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Abstract: Thermokarst lakes in permafrost regions are highly dynamic due to drainage events
triggered by climate warming. This study focused on mapping lake drainage events across the
Northeast Siberian coastal tundra from 2000 to 2020 and identifying influential factors. An object-
based lake analysis method was developed to detect 238 drained lakes using a well-established
surface water dynamics product. The LandTrendr change detection algorithm, combined with
continuous Landsat satellite imagery, precisely dated lake drainage years with 83.2% accuracy vali-
dated against manual interpretation. Spatial analysis revealed the clustering of drained lakes along
rivers and in subsidence-prone Yedoma regions. The statistical analysis showed significant warming
aligned with broader trends but no evident temporal pattern in lake drainage events. Our machine
learning model identified lake area, soil temperature, summer evaporation, and summer precip-
itation as the top predictors of lake drainage. As these climatic parameters increase or surpass
specific thresholds, the likelihood of lake drainage notably increases. Overall, this study enhanced
the understanding of thermokarst lake drainage patterns and environmental controls in vulner-
able permafrost regions. Spatial and temporal dynamics of lake drainage events were governed
by complex climatic, topographic, and permafrost interactions. Integrating remote sensing with
field studies and modeling will help project lake stability and greenhouse gas emissions under
climate change.

Keywords: thermokarst lakes; lake drainage events; remote sensing; permafrost; Arctic region

1. Introduction

The polar amplification effect has rendered the cryosphere elements exceptionally
susceptible to climate change, making them pivotal indicators of global warming [1].
Over the past few decades, long-term observational data have revealed that the circum-
Arctic permafrost region has been undergoing accelerated and profound warming [2],
consequently instigating permafrost degradation. The degradation of permafrost typically
follows a gradual, top-down process. However, with the intensification of Arctic warming,
there is a growing trend of rapid thawing processes, as exemplified by the formation of
thermokarst landscapes [3,4]. Rapid permafrost thawing can cause the collapse of ice-filled
areas, leading to surface subsidence, landslides, or thermokarst erosion, which exposes
deeper permafrost layers [5,6]. This process contributes to the formation of characteristic
thermokarst landforms, including lakes, wetlands, and hillslopes [7].

Thermokarst lakes are primarily found in lowland tundra regions, including the Yukon
Delta, the North Slope of Alaska, and the coastlines of the Kara Sea, the Laptev Sea, and the
East Siberian Sea [7]. These lakes vary in size from tens of meters to thousands of meters in
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diameter and are predominantly supplied with water from underground ice, snowmelt, and
atmospheric precipitation [8]. The lifecycle of thermokarst lakes encompasses stages from
their initial formation and subsequent expansion to eventual drainage and reformation
within the drained lake basin [9]. The development of thermokarst lakes is a pivotal
component of the Arctic hydrological cycle, creating an ever-evolving mosaic landscape of
lakes and drained lake basins (DLBs), which collectively cover more than one-fifth of the
northern permafrost zone [9].

The dynamics of lake drainage have profound implications for the hydrology, vege-
tation, ecosystems, and soil carbon dynamics in the region [10,11]. Lake drainage leads
to a reduction in surface water storage, and the sudden drainage of large lakes can result
in disastrous flood events [12]. Following drainage, the exposed DLBs become fertile
grounds for the growth and succession of tundra vegetation, initiating rapid community
succession [8,13]. The DLBs also serve as critical living areas for local indigenous commu-
nities, supporting agricultural and livestock activities [14]. Additionally, thermokarst lakes
are considered major methane emission sources in permafrost areas, and therefore, their
drainage processes greatly reduce regional methane emissions [6,15]. The exposure and
re-freezing of lakebed sediments post drainage play a key role in maintaining the stability of
permafrost [6]. Hence, monitoring thermokarst lake drainage events and identifying their
key influencing factors are of great importance for understanding the geomorphological,
ecological, hydrological, and landscape characteristics, as well as the carbon cycling in the
permafrost region, particularly in the context of ongoing climate change.

Due to the remote and harsh climatic conditions in the Arctic region, traditional field
monitoring methods are greatly limited. Satellite remote sensing technology serves as a
crucial tool for achieving large-scale landscape dynamics monitoring and environmental
disturbance detection in permafrost regions, providing essential data support for studying
the dynamics of thermokarst lake drainage [16–18]. The phenomenon of lake drainage
in the Arctic region has received considerable attention in the climate change research
community since the beginning of this century. Smith et al. (2005) [19] used satellite images
from the 1970s and 2000s to track changes in over 10,000 large lakes in the Western Siberia
region, revealing an approximate 11% decrease in the lake area. Following that, researchers
conducted regional surveys in the coastal plains and coastal lowland areas of Alaska,
Canada, and Siberia, analyzing the widespread phenomenon of lake drainage [20–25].
Jones et al. (2011) [20] noted a 10.7% increase in the number of lakes but a 14.9% decrease
in the total area of Alaska’s northern Seward Peninsula, partially attributed to larger lakes
dividing into smaller ones. Chen et al. (2014) [21] found that 80.7% of lake area changes
in Alaska’s Yukon Flats were linked to temperature and snowmelt, with the remaining
14.3% associated with long-term trends. In their analysis of lakes in four Arctic regions,
Nitze et al. (2018) [22] reported a net loss of 1.44% in lake area between 1999 and 2014, with
varying regional trends: −5.46% in Western Siberia, −0.62% in Alaska, −0.24% in Eastern
Canada, and +3.67% in Eastern Siberia. Lindgren et al. (2021) [23] assessed lake changes in
western Alaska, revealing area changes of −6.7%, −1.6%, −6.9%, and +2.7% in continuous,
discontinuous, sporadic, and isolated permafrost zones, respectively.

