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Abstract: Over an extended period, considerable research has focused on elaborated mapping in
navigation systems. Multispectral point clouds containing both spatial and spectral information
play a crucial role in remote sensing by enabling more accurate land cover classification and the
creation of more accurate maps. However, existing graph-based methods often overlook the indi-
vidual characteristics and information patterns in these graphs, leading to a convoluted pattern of
information aggregation and a failure to fully exploit the spatial–spectral information to classify
multispectral point clouds. To address these limitations, this paper proposes a deep spatial graph
convolution network with adaptive spectral aggregated residuals (DSGCN-ASR). Specifically, the
proposed DSGCN-ASR employs spatial graphs for deep convolution, using spectral graph aggregated
information as residuals. This method effectively overcomes the limitations of shallow networks in
capturing the nonlinear characteristics of multispectral point clouds. Furthermore, the incorporation
of adaptive residual weights enhances the use of spatial–spectral information, resulting in improved
overall model performance. Experimental validation was conducted on two datasets containing real
scenes, comparing the proposed DSGCN-ASR with several state-of-the-art graph-based methods.
The results demonstrate that DSGCN-ASR better uses the spatial–spectral information and produces
superior classification results. This study provides new insights and ideas for the joint use of spatial
and spectral information in the context of multispectral point clouds.

Keywords: multispectral point clouds; land cover classification; spatial–spectral information; deep
spatial graph convolution network; adaptive spectral residuals

1. Introduction

Navigation is a field of immense importance in modern society, requiring the integra-
tion of various disciplines, such as cartography, geography, remote sensing technology, and
computer science. Geographic information systems (GISs) and points of interest (POIs) are
indispensable for effective navigation. In this context, remote sensing plays a vital role by
providing essential components such as accurate base maps and precise land cover models.
Thus, land cover classification has emerged as a fundamental research direction within the
realm of remote sensing.

Since the early 2000s, the use of laser detection and ranging (LiDAR) technology
has substantially contributed to the field of remote sensing. LiDAR has emerged as a
valuable tool for collecting high-quality data, offering a rich and detailed data foundation
for accurate and refined land cover classification. As an active remote sensing method,
LiDAR provides distinct advantages in land cover analysis; for example, it is unaffected
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by environmental factors such as illumination, allowing for consistent data collection
regarding the spatial distribution of land cover. This capability makes LiDAR a valuable
tool for high-resolution and accurate land cover classification. However, because the point
cloud is formed using non-Euclidean data with an irregular distribution, point cloud
processing became a new challenge. Many studies have achieved notable success with
LiDAR point clouds, of which the most classic is the Pointnet series [1–3].

1.1. Data Description

As an evolutionary LiDAR technology, airborne multispectral LiDAR systems can
capture the spatial information of land cover while acquiring the spectral intensity of the
corresponding points. Teledyne Optech unveiled the inaugural airborne multispectral
LiDAR system in 2014, which operates across three channels. Channel 1 operates at a mid-
infrared (MIR) wavelength of 1550 nm with a forward-looking angle of 3.5 degrees. Channel
2 operates at a near-infrared (NIR) wavelength of 1064 nm with a nadir-looking angle of
zero degrees. Lastly, Channel 3 operates in the green spectrum with a wavelength of 532 nm
and a forward-looking angle of seven degrees. Two datasets captured by the system are
shown in Figure 1: the Harbor of Tobermory (HT) and the University of Houston (UH).

Figure 1. Visualization of two scenes of multispectral point cloud datasets: (a) Harbor of Tobermory
(HT) and (b) University of Houston (UH).

1.2. Related Literature

The emergence of multispectral LiDAR has enriched the information dimension of
point cloud data. The multispectral point cloud inherits the ability of the traditional point
cloud to characterize the spatial distribution of land cover while collecting corresponding
spectral information for each point. With the increase in the information dimension,
researchers have been faced with a new dilemma of how to effectively and jointly use the
rich spatial–spectral information in multispectral point clouds.

1.2.1. Image-Oriented Methods

Several researchers have transformed 3D multispectral point clouds into 2D images to
employ traditional image-oriented methods, such as support vector machine (SVM) [4],
Adaboost [5], random forest [6], Markov random field [7], and conditional random field [8].

Other researchers have proposed deep learning models specifically designed for point
clouds. Yu et al. introduced the CapViT model, a cross-context capsule vision transformer,
for land cover classification using multispectral LiDAR data. It uses three streams of
capsule transformer encoders to capture long-range global feature interactions at different
context scales and effectively fuses cross-context feature semantics for accurate land cover
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type inferences [9]. ESA-CapsNet uses a novel capsule encoder–decoder architecture and
a capsule-based attention module to extract informative feature semantics and enhance
feature saliency and robustness [10]. Wang et al. proposed a neural network architecture
for learning with point clouds that captures semantically similar structures in deeper layers
despite the long distance between them in the original input space. The network utilizes a
dynamic graph convolutional neural network (DGCNN) approach, which combines global
shape structure with local neighborhood information to improve the learning process [11].
Liu et al. proposed RS-CNN [12], a relation–shape convolutional neural network that
extends a regular-grid CNN to irregular configurations for point cloud analysis by learning
from the geometric topology constraint among points. Shape awareness and robustness
are achieved by learning a high-level relationship expression from predefined geometric
priors, leading to contextual shape-aware learning for point cloud analysis. [13–19].

However, the transformations performed by these methods result in the loss of the
original information of the multispectral point cloud.

1.2.2. Point-Oriented Methods

Traditional Methods Jing et al. proposed SE-Pointnet++ by embedding the squeeze-
and-excitation block (SE block) into the Pointnet++ network to improve the performance of
multispectral LiDAR point cloud classification by modeling the interdependence between
channels. They utilized Pointnet++, DGCNN, GACNet, and RSCNN as comparison models
to demonstrate the superiority of SE-Pointnet++ in accomplishing multispectral LiDAR
point cloud feature classification [1–3,11,12]. Hu et al. proposed RandLA-Net, a lightweight
neural architecture that uses random point sampling and a novel local feature aggregation
module to efficiently perform semantic segmentation on large-scale 3D point clouds [20].
Wang et al. proposed a TMDE algorithm for extracting discriminative geometric–spectral
features from multispectral point cloud data. The algorithm preserves the intraclass sample
distribution and maximizes the distance between different classes [21–24].

