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Abstract: The use of drone-borne imagery for tree recognition holds high potential in forestry and
ecological studies. Accurate species identification and crown delineation are essential for tasks
such as species mapping and ecological assessments. In this study, we compared the results of tree
crown recognition across three neural networks using high-resolution optical imagery captured
by an affordable drone with an RGB camera. The tasks included the detection of two evergreen
coniferous tree species using the YOLOv8 neural network, the semantic segmentation of tree crowns
using the U-Net neural network, and the instance segmentation of individual tree crowns using
the Mask R-CNN neural network. The evaluation highlighted the strengths and limitations of each
method. YOLOv8 demonstrated effective multiple-object detection (F1-score—0.990, overall accuracy
(OA)—0.981), enabling detailed analysis of species distribution. U-Net achieved less accurate pixel-
level segmentation for both species (F1-score—0.981, OA—0.963). Mask R-CNN provided precise
instance-level segmentation, but with lower accuracy (F1-score—0.902, OA—0.822). The choice of
a tree crown recognition method should align with the specific research goals. Although YOLOv8
and U-Net are suitable for mapping and species distribution assessments, Mask R-CNN offers more
detailed information regarding individual tree crowns. Researchers should carefully consider their
objectives and the required level of accuracy when selecting a recognition method. Solving practical
problems related to tree recognition requires a multi-step process involving collaboration among
experts with diverse skills and experiences, adopting a biology- and landscape-oriented approach
when applying remote sensing methods to enhance recognition results. We recommend capturing
images in cloudy weather to increase species recognition accuracy. Additionally, it is advisable to
consider phenological features when selecting optimal seasons, such as early spring or late autumn,
for distinguishing evergreen conifers in boreal or temperate zones.

Keywords: tree crown recognition; multiple-object detection; semantic segmentation; instance
segmentation; unmanned aerial vehicle

1. Introduction

In recent years, significant advancements have been made in object recognition and im-
age segmentation using neural networks, offering valuable opportunities for the utilization
of airborne optical imagery in forestry and forest vegetation monitoring [1,2]. Numerous
studies have focused on detecting, identifying, and enumerating trees in forest stands, as
well as localizing rare, endangered, or invasive species [3–6]. Acquiring knowledge about
the spatial distribution of various tree species plays a pivotal role in forest management and
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scientific research, enabling a more comprehensive understanding of how different species
are distributed across the landscape [7]. In a broader context, beyond nature protection or
scientific research, tree recognition holds potential for applied forest management, such as
in assessing the stocks of commercially exploited tree species.

The identification of individual trees in sparse forests, including those with distinctive
crown shapes and colors, has been successfully accomplished using neural networks [8–11].
However, the task becomes more challenging when identifying outwardly similar trees,
such as evergreen conifers, within dense natural forest stands [12–14]. Very few studies
have explored the feasibility of distinguishing between various species of coniferous trees
in boreal or temperate forests. Unlike broadleaf species, coniferous trees exhibit limited
variability in crown branching and needle-shaped leaves, making species identification
challenging. Additionally, the evergreen nature of most conifers, with consistent color
throughout the year, further complicates the recognition process. Natesan et al. [15]
applied the DenseNet semantic segmentation neural network to identify five coniferous tree
species using RGB multi-temporal images captured from a drone, achieving a classification
accuracy of 84%. Beloiu et al. [16] trained Faster R-CNN object detection neural networks to
recognize three coniferous species (spruce, fir, and pine) and one broadleaf species (beech).
Although single-species models effectively identified spruce and fir, multi-species models
encountered increased false positive and false negative results for coniferous species.

Conifers play a crucial role in boreal and temperate forests and hold significant
economic importance. Late-successional conifer species are prominent features that charac-
terize old-growth forests. We address the issue of distinguishing between two evergreen
coniferous species, Korean pine (Pinus koraiensis Siebold et Zucc.) and Manchurian fir
(Abies holophylla Maxim.), using high-resolution RGB images taken from an inexpensive
drone equipped with a conventional optical camera. These two species are the dominant
species in the primary forests of the southern Ussuri taiga ecoregion [17,18]. Determin-
ing the spatial distribution of dominant coniferous trees is critical for understanding the
structure of the tree layer and searching for the most valuable pristine habitats.