The occurrence of lake drainage events exhibits strong spatial heterogeneity and
randomness due to the complex feedback mechanisms among climate, ecology, and hydro-
logical processes influencing lake drainage [20]. The most comprehensive assessment to
date has covered only 10% of the entire northern permafrost region [22], so lake drainage
dynamics across large areas of the Arctic remain poorly characterized. Particularly, limited
studies have been conducted in the Northeast Siberian coastal tundra, leaving drainage
patterns and drivers in this region unclear. Some remote sensing studies on lake drainage
use satellite images for two time periods to analyze changes in water area [18,25,26], but
this can result in statistical errors due to seasonal fluctuations. While some studies use
long-time series of satellite remote sensing images for trend analysis to minimize the impact
of seasonal and interannual fluctuations of water bodies [27–29], they are limited to identify-
ing trends in surface water drying and lack the capability to specifically focus on individual
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lake drainage events. To conduct a comprehensive analysis of lake drainage events, we
developed a hybrid algorithm by combining the Theil-Sen trend analysis method with
the LandTrendr change detection algorithm in our previous studies [30,31]. This hybrid
approach was employed to detect thermokarst lake drainage events in the northern Alaska
permafrost region [31] and analyze the vegetation dynamics following lake drainage [32].
However, accurately identifying small, drained lakes (with an area of 1–10 hectares) re-
mains a challenging task because the spectral characteristics of the lakes may be influenced
by factors such as precipitation, runoff, and aquatic vegetation, causing interference in
spectral–temporal trajectory segmentation. Furthermore, a more thorough comprehen-
sion of the spatial and temporal dynamics of lake drainage events necessitates further
extensive observations and research to quantify the key climate and environmental factors
influencing the drainage dynamics.

In view of this, this study utilized a well-established surface water dynamics prod-
uct [33] and an improved object-based lake analysis method to identify drained thermokarst
lakes in the Northeast Siberian coastal tundra region. Subsequently, a continuous time
series of Landsat satellite images from 2000 to 2020 and the LandTrendr change detection
algorithm [34,35] were applied to determine the main year of occurrence for each lake
drainage event. Using the spatio-temporal distribution of the detected drained lakes, along
with climatic and environmental parameters extracted from reanalysis data and permafrost-
related data products, a machine learning model was developed to explore the key factors
influencing lake drainage. The objectives are to (1) map spatio-temporal patterns of lake
drainage events in the study region over the past two decades and to (2) identify key
climatic and landscape variables associated with lake drainage. This study aims to enhance
our understanding of the dynamics of thermokarst lake drainage in the region and fill the
knowledge gap concerning the key influencing factors of lake drainage.

2. Materials and Methods
2.1. Study Area

The study area is the ecoregion known as the Northeast Siberian coastal tundra [36],
covering an area of approximately 2.2 × 105 km2 (Figure 1). It stretches along the Eastern
Siberian and Laptev Seas, extending from the Lena River delta in the west to the Kolyma
River delta in the east. The climate of this area is classified as a humid continental climate—
cool summer subtype, with pronounced temperature variations on both a daily and seasonal
basis, characterized by long, cold winters and short, cool summers. This Arctic Ocean
coastline is adjacent to the coldest seas in the Northern Hemisphere, with ice covering it for
at least nine months of the year. The average monthly temperatures in the region range
from −34 to 9 ◦C, and the mean annual precipitation varies between 150 and 400 mm.

The study area is entirely within the continuous permafrost zone, with permafrost cov-
ering over 90% of the region. The landscape is characterized by flat tundra and numerous
lakes, and in some areas, the underground ice layer pushes soil up in bumps. Influenced
by the thermokarst processes associated with permafrost degradation, it exhibits a complex
microtopography characterized by small hills, polygonal ridges, and marshy depressions.
Vegetation mainly consists of typical Arctic grasses, sedges, dwarf shrubs, and mosses, with
isolated stands of larch taiga in the southern sectors [37]. Extensive evidence of historical
lake drainage is found in the area, manifesting itself in the form of overlapping DLBs
(Figure 1C).
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Figure 1. Overview of the study area. (A) Land cover map [37] depicting the Northeast Siberian 
coastal tundra ecoregion in Russia, with primary land cover types being herbaceous wetland and 
grassland. (B) Location overview map outlining the study area in red. (C) Satellite remote sensing 
image illustrating thermokarst lakes and drained lake basins. 