Graph-Based Methods Graph neural networks have received increasing attention
from researchers due to their inherent ability to accurately characterize non-Euclidean
data [25]. Some examples of these networks include GAC [26], FR-GCNet [27], GACNN [28],
and MaSGCN [29]. For graph-based methods, the most immediate challenge is effectively
measuring the similarity between points to represent a multispectral point cloud as a graph.
Once a suitable similarity metric is found, state-of-the-art graph neural networks such as
GCN [30], GAT [31], GCBNet [32], and GCNII [33] can be used to classify multispectral
point clouds.

Despite these advances, effective methods are still needed to utilize the spatial–spectral
information contained in multispectral point clouds without losing valuable information.
Further research in this area holds promise for advancing the field of multispectral point
cloud analysis and classification.

1.3. Motivation and Contributions

Researchers have either used the spatial distance to construct a graph or spectral
similarity or have simply combined the similarities of the two in equal proportions to
produce a joint graph. To verify the advantages and disadvantages of these technical routes,
we used a simple GCN to classify the two previously mentioned multispectral point cloud
datasets using each of the above three methods to construct a graph. The classification
results are visualized in Figure 2.

Upon visualizing the classification results, we found that the spatial graph tends to
assign neighboring land covers to the same class, resulting in a contiguous distribution
pattern. Conversely, the spectral graph exhibits superior capability in capturing long-range
dependencies and effectively delineating boundaries between land cover types. However,
the spectral graph also demonstrates a greater tendency to incorporate irrelevant land cover
information and is more susceptible to interference from complex spectral signatures, such
as those originating from water bodies. Ideally, the strengths of both should be combined
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to achieve finer classification while maintaining the robustness of the spatial graph and
taking advantage of the high-quality performance of the spectral graph on the boundary.
The visualization results (Figure 2c,f) show that simply combining the two does not achieve
the ideal state, so achieving the reasonable joint use of spatial–spectral information is an
important problem to be solved.

Figure 2. Visualization of differences between three technical routes for constructing graphs from two
datasets: (a) classification with a spatial graph for the HT dataset; (b) classification with a spectral
graph for the HT dataset; (c) classification with a combined graph on the HT dataset; (d) classification
with a spatial graph for the UH dataset. (e) classification with a spectral graph for the UH dataset.
(f) classification with a combined graph for the UH dataset.

To address this problem, we developed a deep spatial graph convolution network
with adaptive spectral aggregated residuals (DSGCN-ASR), which inputs both spatial
and spectral graphs into the network. The proposed DSGCN-ASR uses a spatial graph to
perform multiple layers of graph convolutions on multispectral point clouds and uses the
information aggregated by the spectral graph as residuals, which are adaptively added
during each convolution. Specifically, the main contributions can be summarized as follows:

1. A novel framework was developed for the simultaneous use of spatial and spectral
information in multispectral point clouds. The spatial and spectral graphs are treated
differently to preserve the robustness of the spatial graph in capturing the nearby
land cover relationships while harnessing the discriminative power of the spectral
graph in distinguishing between various features in proximity.

2. A deep graph neural network, DSGCN-ASR, was developed to learn the implicit rela-
tionships between points in a multispectral point cloud to overcome the insufficient
capability of shallow graph neural networks in fitting the nonlinearity of multispectral
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point clouds in complex remote sensing scenes. Additionally, the spectral aggregated
residuals were adaptively added to learn the spectral relationship between points,
simultaneously addressing the oversmoothing problem of deep features.

The remainder of this paper is organized as follows. Section 2 describes the method-
ology and specific algorithms for the proposed DSGCN-ASR. Section 3 outlines the per-
formance of the proposed DSGCN-ASR through experiments, and Section 4 provides
the conclusions.

2. Methodology

In this section, we describe, in detail, the principles and implementation of the pro-
posed DSGCN-ASR and provide the corresponding algorithm. The overall network struc-
ture is shown in Figure 3.

Figure 3. Overall structure of the proposed DSGCN-ASR.

2.1. Construction of Spatial and Spectral Graphs

The data form of a multispectral point cloud can be viewed as a set of point clouds
collected by multiple lasers of different wavelengths in the same scene. However, in
practice, multiple bands of data are commonly integrated into a single point cloud. The
integrated multispectral point cloud can be denoted as P = [p1 , p2 , p3 , · · · pk ] ∈ R(L + 3)×k,
where L is the number of bands, and k is the number of points in the multispectral point
cloud. A single point can be represented as pi = [x, y, z, λ1, λ2, · · · λL], where i ∈ (1, k) is
the index of the point.

For a graph (G = (V, E)), V is the set of nodes, and E is the set of edges. For each node
(i), its corresponding feature (xi) can be represented by matrix XN×D, where N denotes the
number of nodes, and D denotes the feature dimension of each node. For a multispectral
point cloud, matrix XN×D corresponds to point set P = [p1 , p2 , p3 , · · · pk ] ∈ R(L + 3)×k, which
can be obtained by transposing P. Thus, the number of nodes (N) is the number of points
(k), and the number of features (D) is equal to (L + 3).

Regarding the set of edges (E), we separately measure the similarity between each
point for the spatial and spectral information and compute two adjacency matrices, i.e., a
spatial adjacency matrix and a spectral adjacency matrix. Specifically, we separately
compute the Euclidean distance between points for the spatial and spectral information
to obtain the distance matrix. Because the larger the Euclidean distance, the weaker the
correlation between the points, each value in the matrix is subtracted from the maximum
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value in the distance matrix. Finally, the overall matrix is max–min-normalized to obtain
adjacency matrices Aspatial and Aspectral .

