoretical guidance for the
ecological restoration and management of water resources in this region.
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30. Ahmadi, A.; Daccache, A.; Snyder, R.L.; Suvočarev, K. Meteorological driving forces of reference evapotranspiration and their

trends in California. Sci. Total Environ. 2022, 849, 157823. [CrossRef]
31. Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased

vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [CrossRef]
32. Qiao, Y.; Jiang, Y.; Zhang, C. Contribution of karst ecological restoration engineering to vegetation greening in southwest China

during recent decade. Ecol. Indic. 2021, 121, 107081. [CrossRef]
33. Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution

global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [CrossRef]
34. Leuning, R.; Zhang, Y.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using

MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44, W10419. [CrossRef]
35. Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.S.; Yu, Q. Use of satellite leaf area index estimating

evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 2018, 11, e1974. [CrossRef]
36. He, S.; Zhang, Y.; Ma, N.; Tian, J.; Kong, D.; Liu, C. A daily and 500 m coupled evapotranspiration and gross primary production

product across China during 2000–2020. Earth Syst. Sci. Data 2022, 14, 5463–5488.
37. Li, C.; Zhang, Y.; Shen, Y.; Yu, Q. Decadal water storage decrease driven by vegetation changes in the Yellow River Basin. Sci. Bull.

2020, 65, 1859–1861. [CrossRef] [PubMed]
38. Hutchinson, M.F.; Xu, T. Anusplin version 4.2 user guide. In Centre for Resource and Environmental Studies; The Australian National

University: Canberra, Australia, 2004; Volume 54.
39. Zhou, J.; Jia, L.; Menenti, M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time

Series (HANTS). Remote Sens. Environ. 2015, 163, 217–228. [CrossRef]
40. Wu, G.; Lu, X.; Zhao, W.; Cao, R.; Xie, W.; Wang, L.; Wang, Q.; Song, J.; Gao, S.; Li, S.; et al. The increasing contribution of greening

to the terrestrial evapotranspiration in China. Ecol. Model. 2023, 477, 110273. [CrossRef]

https://doi.org/10.1088/1748-9326/7/1/014026
https://doi.org/10.1016/j.gloplacha.2014.01.006
https://doi.org/10.1029/2020JD032404
https://doi.org/10.1016/j.agrformet.2022.108887
https://doi.org/10.1016/j.scitotenv.2019.135111
https://doi.org/10.1038/s41598-017-08477-x
https://doi.org/10.1016/j.jhydrol.2016.02.017
https://doi.org/10.1002/eco.1298
https://doi.org/10.1016/j.ecoleng.2022.106648
https://doi.org/10.1016/j.agwat.2020.106541
https://doi.org/10.1016/j.agwat.2019.02.014
https://doi.org/10.1016/j.quaint.2017.01.023
https://doi.org/10.1016/j.jhydrol.2022.128216
https://doi.org/10.3390/rs14081856
https://doi.org/10.1016/j.jhydrol.2023.129673
https://doi.org/10.1016/j.ecolind.2016.02.052
https://doi.org/10.1002/eco.2195
https://doi.org/10.1016/j.scitotenv.2022.157823
https://doi.org/10.1038/s41893-017-0004-x
https://doi.org/10.1016/j.ecolind.2020.107081
https://doi.org/10.1016/j.rse.2018.12.031
https://doi.org/10.1029/2007WR006562
https://doi.org/10.1002/eco.1974
https://doi.org/10.1016/j.scib.2020.07.020
https://www.ncbi.nlm.nih.gov/pubmed/36738045
https://doi.org/10.1016/j.rse.2015.03.018
https://doi.org/10.1016/j.ecolmodel.2023.110273


Remote Sens. 2023, 15, 4418 18 of 19

41. Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical
tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [CrossRef]

42. Tegos, A.; Tyralis, H.; Koutsoyiannis, D.; Hamed, K. An R function for the estimation of trend significance under the scaling
hypothesis-application in PET parametric annual time series. Open Water J. 2017, 4, 6.

43. Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics
of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020,
57, 593–610. [CrossRef]

44. Hussien, K.; Kebede, A.; Mekuriaw, A.; Beza, S.A.; Erena, S.H. Spatiotemporal trends of NDVI and its response to climate
variability in the Abbay River Basin, Ethiopia. Heliyon 2023, 9, e14113. [CrossRef] [PubMed]

45. Adeyeri, O.E.; Ishola, K.A. Variability and Trends of Actual Evapotranspiration over West Africa: The Role of Environmental
Drivers. Agric. For. Meteorol. 2021, 308–309, 108574. [CrossRef]

46. Wang, Q.; Wang, X.; Zhou, Y.; Liu, D.; Wang, H. The dominant factors and influence of urban characteristics on land surface
temperature using random forest algorithm. Sustain. Cities Soc. 2022, 79, 103722. [CrossRef]