2.2. Data 
Figure 2 illustrates a flowchart of the data and processing methods used in this study. 

Figure 1. Overview of the study area. (A) Land cover map [37] depicting the Northeast Siberian
coastal tundra ecoregion in Russia, with primary land cover types being herbaceous wetland and
grassland. (B) Location overview map outlining the study area in red. (C) Satellite remote sensing
image illustrating thermokarst lakes and drained lake basins.

2.2. Data

Figure 2 illustrates a flowchart of the data and processing methods used in this study.

2.2.1. Landsat Satellite Images

We used the Google Earth Engine platform [38] to generate a long time series of annual
composite images using Landsat-5, Landsat-7, and Landsat-8 surface reflectance data with a
resolution of 30 m that have undergone geometric, radiometric, and atmospheric correction
processes. Landsat image archives were filtered to obtain images with a cloud cover of
less than 50% for each year between June and September from 2000 to 2020, in order to
reduce the influence of snow, ice, and clouds. Quality Assessment Band (pixel_qa) was then
applied to mask observation noises to enhance image quality. For Landsat-7 images with
scan line corrector failure (SLC-off), a neighboring image strip-filling algorithm [39] was
used to obtain complete coverage. We also applied statistical transformation functions [40]
to process Landsat images from different sensors (TM, ETM+, and OLI) in order to enhance
spectral continuity. The Automated Water Extraction Index (AWEI) was computed to
monitor water dynamics, which is particularly effective in identifying open water bodies
such as lakes and rivers in satellite images [41]. Due to the relatively flat terrain of the
study area, we employed the non-shadow version of AWEI (AWEInsh), which is calculated
using the following formula:

AWEInsh = 4 × (Green − SWIR1) − (0.25 × NIR + 2.75 × SWIR2), (1)
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The variables Green, NIR, SWIR1, and SWIR2 in the formula represent the reflectance
values of the Landsat image bands corresponding to green, near-infrared, shortwave
infrared 1, and shortwave infrared 2, respectively.

After the above preprocessing, we generated annual median composite images for the
years 2000–2020, which were used for subsequent lake drainage year detection with the
LandTrendr algorithm [34,35].
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2.2.2. JRC Surface Water Dynamics Dataset

A well-established global surface water dynamics product published by the Joint
Research Centre (JRC) of the European Commission [33] was utilized to aid in the identifi-
cation of drained lakes in the Northeast Siberian coastal tundra region from 2000 to 2020.
This dataset is derived from the Landsat images at 30 m resolution, employing an expert
system to quantify the worldwide spatial and temporal distribution of surface water and
providing statistical data on water extent and changes. Unlike other water maps that rely
on only two time periods for change detection, the JRC product captures the seasonal and
interannual dynamics of surface water, distinguishing between temporary and permanent
water loss, which helps to mitigate errors arising from lake fluctuations.

2.2.3. ERA5-Land Reanalysis Dataset

We utilized ERA5-Land reanalysis data [42] to investigate climate factors associated
with lake drainage, including variables such as air temperature, soil temperature, precipita-
tion, and evaporation. Air temperature was obtained at a height of two meters above the
ground, while soil temperature was averaged from the first layer (0–7 cm) and the second
layer (7–30 cm) of the soil. Total precipitation includes snowfall, and total evaporation
includes transpiration. To facilitate the comparison, we have reversed the sign of evapora-
tion. ERA5-Land is an enhanced land component product of the fifth-generation European
Reanalysis (ERA5) data released by the European Centre for Medium-Range Weather Fore-
casts. This dataset offers the highest spatial resolution available for the study area, with
a resolution of 0.1◦, and has undergone extensive evaluation using ground observations
and reference datasets based on satellite data, demonstrating excellent performance in
characterizing various land surface processes and environmental changes [42]. For analysis,
we calculated the mean values of these climate parameters during the summer months
(June to August) and for the entire year, as well as the Theil-Sen trend slope [30] values for
the period 2000–2020.

2.2.4. Permafrost-Related Data Products

In addition to climate factors, we also investigated potential geographical factors that
may influence lake drainage, including elevation, slope, ground ice content, distribution
of thermokarst lakes, and presence of Yedoma deposits. These variables provide insights
into permafrost-related characteristics and were extracted from available data products.
Elevation and slope information was derived from the high-precision ArcticDEM mosaic
product [43], created using high-resolution optical stereo imagery and photogrammetric
techniques for accurate spatial measurements, providing detailed land surface informa-
tion. Ground ice content was obtained from the circumpolar ground ice product [44] and
classified into three levels based on volume percentage: high (>20%), moderate (10–20%),
and low (0–10%). The distribution of thermokarst lakes was derived from the circumpolar
thermokarst landscape distribution map [7], categorized into five grades based on frac-
tional coverage: very high (60–100%), high (30–60%), moderate (10–30%), low (1–10%),
and none (0–1%). Yedoma deposits represent permafrost formed during the Pleistocene
epoch, characterized by high organic content and ice-rich deposits of partially decomposed
ancient plant material (peat). We used the recently compiled Yedoma distribution map [45]
to identify whether drained lakes were located in Yedoma regions.