Aspatial = Normalized(DisSpatial.max− DisSpatial) (1)

DisSpatial = DisX + DisY + DisZ (2)

Aspectral = Normalized(DisSpectral.max− DisSpectral) (3)

DisSpectral = Disλ1 + Disλ1 + · · ·+ DisλL (4)

where DisSpatial and DisSpectral are the spatial and spectral distance matrices, respec-
tively. DisSpatial.max is a matrix of the same dimension as DisSpatial, with each element
corresponding to the max value in DisSpatial, and DisSpectral.max is the same as for
DisSpectral. DisX, DisY, DisZ, Disλ1, Disλ2, · · · DisλL are the distance matrices of the
spatial and spectral information. The calculation process is shown in Algorithm 1.

Algorithm 1: Construction of graphs for multispectral point cloud.

Input: Multispectral point cloud, P = [p1 , p2 , p3 , · · · pk ] ∈ R(L + 3)×k

Output: Feature matrix, Xk×(L+3), Spatial adjacency matrix, Aspatial , Spectral
adjacency matrix, Aspectral

1 Expand each point pi in multispectral point cloud
P = [p1 , p2 , p3 , · · · pk ] ∈ R(L + 3)×k into its feature vector pi = [x, y, z, λ1, λ2, · · · λL],

where (i = 1, 2, 3, · · · k). P can be represent as


x1 y1 z1 λ11 . . . λL1
x2 y2 z2 λ12 . . . λL2
...

...
...

...
. . .

...
xk yk zk λ1k . . . λLk


2 Split each column in multispectral point cloud P as separate vectors X, Y, Z, λ1,

λ2,· · · λL, then max-min normalize each vector.
3 For each vector, perform the following calculation, taking X as an example.

DisX = X2repeat− 2XXT + X2repeatT =
(x1 − x1)

2 (x1 − x2)
2 · · · (x1 − xk)

2

(x2 − x1)
2 (x2 − x2)

2 · · · (x2 − xk)
2

...
...

. . .
...

(xk − x1)
2 (xk − x2)

2 · · · (xk − xk)
2

, X2repeat =


x1

2 · · · x1
2

x2
2 · · · x2

2

...
. . .

...
xk

2 · · · xk
2

.

Obtain the following matrix DisX, DisY, DisZ, Disλ1, Disλ2, · · · DisλL.
4 Feature matrix can be obtain as Xk×(L+3) = [X, Y, Z, λ1, λ2, · · · λL]

5 Calculate the spatial and spectral distance matrices
DisSpatial = DisX + DisY + DisZ DisSpectral = Disλ1 + Disλ1 + · · ·DisλL

6 Calculate the spatial and spectral adjacency matrices
Aspatial = Normalized(DisSpatial.max− DisSpatial),
Aspectral = Normalized(DisSpectral.max− DisSpectral)

7 Return: Xk×(L+3), Aspatial , Aspectral

2.2. Deep Spatial Graph Convolution Network with Adaptive Spectral Aggregated Residuals

DSGCN-ASR effectively addresses the limitations of shallow graph neural networks in
capturing the nonlinearity of multispectral point clouds in complex remote sensing scenes.
In addition, it tackles the problem of previous methods lacking the ability to fully exploit
joint spatial–spectral information. By incorporating several key techniques, DSGCN-ASR
provides enhanced modeling and classification capabilities, ensuring the optimal use of
spatial–spectral information.
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Convolutional neural networks (CNNs) are important in the field of computer vision.
The central CNN technique involves extracting features using a convolutional kernel by
weighting the pixel values in the neighborhood of the pixel. Similarly, graph convolution
aggregates information from related nodes according to the set of edges (E) to achieve
feature extraction. The generalization of the graph convolutional network can be denoted as

Hl+1 = f
(

Hl , A
)
= σ

(
AHlWl

)
(5)

where H denotes the hidden layer of the network, A denotes the adjacency matrix, l is the
index of the hidden layer, and Wl is the weight parameter matrix of the lth layer.

As the convolutional neural network aggregates information based on the pixel neigh-
borhoods of the images and, according to Tobler’s first law of geography, a stronger
correlation exists between neighboring land covers, we use the spatial graph for graph
convolution operations in the deep backbone network. This also allows the model to extract
more complex and abstract features, strengthening its capacity to capture the intricate non-
linearity present in the data. Additionally, DSGCN-ASR incorporates the adaptive spectral
aggregated residuals (ASR) technique. ASR adaptively adjusts the weights of spectral
features from the multiple channels in multispectral data. The feature obtained after graph
convolution of the spectral graph is used as the residuals to be added to the hidden layer.
Specifically, two initial graph convolutions of the same dimension are introduced before
the backbone. After initial convolution of the spatial graph, the initial input feature (H0) is
obtained; after initial convolution of the spectral graph, the spectral residual feature (R) is
obtained. The initial convolution can be represented as

H0 = σ
(

AspatialXk×(L+3)W
spatial

)
(6)

R = σ
(

AspectralXk×(L+3)W
spectral

)
(7)

where H0 serves as the input to the backbone, and R serves as the residual.
The pattern of combining spectral residuals is shown in Figure 4. In the aggregation of

spectral residuals, we use both concatenation and summation. The spectral residuals (R) are
concatenated to the right of the hidden layer (Hl) before convolution in each layer. Given
the use of spatial graphs in the graph convolution operation, we classify the hidden layer
features of the network as spatial. As such, the residuals aggregated using spectral graphs
are classified as spectral. To balance the contributions of spatial–spectral information, we
introduce a trainable adaptive parameter (α). After convolution, the spectral residuals (R)
are summed with the hidden layer using an adaptive weight (α) and added as residuals to
the new hidden layer. This adaptive weighting mechanism enables the model to focus on
the most informative channels, enhancing its ability to capture nonlinearity and improving
classification accuracy. Thus, hidden layer propagation with adaptive spectral residuals
can be represented as

Hl+1 = σ
(〈

AspatialH
l
∣∣∣ R
〉

Wl +
(
(1− α)Hl + αR

))
(8)

where the adaptive weight (α) is a trainable parameter defined in the network. To ensure
that the weight of the spectral residuals does not exceed 0.5 for each addition, we apply a
sigmoid function to α and divide it by 2 before each use.

α = sigmoid(α)
/

2 (9)



Remote Sens. 2023, 15, 4417 8 of 21

Figure 4. Combining patterns of adaptive spectral residuals in each layer.