47. Liu, Q.; Liu, L.; Zhang, Y.; Wang, Z.; Wu, J.; Li, L.; Li, S.; Paudel, B. Identification of impact factors for differentiated patterns
of NDVI change in the headwater source region of Brahmaputra and Indus, Southwestern Tibetan Plateau. Ecol. Indic. 2021,
125, 107604. [CrossRef]

48. Zhang, J.; Yang, S.; Yang, S.; Fan, L.; Zhou, X. Spatio-Temporal Variations of Ecosystem Water Use Efficiency and Its Drivers in
Southwest China. Land 2023, 12, 397. [CrossRef]

49. Peng, D.; Zhou, Q.; Tang, X.; Yan, W.; Chen, M. Changes in soil moisture caused solely by vegetation restoration in the karst
region of southwest China. J. Hydrol. 2022, 613, 128460. [CrossRef]

50. Sun, X.; Lai, P.; Wang, S.; Song, L.; Ma, M.; Han, X. Monitoring of Extreme Agricultural Drought of the Past 20 Years in Southwest
China Using GLDAS Soil Moisture. Remote Sens. 2022, 14, 1323. [CrossRef]

51. Ding, Y.; Wang, Z.; Song, Y.; Zhang, J. The unprecedented freezing disaster in January 2008 in southern China and its possible
association with the global warming. Acta Meteorol. Sin. 2008, 22, 538–558.

52. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO
Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109.

53. Carter, C.; Liang, S. Comprehensive evaluation of empirical algorithms for estimating land surface evapotranspiration. Agric. For.
Meteorol. 2018, 256–257, 334–345. [CrossRef]

54. Mobilia, M.; Schmidt, M.; Longobardi, A. Modelling Actual Evapotranspiration Seasonal Variability by Meteorological Data-Based
Models. Hydrology 2020, 7, 50. [CrossRef]

55. Monteith, J.L. Evaporation and environment. In Symposia of the Society for Experimental Biology; Cambridge University Press (CUP):
Cambridge, UK, 1965; pp. 205–234.

56. Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in
the Southwestern Karst Region of China. Remote Sens. 2015, 7, 11105–11124. [CrossRef]

57. Song, Q.-H.; Braeckevelt, E.; Zhang, Y.-P.; Sha, L.-Q.; Zhou, W.-J.; Liu, Y.-T.; Wu, C.-S.; Lu, Z.-Y.; Klemm, O. Evapotranspiration
from a primary subtropical evergreen forest in Southwest China. Ecohydrology 2017, 10, e1826. [CrossRef]

58. Miralles, D.G.; De Jeu, R.A.M.; Gash, J.H.; Holmes, T.R.H.; Dolman, A.J. Magnitude and variability of land evaporation and its
components at the global scale. Hydrol. Earth Syst. Sci. 2011, 15, 967–981. [CrossRef]

59. Li, Y.-b.; Shao, J.-a.; Yang, H.; Bai, X.-y. The relations between land use and karst rocky desertification in a typical karst area,
China. Environ. Geol. 2009, 57, 621–627. [CrossRef]

60. Ma, Y.-J.; Li, X.-Y.; Liu, L.; Yang, X.-F.; Wu, X.-C.; Wang, P.; Lin, H.; Zhang, G.-H.; Miao, C.-Y. Evapotranspiration and its dominant
controls along an elevation gradient in the Qinghai Lake watershed, northeast Qinghai-Tibet Plateau. J. Hydrol. 2019, 575, 257–268.
[CrossRef]

61. Pascolini-Campbell, M.; Reager, J.T.; Chandanpurkar, H.A.; Rodell, M. A 10 per cent increase in global land evapotranspiration
from 2003 to 2019. Nature 2021, 593, 543–547. [CrossRef]

62. Fu, J.; Gong, Y.; Zheng, W.; Zou, J.; Zhang, M.; Zhang, Z.; Qin, J.; Liu, J.; Quan, B. Spatial-temporal variations of terrestrial
evapotranspiration across China from 2000 to 2019. Sci. Total Environ. 2022, 825, 153951. [CrossRef]

63. Shao, R.; Shao, W.; Gu, C.; Zhang, B. Increased Interception Induced by Vegetation Restoration Counters Ecosystem Carbon and
Water Exchange Efficiency in China. Earth’s Future 2022, 10, e2021EF002464. [CrossRef]

64. Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem
processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [CrossRef]

65. Zhang, X.; Yue, Y.; Tong, X.; Wang, K.; Qi, X.; Deng, C.; Brandt, M. Eco-engineering controls vegetation trends in southwest China
karst. Sci. Total Environ. 2021, 770, 145160. [CrossRef] [PubMed]

66. Ferguson, C.R.; Sheffield, J.; Wood, E.F.; Gao, H. Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration
over continental USA. Int. J. Remote Sens. 2010, 31, 3821–3865. [CrossRef]

67. Vinukollu, R.K.; Meynadier, R.; Sheffield, J.; Wood, E.F. Multi-model, multi-sensor estimates of global evapotranspiration:
Climatology, uncertainties and trends. Hydrol. Process. 2011, 25, 3993–4010. [CrossRef]