2.3. Method
2.3.1. Object-Based Lake Analysis

By utilizing the JRC surface water dynamics dataset, we employed an improved
object-based lake analysis method based on previous research [30–32] to identify drained
lakes in the study area. Unlike pixel-based statistical approaches, our method allows for
accurate identification and counting of drained lakes while supporting filtering based on
initial lake area and drainage proportion. We initially utilized the object-based analysis
functionality provided by the GEE cloud computing platform to create lake objects for all
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bodies of water in the study area based on the pixel connectivity relationships derived from
the JRC water extent map. Differentiated colors in Figure 3A represent unique identifiers
for each lake object. We then used pixels marked as “permanent water loss” in the JRC
water transition map to identify potential drained lakes (Figure 3B). The initial lake area
and drainage proportion were calculated for each lake object, and we filtered out lakes
with an area greater than 1 hectare (0.01 km2, approximately equivalent to 11 Landsat
pixels) and a drainage proportion higher than 50%. This threshold was set to minimize the
influence of water body area fluctuations on the identification of drained lakes. Here, we
did not impose a time span limitation on lake drainage because some lakes experienced
gradual drainage over multiple years.
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Figure 3. Schematic of object-based lake analysis. (A) Example of lake objects generated on the GEE
platform, each uniquely identified and displayed in distinct colors. (B) Drained pixels are depicted in
yellow, overlaid on the satellite remote sensing image.

2.3.2. LandTrendr Change Detection Algorithm

After identifying drained lakes using the object-based lake analysis method, we used
the LandTrendr change detection algorithm [34] to segment the time-series trajectories
of AWEI band values, thereby determining the timing of each lake drainage event. The
LandTrendr algorithm, fully integrated into the GEE platform in 2018 [35], was originally
developed for forest disturbance and recovery detection in forestry applications, capturing
surface change trends and disturbance information reflected in spectral trajectories. The
LandTrendr algorithm characterizes spectral trajectory changes over time by strategically
partitioning pixel reflectance data series into linear segments. It identifies optimal break-
point positions to split the temporal sequence into successive fitted lines that together
model the full trajectory (Figure 4). Leveraging the high-frequency and multi-temporal
analysis capabilities of Landsat imagery, the algorithm has shown high accuracy in distur-
bance detection, extending its applicability beyond forestry to detect impervious surface
dynamics [46], analyze agricultural land conversion patterns [47], assess mining subsidence
and flooding [48], and identify lake drainage events [31]. Analysis of thermokarst lake
distribution in the northern region of Alaska demonstrated that the LandTrendr algorithm
effectively determines the occurrence year and duration of lake drainage events [31]. The
control parameters of the Landtrendr algorithm used in this study are shown in Table 1.
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Figure 4. Schematic illustration of thermokarst lake drainage event detection using the LandTrendr
algorithm. The image data are initially transformed into a spectral index and then divided into a
sequence of straight-line segments by identifying vertices. The fitted LandTrendr line represents the
processes of thermokarst lake drainage and subsequent evolution of drained lake basins.

Table 1. Control parameters of the Landtrendr algorithm.

Parameter Value Description

spikeThreshold 0.9 Threshold for dampening the spikes
max_segments 5 Maximum number of segments for fitting

recovery_threshold 0.25 Recovery rate threshold for segmentation
pval_threshold 0.1 Models exceeding the threshold are discarded

min_observations 6 Min observations needed to perform fitting
bestModelProportion 1.25 Proportion threshold for a set of fitting models

2.3.3. Validation with the TimeSync Tool

To validate the accuracy of the spatio-temporal distribution of the identified drained
lakes, we employed the TimeSync tool [49] (https://timesync.forestry.oregonstate.edu/, ac-
cessed on 1 September 2023) for visual interpretation of each lake drainage event. TimeSync
is a Landsat-based visualization and data collection tool that automates image filtering,
generates time series of multispectral indices, fits curves, and aids in visual interpretation,
enabling precise detection of small-scale disturbances at the regional level. The combination
of LandTrendr and TimeSync provides a powerful approach to analyzing thermokarst lake
dynamics, ensuring accurate identification and characterization of lake drainage events.
Figure 5 illustrates the software interface of the TimeSync tool, which showcases spec-

https://timesync.forestry.oregonstate.edu/
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tral time-series trajectories and Landsat images for each year. This tool offers several
advantages, including high processing efficiency, operational flexibility, and outstanding
sampling capability.
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used to validate detected lake drainage events.

2.3.4. GBDT Machine Learning Model

To investigate the key environmental factors influencing lake drainage in permafrost
regions, we employed the Gradient Boosting Decision Tree (GBDT) machine learning
method to construct a classification model. GBDT, a popular and powerful ensemble
learning method, combines multiple decision trees to create powerful predictive models,
known for high accuracy, robustness to outliers, and ability to handle complex data relation-
ships [50]. Specifically, we utilized the CatBoost classification model [51], which efficiently
handles categorical features and addresses issues like gradient bias and prediction shift,
thus reducing overfitting and improving accuracy and generalization ability.