To address the issue of deep-feature oversmoothing, we introduce a weight parameter,
denoted as β, which decreases as the depth of the network increases. This weight parameter
balances the contribution of the deep network weights, inspired by the concept of identity
mapping in previous research [33]. As the network layers deepen, the contribution of
convolution to forward propagation diminishes, while the adaptive combination of spectral
residuals with the previous hidden layer gradually takes precedence. This approach
effectively alleviates the problem of the oversmoothing of deep features caused by excessive
feature aggregation. The idea of identity mapping has been demonstrated to be effective in
mitigating this issue in previous studies, and we incorporate this idea by introducing β.
The final hidden-layer propagation pattern can be denoted using the following equation:

Hl+1 = σ
(

β
〈

AspatialH
l
∣∣∣ R
〉

Wl + (1− β)
(
(1− α)Hl + αR

))
(10)

where β decays with the layer number (l) of the network as follows:

β = ln
(
1
/

2l + 1
)

(11)

In the proposed DSGCN-ASR, we use negative log-likelihood loss to train the model.
The loss function can be denoted as

Loss = −
k

∑
i=1

C

∑
j=1

yij log
(

pij
)

(12)

where k is the number of points in the dataset, C is the number of classes, yij is the ground
truth of the ith point belonging to the jth class, and pij is the predicted probability of the
ith point belonging to the jth class.

By integrating these techniques, DSGCN-ASR effectively enhances the collabora-
tive use of spatial–spectral information and strengthens the nonlinear fitting capability.
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Consequently, it provides notable advancements compared with prior methods in the
classification performance of multispectral point clouds in complex remote sensing scenes.

3. Experiments

We conducted a series of comparative experiments, ablation studies, and parametric
analyses using the proposed DSGCN-ASR. Two multispectral point cloud datasets of
real scenes were used to conduct the experiments, i.e., Harbor of Tobermory (HT) and
University of Houston (UH), as shown in Figure 1.

The HT dataset was further subjected to manual labeling, incorporating nine distinct
classes, namely barren, building, car, grass, powerline, road, ship, and tree, following the
labeling scheme established in a previous study [21]. The UH dataset underwent manual
classification into eight classes, encompassing barren, car, commercial buildings, grass,
road, powerline, residential buildings, and tree, as shown in Figure 5. All experiments were
performed on a device with an Intel (R) Core (TM) CPU i5-12600KF @3.70 GHz and one
NVIDIA GeForce RTX 3060 GPU with 12 GB of memory. However, because HT contains
7,181,982 points and UH contains 4,436,470 points, which cannot be directly processed by
the current device, we used a previously reported method [34] to segments the multispectral
point cloud into superpoints. The HT dataset was segmented into 9606 superpoints, and UH
was segmented into 9350 superpoints. We used 10% of the superpoints as the training set.

Figure 5. Visualization of ground truth for two datasets: (a) HT; (b) UH.

To numerically measure the multispectral point cloud classification performance, we
used precision, recall, F score, and IoU to evaluate each set of experiments. The above
metrics were used for each class. To evaluate the overall performance of the whole scene, we
used macro averaging to calculate the above metrics, in addition to overall accuracy (OA).

3.1. Comparative Experiments

To validate the performance of the proposed DSGCN-ASR, several state-of-the-art
graph neural networks (GCN [30], GAT [31], GCBNet [32], GCNII [33], and MaSGCN [29]),
were selected to classify multispectral point clouds and were comparatively analyzed. For
this comparison, we constructed the graphs following the method outlined in Algorithm 1
and combined the spatial–spectral graphs on the same scale.

A = Normalized
(Aspatial + Aspectral

2

)
(13)
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The input points were all Xk×(L+3), and the same 10% were used as training samples.
The final classification results of all methods were remapped back to the original data
according to the index of the superpoints and evaluated on the original data. The labels of
the superpoints were generated based on the voting of the labels of the points within the
same superpoint. Therefore, the segmentation of superpoints inevitably caused a loss of
classification performance, which we later specifically analyzed.

3.1.1. HT Classification Results

The overall evaluation metrics for the HT classification results are shown in Table 1.
The proposed DSGCN-ASR outperforms the other methods overall in the classification
of HT, with an OA of 87.57%, macro precision of 74.23%, macro recall of 69.45%, macro F
score of 71.76%, and MIoU of 59.51%. The OA of DSGCN-ASR is higher than that of the
second-best method by 2.73%, outperforming the next-best method by 1.74% and 2.14% for
macro recall and MIoU, respectively.

Table 1. Overall evaluation metrics (%) for classification results on the HT dataset.

Method GCN [30] GCNII [33] GAT [31] GCBNet [32] MaSGCN [29] DSGCN-ASR (Ours)

OA 81.36 84.83 84.77 84.70 82.81 87.57
Macro precision 72.30 79.17 71.71 77.84 69.55 74.23

Macro recall 61.32 64.68 62.04 66.58 67.71 69.45
Macro F score 66.36 71.19 66.53 71.77 68.62 71.76

MIoU 51.84 55.96 53.08 57.36 54.94 59.51

Maximum values in the same metrics are marked in bold.

The classification results on the HT dataset are visualized in Figure 6. The visualized
results show that the proposed DSGCN-ASR learns the information of the spatial distribu-
tion of the land cover as expected and achieves a fine delineation of the boundary with the
help of the spectral information.

The other methods produced different apparent misclassifications; in contrast, the
classification result of the proposed DSGCN-ASR is more in line with the ground truth.
GCN and GAT produced cluttered distributions of misclassified points, GCNII and GCBNet
classified large areas of water as car, and MaSGCN classified an area of water as barren.

The evaluation metrics for the classification results of each class are shown in Table 2.
The classification results of the proposed DSGCN-ASR are more balanced, performing
relatively well in all classes. In particular, the proposed method outperforms the other
methods in classifying building, grass, tree, and water classes. Combining the visualizations
revealed that the DSGCN-ASR confused the barren and road; tree and powerline; and
car, ship, and building classes because the spectral information of these classes is similar,
and they are relatively close in spatial distribution, which makes distinguishing them
challenging. In addition, the the small number of powerline points in the dataset may have
hindered the ability to learn these features, leading to poor performance.