68. Chang, X.; Wang, Z.; Wei, F.; Xiao, P.; Shen, Z.; Lv, X.; Shi, Y. Determining the Contributions of Vegetation and Climate Change to
Ecosystem WUE Variation over the Last Two Decades on the Loess Plateau, China. Forests 2021, 12, 1442. [CrossRef]

https://doi.org/10.1016/j.gloplacha.2012.10.014
https://doi.org/10.1080/15481603.2020.1760434
https://doi.org/10.1016/j.heliyon.2023.e14113
https://www.ncbi.nlm.nih.gov/pubmed/36915532
https://doi.org/10.1016/j.agrformet.2021.108574
https://doi.org/10.1016/j.scs.2022.103722
https://doi.org/10.1016/j.ecolind.2021.107604
https://doi.org/10.3390/land12020397
https://doi.org/10.1016/j.jhydrol.2022.128460
https://doi.org/10.3390/rs14061323
https://doi.org/10.1016/j.agrformet.2018.03.027
https://doi.org/10.3390/hydrology7030050
https://doi.org/10.3390/rs70911105
https://doi.org/10.1002/eco.1826
https://doi.org/10.5194/hess-15-967-2011
https://doi.org/10.1007/s00254-008-1331-z
https://doi.org/10.1016/j.jhydrol.2019.05.019
https://doi.org/10.1038/s41586-021-03503-5
https://doi.org/10.1016/j.scitotenv.2022.153951
https://doi.org/10.1029/2021EF002464
https://doi.org/10.1007/s10980-019-00912-w
https://doi.org/10.1016/j.scitotenv.2021.145160
https://www.ncbi.nlm.nih.gov/pubmed/33736419
https://doi.org/10.1080/01431161.2010.483490
https://doi.org/10.1002/hyp.8393
https://doi.org/10.3390/f12111442


Remote Sens. 2023, 15, 4418 19 of 19

69. Chen, J.; Gao, X.; Ji, Y.; Luo, Y.; Yan, L.; Fan, Y.; Tan, D. China’s Greening Modulated the Reallocation of the Evapotranspiration
Components during 2001–2020. Remote Sens. 2022, 14, 6327.

70. Guo, X.; Wu, Z.; He, H.; Xu, Z. Evaluating the Potential of Different Evapotranspiration Datasets for Distributed Hydrological
Model Calibration. Remote Sens. 2022, 14, 629. [CrossRef]

71. Chao, L.; Zhang, K.; Wang, J.; Feng, J.; Zhang, M. A Comprehensive Evaluation of Five Evapotranspiration Datasets Based on
Ground and GRACE Satellite Observations: Implications for Improvement of Evapotranspiration Retrieval Algorithm. Remote
Sens. 2021, 13, 2414. [CrossRef]

72. Qing-ling, S.; Xian-feng, F.; Yong, G.; Bao-lin, L. Topographical effects of climate data and their impacts on the estimation of
net primary productivity in complex terrain: A case study in Wuling mountainous area, China. Ecol. Inform. 2015, 27, 44–54.
[CrossRef]

73. Wang, L.; Good, S.P.; Caylor, K.K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett.
2014, 41, 6753–6757. [CrossRef]

74. Babaeian, E.; Paheding, S.; Siddique, N.; Devabhaktuni, V.K.; Tuller, M. Short- and mid-term forecasts of actual evapotranspiration
with deep learning. J. Hydrol. 2022, 612, 128078. [CrossRef]

75. Xiao, Y.; Xiao, Q.; Sun, X. Ecological Risks Arising from the Impact of Large-scale Afforestation on the Regional Water Supply
Balance in Southwest China. Sci. Rep. 2020, 10, 4150. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs14030629
https://doi.org/10.3390/rs13122414
https://doi.org/10.1016/j.ecoinf.2015.02.003
https://doi.org/10.1002/2014GL061439
https://doi.org/10.1016/j.jhydrol.2022.128078
https://doi.org/10.1038/s41598-020-61108-w
https://www.ncbi.nlm.nih.gov/pubmed/32139773

	Introduction 
	Materials and Methods 
	Study Area 
	Data Acquisition and Processing 
	PML-V2 ET Data Product 
	Static Geographical Variables 
	Dynamic Environmental Variables 

	Data Analysis Methods 
	Trend Analysis 
	Geographical Detector 
	Partial Correlation Analysis 
	Random Forest Model 


	Results 
	Temporal and Spatial Distribution of ET 
	Spatial Distribution Pattern of ET 
	Trends in Annual ET Variations 

	Analysis of Geographical Detector Results 
	Independent Effects of Each Influencing Factor on Spatial Distribution Pattern of ET 
	Effects of Interaction between Influencing Factors on Spatial Distribution Pattern of ET 

	Partial Correlation Analysis Results 
	Analysis of Random Forest Model Results 

	Discussion 
	Key Factors Affecting Spatial Distribution Pattern of ET in Southwest China 
	Dominant Factors of ET Variations in Southwest China 
	Potential Inaccuracies, Limitations, and Implications 

	Conclusions 
	Appendix A
	References