We use the CatBoost model to capture intricate non-linear interactions and potential
dependencies between environmental factors and lake drainage, enabling the establish-
ment of a prediction model for lake drainage occurrence under various environmental
conditions. Furthermore, through the analysis of variable importance, we can identify the
key environmental factors influencing lake drainage. We conducted model training using
Python’s scikit-learn and CatBoost libraries [52], and we determined the optimal model
hyperparameters (Table 2) through grid search and ten-fold cross-validation. Considering
the issue of multicollinearity among explanatory variables, we calculated the Pearson corre-
lation coefficient (r) between all variables and removed variables highly correlated (r > 0.5)
with the most important variables identified in the preliminary analysis. We used Shapley
values [53] to assess the relative importance of each explanatory variable, quantifying their
contribution to the prediction of the response variable.

Table 2. Optimal model hyperparameters for the CatBoost model.

Parameter Value Description

iterations 200 Number of boosting iterations (trees)
learning_rate 0.1 Rate of weight adjustment in boosting

depth 8 Max depth of individual trees
l2_leaf_reg 10 L2 regularization for leaf weights

bagging_temperature 0.0 Strength of bagging
random_strength 1.0 Amount of noise in tree building

border_count 255 Splits considered for categorical features
min_data_in_leaf 20 Minimum samples in a leaf node
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3. Results
3.1. Spatial Distribution of Drained Lakes

Based on the object-based lake analysis method, we identified a total of 238 drained
lakes in the study region over the period 2000–2020. Specific information about these
238 drained thermokarst lakes, including their location, size, drainage year, and drainage
ratio, is available through the publicly accessible Thermokarst Lake Drainage Events
Dataset on the Zenodo portal (https://zenodo.org/record/8304112, accessed on 1 Septem-
ber 2023). Among them, 66% were partially drained (50–80%), and 34% were fully drained
(>80%). These drained lakes were categorized as small-sized (1–10 ha), medium-sized
(10–100 ha), and large-sized (>100 ha), accounting for 48%, 34%, and 18% of the total,
respectively (Figure 6). It is important to note that this proportion alone does not prove that
smaller lakes are more susceptible to drainage events than larger lakes, as the distribution
of existing lakes within the ecological region also needs to be considered. Statistics reveal
that there are approximately 1.16 × 105 lake objects with an area greater than 1 hectare
in the study area, with small, medium, and large lakes accounting for 73%, 22%, and 5%,
respectively. Therefore, between 2000 and 2020, the likelihood of drainage events occurring
in small, medium, and large lakes in the area are 0.14%, 0.31%, and 0.76%, respectively,
averaging 0.21%.
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The water in thermokarst lakes is typically discharged through lateral or internal
drainage channels [54]. In discontinuous permafrost zones, the melting of ice wedges
and the expansion of taliks at the lake bottom lead to the development of internal erosion
channels, facilitating lake drainage [54]. In contrast, our study area is entirely within the
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continuous permafrost zone, where lakes are primarily drained through lateral drainage
channels. Lateral drainage in thermokarst lakes is often associated with seasonal fluctua-
tions in lake water levels. For instance, extreme precipitation events, continuous rainfall,
and shoreline snowmelt can result in rising water levels, basin overflow, and bank col-
lapse, forming lateral drainage channels [9]. Furthermore, factors such as flooding, river
erosion, and coastal erosion enhance hydrological connectivity and influence lake drainage
dynamics [18,20,55].

The spatial density of drained lakes in this region was approximately 1.1 × 10−3 km−2,
which closely matches the density of drained lakes (approximately 1.2 × 10−3 km−2)
reported in previous studies in the northern Alaska permafrost region [31]. The spatial
distribution of these drained lakes exhibits notable clustering patterns. Some drained
lakes are located in close proximity to each other, indicating potential interconnected
drainage systems. Specifically, our findings reveal that the high density of drained lakes
is concentrated in low-lying areas along riverbanks (Figure 7). These areas are likely
influenced by enhanced thermokarst activity due to water flow and sediment transport,
leading to accelerated permafrost thawing. Furthermore, drained lakes exhibit clustering
patterns around the boundaries of Yedoma regions, which contain ice-rich silt deposits
highly vulnerable to thaw subsidence and thermokarst [45]. In contrast, drier elevated areas
farther inland show lower densities of lake drainage events. The presence of these localized
clusters suggests certain environmental conditions may facilitate the triggering and spread
of lake drainage events, signifying hotspots of localized permafrost degradation. This could
exert broader impacts on ecosystem dynamics and land surface stability. These spatial
patterns provide valuable insights into the geographical factors influencing thermokarst
development and lake drainage susceptibilities across the heterogeneous tundra landscape.
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3.2. Drainage Year Detection and Validation

We applied the LandTrendr change detection algorithm to the time series of Landsat
satellite images spanning the period from 2000 to 2020 to detect the main drainage year
for each of the identified 238 drained lakes. Figure 8 illustrates an example of the year
detection for a drained lake in the study area. The LandTrendr algorithm, utilizing the
AWEI changes, accurately captures the temporal transition from water bodies to DLBs at a
pixel level. To facilitate analysis, we aggregated the pixel-level detection results within the
extent of each drained lake by calculating the mode, which represents the year with the
highest proportion of drainage and serves as the main drainage year for the lake.