Car is a small land cover target, and the spectral information associated with the car
class is relatively complex. This results in a low number of points for car in the original
point cloud data, so car is easily confused with barren. As such, when segmenting the
multispectral point cloud, we were unable to oversegment it due to the memory limitations
of the experimental equipment, which led to a reduction in the number of effective samples.
As shown in Figure 6b, superpoint segmentation strongly impacted car classifications,
which is the reason for the poor performance of all models on this class. A similar situation
occurred for other classes.
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Figure 6. Visualization of classification results on HT dataset. (a) Visualization of the ground
truth; (b) performance limit due to superpoint segmentation; visualization of classification results of
(c) GCN, (d) GCNII, (e) GAT, (f) GCBNet, (g) MaSGCN, and (h) DSGCN-ASR (ours).

Table 2. Evaluation metrics (%) for classification results in each class on the HT dataset.

Method Class Barren Building Car Grass Powerline Road Ship Tree Water

GCN [30]

Precision 75.50 72.88 33.42 87.70 66.37 82.38 57.34 83.85 91.24
Recall 82.45 69.97 20.24 81.09 4.89 70.57 34.61 99.20 88.85
F-score 78.82 71.39 25.21 84.27 9.11 76.02 43.16 90.88 90.03

IoU 65.04 55.51 14.42 72.81 4.77 61.31 27.52 83.29 81.86

GCNII [33]

Precision 71.42 79.15 38.97 88.60 82.17 88.57 82.58 89.35 91.71
Recall 85.88 77.71 28.40 88.44 9.12 67.80 31.06 99.40 94.29
F-score 77.99 78.42 32.86 88.52 16.42 76.80 45.14 94.11 92.98

IoU 63.92 64.50 19.66 79.41 8.94 62.34 29.15 88.87 86.89

GAT [31]

Precision 72.37 71.53 29.14 88.46 51.50 79.46 70.75 92.60 89.59
Recall 79.67 69.64 18.86 82.95 21.48 67.78 35.53 98.98 83.46
F-score 75.85 70.57 22.90 85.62 30.32 73.16 47.31 95.68 86.42

IoU 61.09 54.53 12.93 74.85 17.87 57.67 30.98 91.72 76.08

GCBNet [32]

Precision 62.48 90.04 42.23 88.37 69.87 91.39 75.02 90.54 90.63
Recall 85.51 69.97 32.96 81.76 41.27 58.92 32.42 99.33 97.02
F-score 72.21 78.75 37.02 84.94 51.89 71.65 45.27 94.73 93.71

IoU 56.50 64.95 22.72 73.82 35.04 55.83 29.26 89.99 88.17

MaSGCN [29]

Precision 59.29 81.43 40.32 71.74 41.06 73.88 67.51 94.90 95.82
Recall 71.21 73.56 57.01 67.02 33.76 55.67 56.19 97.41 97.60
F-score 64.70 77.29 47.23 69.30 37.05 63.50 61.33 96.13 96.70

IoU 47.82 62.99 30.92 53.02 22.74 46.52 44.23 92.56 93.62

DSGCN-ASR (ours)

Precision 72.18 88.36 29.28 90.95 69.95 77.08 47.02 95.41 97.86
Recall 78.40 78.74 38.73 86.34 33.12 64.81 48.64 99.05 97.24
F-score 75.16 83.27 33.35 88.59 44.96 70.41 47.81 97.19 97.55

IoU 60.21 71.34 20.01 79.51 29.00 54.34 31.42 94.54 95.21

Maximum values in the same metrics are marked in bold.
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3.1.2. UH Classification Results

The overall evaluation metrics for the classification results on the UH dataset are
shown in Table 3. In the UH classification, DSGCN-ASR performs better than the other
methods, with an OA of 78.20%, macro precision of 73.03%, macro recall of 65.41%, macro
F score of 69.21%, and MIoU of 54.02%. The OA of DSGCN-ASR is higher than that of the
second-best method by 8.73%, outperforming the second-best method by 3.04%, 0.80%, and
3.07% for macro recall, macro F score, and MIoU, respectively.

Table 3. Overall evaluation metrics (%) for classification results on the UH dataset.

Method GCN [30] GCNII [33] GAT [31] GCBNet [32] MaSGCN [29] DSGCN-ASR (Ours)

OA 67.39 66.80 61.31 69.47 64.53 78.20
Macro precision 67.76 72.75 66.31 75.26 68.48 73.03

Macro recall 54.30 58.29 50.87 62.37 57.86 65.41
Macro F score 60.29 64.72 57.57 68.21 62.72 69.01

MIoU 42.89 46.52 38.81 50.95 45.03 54.02

Maximum values in the same metrics are marked in bold.

The classification results on the UH dataset are visualized in Figure 7. The figure
demonstrates that the classification results produced by the proposed DSGCN-ASR are
close to the ground truth and performance limit. This is especially evident in the parking lot
area in the upper-right corner of the scene. In addition, the rectangular area in the middle
of the scene demonstrates the contrast among the methods. The ground truth for this area
is regular rectangular barren land; however, GCNII, GCBNet, and MasGCN all misclassify
this area as road or car. GCN and GAT perform relatively better in this area but are more
disturbed than the proposed DSGCN-ASR. However, DSGCN-ASR, as with MaSGCN,
incorrectly classifies road in the upper-right corner of the scene as barren. Overall, the
proposed DSGCN-ASR retains the robustness of the spatial graph regarding land cover
distribution with less interference on the UH dataset when using the spectral graph to
enhance the accuracy of boundary classification.

The evaluation metrics for the classification results for each class are shown in Table 4.
The proposed DSGCN-ASR achieved relatively high-quality performance for all classes;
however, the metrics for car are poor. Combining the visualizations, we concluded that
the poor classification of car was due to the effect of superpoint segmentation, as shown
in Figure 7b. The proposed DSGCN-ASR provides substantial advantages over the other
methods in the classes of barren, road, powerline, and tree. This conclusion is consistent
with the visualization results. Commercial and residential buildings are difficult to distin-
guish because they are both buildings that have similar spatial and spectral information.
However, the proposed DSGCN-ASR outperforms the other methods on the UH dataset
in general.

Table 4. Evaluation metrics (%) for classification results in each class on the UH dataset.

Method Class Barren Car Commercial Grass Road Powerline Residential Tree

GCN [30]

Precision 54.13 36.22 70.84 81.62 76.47 70.78 74.60 77.39
Recall 80.05 15.41 49.31 74.47 51.76 16.41 51.94 95.05
F score 64.59 21.63 58.14 77.88 61.73 26.64 61.24 85.32

IoU 47.70 12.12 40.99 63.77 44.65 15.37 44.13 74.39

GCNII [33]

Precision 44.95 45.80 81.14 84.53 85.18 81.93 77.36 81.10
Recall 83.79 13.00 59.87 73.33 49.13 22.34 68.81 96.07
F score 58.51 20.26 68.90 78.53 62.31 35.10 72.83 87.95

IoU 41.35 11.27 52.56 64.65 45.26 21.29 57.27 78.50
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Table 4. Cont.

Method Class Barren Car Commercial Grass Road Powerline Residential Tree

GAT [31]

Precision 38.88 55.28 59.79 80.38 77.53 62.68 79.12 76.85
Recall 80.00 12.65 31.70 74.45 47.13 20.40 46.77 93.85
F score 52.33 20.59 41.43 77.30 58.62 30.78 58.79 84.50

IoU 35.44 11.48 26.13 63.00 41.47 18.19 41.63 73.16

GCBNet [32]

Precision 46.94 60.35 80.20 87.11 85.25 72.86 83.07 86.28
Recall 85.38 20.16 71.41 78.00 46.53 30.04 71.46 95.97
F score 60.58 30.22 75.55 82.30 60.20 42.54 76.83 90.87

IoU 43.45 17.80 60.71 69.93 43.06 27.02 62.37 83.26

MaSGCN [29]

Precision 43.20 39.28 72.71 85.18 78.14 64.96 86.02 78.32
Recall 80.52 20.97 73.93 66.49 42.97 33.89 49.76 94.35
F score 56.23 27.35 73.31 74.68 55.45 44.54 63.05 85.59

IoU 39.11 15.84 57.87 59.59 38.36 28.65 46.04 74.81

DSGCN-ASR (ours)

Precision 75.78 33.89 67.28 83.02 72.70 79.49 83.82 88.28
Recall 80.72 28.60 71.00 80.46 68.65 32.39 67.05 94.42
F score 78.18 31.02 69.09 81.72 70.62 46.02 74.51 91.24

IoU 64.17 18.36 52.77 69.09 54.58 29.89 59.37 83.90

Maximum values in the same metrics are marked in bold.

Figure 7. Visualization of classification results on the UH dataset: (a) visualization of the ground
truth; (b) performance limit due to superpoint segmentation. Visualization of classification results of
(c) GCN, (d) GCNII, (e) GAT, (f) GCBNet, (g) MaSGCN, and (h) DSGCN-ASR (ours).

3.2. Ablation Studies

Ablation studies were conducted to validate the effectiveness of the proposed joint-
use scheme of spatial–spectral graphs. Different experimental groups were set up by
controlling the graphs used in the backbone and residuals, which were used to analyze the
respective contributions of the spatial and spectral graphs in the network and to validate
the proposed DSGCN-ASR.
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For each dataset, we conducted the following sets of experiments: (a) using the spatial
graph in the backbone and the residuals; (b) using the spatial graph in the backbone and
the spectral graph in the residuals; (c) using an equal-scale combined spatial–spectral graph
(Equation (13)) in the backbone and residuals; (d) using the spectral graph in the backbone
and the spatial graph in the residuals; and (e) using the spectral graph in the backbone and
the residuals. The setup of experiments is shown in Table 5.

Table 5. Experimental setup for ablation studies.

Group Backbone Residuals

I Spatial Graph Spatial Graph
II * Spatial Graph Spectral Graph
III Combined Graph Combined Graph
IV Spectral Graph Spatial Graph
V Spectral Graph Spectral Graph

* In the proposed DSGCN-ASR, we use the spatial graph in the backbone and the spectral graph in the residual, as
in II.

The overall evaluation metrics for the ablation results on the HT and UH datasets
are shown in Table 6; the evaluation metrics for each class on the HT and UH datasets are
shown in Table 7 and Table 8, respectively. The ablation results are visualized in Figure 8.
In the experimental setup, the spatial graph contributed progressively less, and the spectral
graph progressively dominated from groups I to V. The difficulty in achieving accurate
classification performance using only one of the spatial and spectral graphs was noted
based on the results for groups I and V. The results for groups I and V are consistent with
our analysis in the Introduction, with spatial graphs tending to classify spatially adjacent
points into the same class and spectral graphs being better at distinguishing spatially
neighboring land cover.

Figure 8. Visualization of ablation results: (a) group I, (b) group II, (c) group III, (d) group IV, and
(e) group V on the HT dataset ; (f) group I, (g) group II, (h) group III, (i) group IV, and (j) group V on
the UH dataset.
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Table 6. Evaluation metrics (%) for ablation studies.

Dataset Group Setup OA Macro
Precision Macro Recall Macro F

Score MIoU

HT

I Spatial–Spatial 70.85 67.33 55.73 60.99 42.79
II * Spatial–Spectral 87.57 74.23 69.45 71.76 59.51
III Combined–Combined 83.04 67.97 67.35 67.66 52.14
IV Spectral–Spatial 87.09 76.70 66.81 71.41 57.67
V Spectral–Spectral 77.87 63.19 52.74 57.49 43.02

UH

I Spatial–Spatial 68.50 67.23 55.90 61.04 43.50
II * Spatial–Spectral 78.20 73.03 65.41 69.01 54.02
III Combined–Combined 75.59 63.11 65.51 64.29 47.60
IV Spectral–Spatial 74.81 66.41 63.18 64.76 49.46
V Spectral–Spectral 68.94 63.83 55.87 59.58 44.61

* In the proposed DSGCN-ASR, we use the spatial graph in the backbone and the spectral graph in the residual,
as in group II. Maximum values in the same metrics are marked in bold.

Table 7. Evaluation metrics (%) for ablation studies in each class on the HT dataset.