Remote Sens. 2023, 15, 4396 12 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 7. Distribution map of detected drained lakes in the Northeast Siberian coastal tundra. 

3.2. Drainage Year Detection and Validation 
We applied the LandTrendr change detection algorithm to the time series of Landsat 

satellite images spanning the period from 2000 to 2020 to detect the main drainage year 
for each of the identified 238 drained lakes. Figure 8 illustrates an example of the year 
detection for a drained lake in the study area. The LandTrendr algorithm, utilizing the 
AWEI changes, accurately captures the temporal transition from water bodies to DLBs at 
a pixel level. To facilitate analysis, we aggregated the pixel-level detection results within 
the extent of each drained lake by calculating the mode, which represents the year with 
the highest proportion of drainage and serves as the main drainage year for the lake. 

 
Figure 8. Example of using the LandTrendr algorithm to detect the year of lake drainage. (A–E) 
Landsat satellite images (NIR-R-G) for the years 2007, 2011, 2012, 2013, and 2018. (F) Pixel-wise de-
tection results of lake drainage years. 

The overall accuracy of the detected drainage years was validated using the 
TimeSync interactive visualization tool. This validation process involved visually inspect-
ing the imagery for clear evidence of lake drainage, such as visible changes in the lake 
boundaries and the presence of drained lake basins. All 238 drained lakes were manually 
inspected in TimeSync by comparing the automated LandTrendr results to the spectral 
trajectory curves and annual satellite images. The validation results indicate a close match 
between the visually identified drainage years and those detected using the LandTrendr 
algorithm, with an accuracy of approximately 83.2% in correctly identifying the drainage 

Figure 8. Example of using the LandTrendr algorithm to detect the year of lake drainage. (A–E) Landsat
satellite images (NIR-R-G) for the years 2007, 2011, 2012, 2013, and 2018. (F) Pixel-wise detection results
of lake drainage years.

The overall accuracy of the detected drainage years was validated using the TimeSync
interactive visualization tool. This validation process involved visually inspecting the
imagery for clear evidence of lake drainage, such as visible changes in the lake boundaries
and the presence of drained lake basins. All 238 drained lakes were manually inspected
in TimeSync by comparing the automated LandTrendr results to the spectral trajectory
curves and annual satellite images. The validation results indicate a close match between
the visually identified drainage years and those detected using the LandTrendr algorithm,
with an accuracy of approximately 83.2% in correctly identifying the drainage years. The
LandTrendr algorithm successfully captured the main drainage year for the majority of
the drained lakes in the study area, providing confidence in the temporal patterns of lake
drainage events and facilitating further exploration of key influencing factors.

3.3. Temporal Patterns of Lake Drainage Events

Following visual validation and necessary corrections, the temporal distribution of
the 238 identified lake drainage events is illustrated in Figure 9. The analysis revealed no
statistically significant overall temporal trends between 2000 and 2020 (p > 0.05), and the
number of lake drainage events per year exhibited a relatively random pattern. However,
specific years, such as 2007 and 2016, showed higher numbers of lake drainage events,
possibly indicating shared triggering factors related to climate and hydrological changes.
The analysis shows that small lakes are the main contributors to drainage events, with a
frequency range of 1–17 and an average of 5.7 events per year. Medium-sized lakes exhibit
more dispersed drainage patterns, with high interannual variability in event counts within
a frequency range of 0–17 and an average of 4.1 events per year. In contrast, large lakes
experience relatively fewer drainage events (except in 2007, with a frequency range of 0–4
and an average of 2.1 events per year) and some years without events (2001, 2004, 2014,
and 2019). Interestingly, certain years show asynchronous drainage timing among lakes of
different sizes. For example, in 2007, there was a surge in drainage events for large lakes
(eight events), while medium and small lakes also experienced higher drainage counts.
Meanwhile, in 2018, medium-sized lakes experienced a spike in drainage events (17 events),
while small and large lakes were slightly below the average level. These temporal patterns
provide insights into the complex interannual variations of lake drainage, which do not
adhere to straightforward linear trajectories. The combination of spatial and temporal
information enables us to further investigate the driving factors and ecological implications
of lake drainage occurrences.
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3.4. Statistical Analysis of Regional Climate Trends