Group Class Barren Building Car Grass Powerline Road Ship Tree Water

I

Precision 18.05 68.02 46.27 79.71 53.95 76.38 80.08 84.60 98.93
Recall 72.97 63.95 48.93 44.93 5.21 42.80 34.07 96.96 91.77
F score 28.94 65.93 47.56 57.47 9.50 54.86 47.80 90.36 95.22

IoU 16.92 49.17 31.20 40.32 4.98 37.80 31.40 82.42 90.87

II *

Precision 72.18 88.36 29.28 90.95 69.95 77.08 47.02 95.41 97.86
Recall 78.40 78.74 38.73 86.34 33.12 64.81 48.64 99.05 97.24
F score 75.16 83.27 33.35 88.59 44.96 70.41 47.81 97.19 97.55

IoU 60.21 71.34 20.01 79.51 29.00 54.34 31.42 94.54 95.21

III

Precision 91.12 87.90 24.26 74.48 73.92 25.14 48.63 93.19 93.04
Recall 61.04 74.38 27.80 96.36 14.50 68.74 70.33 99.23 93.75
F score 73.11 80.58 25.91 84.02 24.24 36.82 57.50 96.12 93.39

IoU 57.62 67.48 14.88 72.44 13.79 22.56 40.35 92.52 87.61

IV

Precision 78.32 84.55 39.76 88.41 82.76 80.76 54.18 93.08 88.48
Recall 80.99 80.07 34.71 94.18 16.80 69.97 34.58 98.72 91.23
F score 79.63 82.25 37.06 91.20 27.94 74.98 42.21 95.82 89.83

IoU 66.16 69.85 22.75 83.83 16.24 59.97 26.75 91.98 81.54

V

Precision 61.76 75.02 14.23 91.46 68.60 78.73 39.44 86.66 52.80
Recall 86.48 52.65 6.70 84.11 19.96 59.22 23.60 97.82 44.07
F score 72.06 61.88 9.11 87.63 30.92 67.60 29.53 91.90 48.04

IoU 56.32 44.80 4.77 77.98 18.29 51.06 17.32 85.02 31.62
* In the proposed DSGCN-ASR, we use the spatial graph in the backbone and the spectral graph in the residual,
as in group II. Maximum values in the same metrics are marked in bold.

The experiments in group III showed that the equiscale combination of spatial and
spectral graphs, to some extent, could increase the accuracy of classification and achieve
relatively good metrics. However, this combination also inherits the drawbacks of both
graphs, with a simultaneous lack of clear distinction at the boundaries and interference
from the chaotic spectral information.

Numerically, group II, which is also used in the proposed DSGCN-ASR, achieved the
best performance among the five groups of ablation investigations. Compared with the
second-best group, group II was 0.48% ahead in OA, 2.1% ahead in macro recall, 0.35%
ahead in macro F score, and 1.83% ahead in MIoU on the HT dataset. On the UH dataset,
group II achieved a 2.60% OA lead, a 5.81% macro precision lead, a 4.25% macro F-score
lead, and a 4.55% MIoU lead. Group IV, using the spectral graphs in the backbone and the
spatial graphs in the residuals, also achieved good results, slightly outperforming group III
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overall. This tangentially corroborated the superiority of distinguishing the use of spatial
and spectral graphs as proposed in this study.

Table 8. Evaluation metrics (%) for ablation studies in each class on the UH dataset.

Group Class Barren Car Commercial Grass Road Powerline Residential Tree

I

Precision 64.18 55.39 58.51 80.67 59.57 63.56 81.98 73.95
Recall 77.81 28.15 52.84 62.45 60.15 24.33 48.89 92.55
F score 70.34 37.33 55.53 70.40 59.86 35.19 61.25 82.21

IoU 54.25 22.95 38.44 54.32 42.71 21.35 44.15 69.80

II *

Precision 75.78 33.89 67.28 83.02 72.70 79.49 83.82 88.28
Recall 80.72 28.60 71.00 80.46 68.65 32.39 67.05 94.42
F score 78.18 31.02 69.09 81.72 70.62 46.02 74.51 91.24

IoU 64.17 18.36 52.77 69.09 54.58 29.89 59.37 83.90

III

Precision 80.37 26.77 24.25 73.37 58.11 65.09 85.75 91.21
Recall 73.47 22.67 82.86 84.46 69.83 44.18 51.48 95.16
F score 76.76 24.55 37.52 78.53 63.43 52.63 64.33 93.14

IoU 62.29 13.99 23.09 64.64 46.45 35.71 47.42 87.16

IV

Precision 65.61 34.63 52.98 83.17 79.19 42.12 83.21 90.40
Recall 82.20 25.31 70.11 78.63 58.59 46.62 50.57 93.45
F score 72.97 29.25 60.35 80.84 67.35 44.25 62.90 91.90

IoU 57.45 17.13 43.22 67.84 50.78 28.41 45.88 85.02

V

Precision 56.16 31.29 48.67 82.89 69.42 67.43 63.09 91.66
Recall 77.00 10.61 28.64 80.31 53.34 41.64 62.49 92.90
F score 64.95 15.85 36.06 81.58 60.33 51.48 62.79 92.27

IoU 48.09 8.60 22.00 68.89 43.19 34.67 45.76 85.66
* In the proposed DSGCN-ASR, we use the spatial graph in the backbone and the spectral graph in the residual,
as in group II. Maximum values in the same metrics are marked in bold.

Within the network architecture, the integration of information between spatial- and
spectral-graph-based aggregation is primarily governed by a trainable adaptive weight.
This allows groups II and IV to achieve an approximate integration of information. Group
II employs the spatial graph in the backbone for convolution, effectively accessing the
spatial distribution of relationships among land cover classes. In comparison, group
IV uses the spectral graph for convolution, prioritizing the spectral similarities between
land cover classes. However, this approach results in the inclusion of some irrelevant
connections. This finding is indirectly supported by the observation of Figure 8d,i, where
the visualization of the results reveals numerous scattered, misclassified points. This
performance aligns with that of group V. The outcomes of the ablation studies provide
evidence for the practicality and effectiveness of the proposed joint spatial–spectral use
strategy employed by DSGCN-ASR.

3.3. Parametric Analysis

We then conducted experiments to analyze the impact of the α and β parameters on
the classification performance. We specifically focused on these parameters while keeping
all other settings constant. We set α to a fixed value of 0, 0.25, 0.5, 0.75, or 1 for comparison
with the case of an adaptive α. We followed the same approach for β and performed five
sets of experiments with values of 0, 0.25, 0.5, 0.75, and 1 for comparison with a decreasing
β. The results of the parametric analysis experiment for α are visualized in Figure 9 and in
Figure 10 for β. The evaluation metrics for the parametric analysis of α and β are shown in
Table 9 and Table 10, respectively. To more intuitively show the impact of the parameters on
the classification results, we also plotted histograms and line graphs, as shown in Figure 11.
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Figure 9. Visualization of the parametric analysis experiment for α when set to (a) 0, (b) 0.25, (c) 0.5,
(d) 0.75, (e) 1, and (f) an adaptive value on the HT dataset and (g) 0, (h) 0.25, (i) 0.5, (j) 0.75, (k) 1, and
(l) an adaptive value on the UH dataset.

Table 9. The evaluation metrics (%) for parametric analysis of α.

Dataset α OA Macro Precision Macro-Recall Macro F Score MIoU

HT

0 84.38 72.00 66.29 69.03 55.96
0.25 79.68 65.89 59.85 62.73 48.24
0.5 82.13 71.49 64.13 67.61 53.16

0.75 78.59 71.19 61.48 65.98 50.42
1 80.51 71.60 58.87 64.61 49.66

Adaptive * 87.57 74.23 69.45 71.76 59.51

UH

0 61.68 62.52 53.34 57.56 40.42
0.25 66.26 68.35 59.41 63.57 46.04
0.5 70.86 70.47 59.05 64.26 47.89

0.75 68.69 71.27 57.68 63.76 45.56
1 67.92 69.20 56.81 62.39 44.94

Adaptive * 78.20 73.03 65.41 69.01 54.02
* In the proposed DSGCN-ASR, we use an adaptive α value. Maximum values in the same metrics are marked
in bold.

The α parameter plays a crucial role in controlling the weight of the spectral residuals in
each layer of the network. As α increases, the model incorporates more spectral information,
enhancing its ability to differentiate between different land cover classes in the immediate
neighborhood. However, excessively large values of α can compromise the robustness of
the model, leading to patchier misclassifications. These findings align with the conclusions
drawn in the Introduction. The adaptive spectral residual strategy employed in our
approach allows the model to autonomously adjust the acquisition weights of spectral
information in each layer. As a result, the final classification performance is substantially
superior to that achieved by other groups using a fixed α.



Remote Sens. 2023, 15, 4417 18 of 21

Figure 10. Visualization of the parametric analysis experiment for β when set to (a) 0, (b) 0.25, (c) 0.5,
(d) 0.75, (e) 1, and (f) a decreasing value on the HT dataset and (g) 0 (h) 0.25, (i) 0.5, (j) 0.75, (k) 1, and
(l) a decreasing value on the UH dataset.

Table 10. The evaluation metrics (%) for parametric analysis of β.

Dataset β OA Macro Precision Macro Recall Macro F Score MIoU

HT

0 80.94 68.58 59.37 63.64 47.76
0.25 81.36 70.31 67.17 68.70 54.27
0.5 79.68 70.64 59.71 64.72 49.12
0.75 14.88 33.62 NAN NAN 10.03

1 1.05 13.18 NAN NAN 0.25
Decreasing * 87.57 74.23 69.45 71.76 59.51

UH

0 61.14 67.58 52.92 59.36 40.03
0.25 70.37 67.70 62.01 64.73 48.71
0.5 73.06 67.74 62.25 64.88 48.77
0.75 23.34 41.63 NAN NAN 12.10

1 14.54 12.50 NAN NAN 1.82
Decreasing * 78.20 73.03 65.41 69.01 54.02

* In the proposed DSGCN-ASR, we use a decreasing β. Maximum values in the same metrics are marked in bold.

Deep graph convolutional networks often oversmooth deep features. To tackle this
issue, we introduced the β parameter based on the concept of identity mapping [33].
The value of β determines the proportion of the hidden layer features obtained from the
previous convolution in the model. The experimental results indicate that as β increases,
the model becomes more susceptible to the oversmoothing of deep features. The model fails
in the two groups where β exceeds 0.5. Our approach employs the strategy of a decreasing
β with an increasing number of model layers, which was validated in a previous study [33].
Once again, this strategy proves effective in mitigating the problem of oversmoothing in
our approach.
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Figure 11. Histograms and line graphs of results of parametric analysis experiment. (a) Histogram of
α on the HT dataset. (b) Line graph of α on the HT dataset. (c) Histogram of α on the UH dataset.
(d) Line graph of α on the UH dataset. (e) Histogram of β on the HT dataset. (f) Line graph of β on
the HT dataset. (g) Histogram of β on the UH dataset. (h) Line graph of β on the UH dataset.

The histograms and line graphs provide a clearer visualization of the impact of the
α and β parameters on the classification performance of the model. These visual repre-
sentations highlight the advantage of our developed strategy in the parametric analysis
experiments. The results demonstrate the effectiveness of our approach in improving
classification performance.

4. Conclusions

This study focused on the classification of multispectral point cloud data, and we
developed a novel method called DSGCN-ASR. In contrast to existing methods, DSGCN-
ASR adopts a differentiated treatment of spatial and spectral graphs, effectively leveraging
their respective advantages to enhance classification performance. By preserving the
robustness of the spatial graph for extraction of land cover relationships and applying
the discriminatory ability of the spectral graph to distinguish neighboring land cover
classes, DSGCN-ASR achieves superior classification performance. Experimental validation
using real-world multispectral point cloud datasets and comparisons with state-of-the-art
graph-based methods demonstrated the efficacy of DSGCN-ASR in effectively leveraging
spatial–spectral information. This study provides valuable insights into the joint use
of spatial–spectral information in multispectral point clouds, contributing to accurate
mapping and fine-grained land cover classification. Further exploration of this method
holds promise for the advancement of the field of elaborate mapping in navigation systems.
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