To investigate the influence of climatic factors on lake drainage events, we analyzed
climatic trends within the study area. Key climatic variables, such as air temperature, soil
temperature, precipitation, and evaporation, were extracted from the ERA5-Land reanalysis
data spanning from 2000 to 2020. We processed the data to calculate annual mean and
summer average values and to assess trends for these parameters (Figure 10). The results
reveal that from 2000 to 2020, there was a statistically significant warming trend (p < 0.001)
in both annual mean air temperature and annual mean soil temperature, with increases
of around 1.2 ◦C and 1.4 ◦C per decade, respectively. However, the summer mean air
temperature and soil temperature exhibited relative stability, showing a slight positive
trend of 0.6 ◦C and 0.7 ◦C per decade, respectively (not statistically significant, p > 0.05).
Both precipitation and evaporation displayed considerable interannual variability without
a clear overall trend, leading to substantial shifts in wetness patterns across different
years. Notably, years with a high frequency of lake drainage events, such as 2007 and
2016, coincided with elevated levels of precipitation, evaporation, and soil temperature
(Figure 10). This suggests that fluctuations in precipitation and evaporation may influence
lake drainage, particularly when coupled with temperature changes.
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To examine the spatial variations in climatic trends, we calculated the Sen’s slope for
various climatic variables across the study area from 2000 to 2020. Figure 11 illustrates the
spatial distribution of trends in temperature, precipitation, and evaporation, providing
insights into the changes in climatic factors across the study area over time. The warming
trend in air temperature within the study area primarily shows an increasing pattern from
the southeast to the northwest, ranging from 0.6 to 1.7 ◦C per decade (mean ± variance of
1.2 ± 0.2). The warming trend in soil temperature is also evident (1.4 ± 0.4 ◦C per decade),
with higher values concentrated in the southwestern part of the study area, where the trend
slope can reach 2 ◦C per decade, reflecting a pronounced warming of the permafrost layer
in these regions. Precipitation and evaporation also show overall increasing trends, but
with greater variability, measuring 1.4 ± 0.9 and 0.3 ± 0.4 mm per year, respectively. The
central and eastern parts of the study area show more noticeable increases in precipitation,
while the southern edge exhibits a more pronounced drought trend due to enhanced
evaporation. These climatic trends reflect an overall warming pattern that aligns with
the broader global warming trend, indicating potential impacts on permafrost stability
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and thermokarst processes. Moreover, the pronounced spatial and temporal variations
highlight the influence of complex hydro-climatic dynamics on permafrost degradation
and lake drainage.
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3.5. Machine Learning Analysis of Environmental Factors

To quantify the key factors influencing lake drainage events, we developed a GBDT
classification model using the CatBoost implementation, with the lake drainage occurrence
as the binary target label and climatic and environmental variables as the predictors. Hy-
perparameter tuning using cross-validation was conducted to optimize model performance.
The optimized CatBoost model achieved an accuracy of 0.81, precision of 0.76, recall of 0.48,
and AUC Score of 0.71 on the test set (Figure 12A), demonstrating reliable prediction of lake
drainage events based on environmental conditions. Feature importance analysis using
Shapley values revealed that the top ten most important factors influencing the occurrence
of lake drainage events (in descending order of importance) are lake area, annual mean soil
temperature, summer evaporation, summer precipitation, latitude, evaporation slope, soil
temperature slope, precipitation slope, air temperature slope, and whether it is located in
the Yedoma region (Figure 12B).
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Figure 12. (A) The receiver operating characteristic curve; (B) the top 10 variables ranked by impor-
tance. We calculated the relative importance of each variable by normalizing its importance value to
the range of 0 to 1, where 1 represents the highest importance. ∆ represents the Sen’s slope.

The dependence plots demonstrate that higher values in lake area, annual soil tem-
perature, summer evaporation, and summer precipitation have an overall positive impact
on lake drainage (Figure 13), with the magnitude of the effect decreasing in the order of
variable importance. For annual soil temperature, its impact on lake drainage linearly
increases from −4 to 0 ◦C and stabilizes beyond 0 ◦C. Similarly, for summer evaporation,
its influence on lake drainage linearly increases from 120 to 160 mm and stabilizes beyond
160 mm. Additionally, lake drainage events exhibit a notable increase beyond summer
precipitation thresholds of 100 mm (Figure 13).
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4. Discussion

The Northeast Siberian coastal tundra ecoregion is characterized by a high ground
ice content and a well-established lake thermokarst landscape. In the course of this study,
238 instances of thermokarst lake drainage events were identified within this region from
2000 to 2020. The spatial density of these detected events aligns with findings from
previous surveys in other Arctic regions [31], indicating that this area experiences active
thermokarst processes of comparable magnitude. The mapped distribution and density
of drained lakes not only enhance our understanding of thermokarst lake dynamics but
also identify regions of particularly high risk that may require adaptive strategies [55].
The clustered spatial distribution of drained lakes suggests that localized geological and
hydrological factors may contribute to thermokarst activity in certain areas. The drainage
hotspots are prominently situated along rivers and lake-rich lowlands, where abundant
surface water and sediment transport likely accelerate permafrost degradation [56]. These
zones could also overlay faults or unconsolidated Yedoma deposits that are susceptible to
subsidence upon thawing [45]. The spatial clusters imply potential underground linkages
between nearby lakes, which might sequentially drain if connected through subsurface
taliks or fissures [31]. Further analysis integrating geological maps and hydrological models
could corroborate whether these clusters result from inherent landscape vulnerabilities or
interconnected drainage systems [24].

Within the study area, larger lakes exhibit a higher susceptibility to drainage events,
followed by medium-sized lakes, with smaller lakes having the lowest probability of
drainage occurrences. This observed trend is likely attributed to the hydrological and
geological characteristics of the local large lakes, making them more prone to shoreline
breaches. It is important to emphasize that this pattern may be specific to this study area,
as geological and topographical conditions differ across the entire Arctic region, potentially
leading to distinct evolutionary processes for lakes of various sizes. The acquisition of more
regional data in the future is imperative to establish a comprehensive understanding of lake
evolution on an Arctic-wide scale. Moreover, drainage events from larger lakes are more
prone to triggering flood hazards. Once drainage occurs, the initially emptied lake basins
frequently undergo annual catastrophic drainage, propelled by the peak of snowmelt that
fosters the creation of transient lakes, consequently leading to swift and persistent flood
peaks [12,57]. Hence, the asynchronous occurrence of lake drainage spikes among lakes
of varying sizes necessitates further mechanistic research and modeling to predict future
drainage risks.

In this study, a relatively strict threshold of 50% drainage ratio was used for selecting
lake drainage events. Reducing this threshold would lead to detecting more drained lakes,
but it could also introduce more erroneous noise into the results. Moreover, the study
did not assess the probability of missed detection for drained lakes due to the lack of an
available reference dataset in the study area. An evaluation suggested that the most likely
scenarios for missed detection of drained lakes are in coastal regions and areas with dense
lake overlap, as multiple lake objects might be identified as interconnected entities. The
workflow employed in this study, utilizing the LandTrendr algorithm and the TimeSync
tool, showcases impressive capabilities for accurately dating drainage events through dense
time series of Landsat remote sensing satellite data. To enhance the accuracy of drainage
event detection, the integration of supplementary data sources hold promise. The Sentinel-2
mission from Copernicus offers higher-resolution multispectral data, which is anticipated
to enhance observation density and monitoring capabilities in high-latitude permafrost
regions as its image archive grows [58].

The machine learning model identified soil temperature, precipitation, evaporation,
and lake size as governing factors, illuminating the climatic and morphometric controls
on drainage. However, subsurface factors like talik development are also influential but
hard to characterize. Generally, the process of lake drainage can be linked to external
factors like climate change and internal factors such as river erosion and talik develop-
ment [9,59,60]. Lake drainage is determined by a range of factors, including the attributes of
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surrounding permafrost, lake characteristics, climate, vegetation, topography, and human
activities [9]. Common mechanisms driving lake drainage comprise ice wedge degradation,
snow damming, coastal erosion, river overflow, and channel shifting [9,61]. Long-term
records of additional variables like active layer depth and thermokarst coverage will be
needed to unravel the drivers and impacts of lake drainage. With further refinement
using additional data, machine learning models show promise for integrating complex
interactions and predicting lake stability under future climate scenarios.

Monitoring the dynamics of thermokarst lakes is essential for deepening our under-
standing of permafrost degradation processes and assessing the broader impacts of climate
change on the landscape [30,62]. These lakes and their associated drained areas constitute
20% of the permafrost regions around the Arctic [7], playing integral roles in terrestrial and
aquatic ecosystems. To comprehensively assess thermokarst lake dynamics, it is necessary
to consider the lake expansion process, which is the opposite of lake drainage. Compared
to thermokarst lake drainage events, the expansion of thermokarst lakes is a relatively slow
process, with typical expansion rates ranging from tens to hundreds of centimeters per
year [30]. In previous studies, Nitze et al. (2017) [27] analyzed lake dynamics in the Kolyma
Lowland of Northeastern Siberia, reporting a 0.51% decrease in lake area between 1999 and
2014, indicating that the region experienced more lake area loss due to lake drainage events
than gain from lake expansion. However, Veremeeva et al. (2021) [24] reported an increase
in the lake area by 0.89% (1999–2013) and 4.15% (1999–2018) in the Kolyma Lowland, sug-
gesting a dominant role in lake expansion. Future research should conduct more detailed
analyses to assess the changing trends in total thermokarst lake area within specific regions
and determine which of these two partially offsetting processes predominates.

Predictions of continued Arctic warming underscore the potential intensification of
thermokarst lake dynamics in the region. Climate change could exacerbate lake disappear-
ances and lead to a landscape increasingly dominated by drained areas [3,22,29,62]. The
significant effects of lake drainage on vegetation, carbon storage, methane emissions, and
wildlife habitats also demand precise quantification [32,63,64]. Integrating remote sensing
of vegetation changes with field-based assessments of soil carbon stocks and greenhouse
gas fluxes will provide a comprehensive evaluation of the overall carbon cycling effects aris-
ing from thermokarst lake drainage across the landscape [3,62,65]. Surface subsidence and
shifts in hydrology might adversely impact habitats for migratory birds and mammals [66].
Overall, this research advances the understanding of thermokarst lake evolution in the
Northeast Siberian tundra yet also reveals knowledge gaps to be addressed by integrating
remote sensing, field studies, and modeling.
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