We utilized three different types of neural networks on the same dataset of training
images—object detection, semantic segmentation, and instance segmentation methods.
Object detection involves identifying the position of multiple objects in an image, semantic
segmentation predicts the class of each pixel of the image, and instance segmentation
generates a pixel-wise mask for every object in the image (see examples in [19]). We
selected well-established and popular neural networks that represented each type. Our aim
in this study was not to directly compare the performance of neural networks belonging
to one class of neural networks, such as object detection or segmentation. Instead, our
focus was on illustrating the outcomes achieved by employing neural networks from three
distinct classes to solve the specific problem of recognizing the crowns of two coniferous
evergreen tree species.

We conducted three different recognition tasks to simulate various research goals:
multiple-object tree species detection using the YOLOv8 neural network, which aimed to
map tree species (1); semantic segmentation of tree crowns using the U-Net convolutional
neural network, which aimed to map pixel-level segmentation masks for each tree species
(2); and instance segmentation of individual tree crowns using the Mask R-CNN neural
network, which aimed to make pixel-level segmentation masks for each instance (3).

We utilized orthophotos instead of individual drone photos, which are better suited
for real research tasks as orthophotos covering areas of tens to hundreds of hectares are
necessary for identifying spatial or landscape patterns of tree distribution. To compare the
results, we adopted a straightforward criterion to evaluate accuracy based on the number of
correctly and incorrectly recognized objects, rather than calculating pixel-by-pixel accuracy.
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2. Materials and Methods
2.1. Data Collection

Drone surveys were conducted to observe the canopy of old-growth forests in six
locations in the southern part of the Ussuri taiga ecoregion in the Far East (Figure 1).
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Figure 1. Location of the study area.

The survey utilized the DJI Mavic 2 Pro drone equipped with the Hasselblad L1D-20c
aerial camera to capture high-resolution RGB images. The flight missions took place in
March, April, and November 2021, covering the spring period before the broadleaf trees’
leaf flush and the autumn period after leaf fall. It is worth noting that only Manchurian
fir and Korean pine retained their leaves during this time. To ensure optimal image
quality, data acquisition was scheduled on cloudy days to minimize the impact of direct
sunlight. The flight operations were conducted using the Map Pilot Pro software for
iOS [20], maintaining a flight height of approximately 300 m above ground level while
following a grid-like trajectory over the area of interest (single grid flights). This allowed
us to capture images at regular spatial intervals with the same ground sample distance.
The resulting photo images had a resolution of 5472 × 3648 pixels, with overlays along and
across the flight path set at 95% to ensure comprehensive coverage. The photo datasets
were then processed using OpendDroneMap (ODM) software [21] with the default settings,
producing orthophotos with a final resolution of ~10 cm pixel−1 (Figure 2).
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Figure 2. Comparison of the obtained orthophoto image (left) with a resolution of 10 cm pixel−1

and the Pleiades-1B satellite image (right) with a resolution of 50 cm pixel−1 (14 November 2017, id
DS_PHR1B_201711140212170_FR1_PX_E131N43_0702_02902).

To delineate the tree crowns of Manchurian fir and Korean pine, we obtained
38 separate images from the orthophotos, each with a resolution of 1024 × 1024 pixels.
The neural networks were trained using a dataset that included 32 images, and 6 images
were set aside as a separate validation sample to assess the performance of the trained
models. It is worth mentioning that the orthophoto images contained minor artifacts
resulting from the stitching process of the original optical images. During the training
phase, we intentionally included images of tree crowns with distortions and artifacts. This
decision was made because our objective was to utilize neural networks to recognize tree
crowns in orthophoto images rather than the original photos, which are generally of higher
quality. A total of 249 Korean pine crowns were manually delineated, with a median of
6 crowns per image, and 421 Manchurian fir crowns were delineated, with a median of
10 crowns per image (Figure 3). We purposely excluded the marking of crowns belonging
to young undergrowth trees, as our primary focus was on identifying mature trees that con-
stitute the canopy. Additionally, understory trees do not provide sufficient information for
species identification.
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Furthermore, to evaluate the object-based performance of the trained neural networks,
a single high-resolution image measuring 4096 × 4096 pixels (covering an area of over
16 ha) was used. This test sample contained more than 300 tree crowns, which were expertly
identified without their boundary delineations.

2.2. Neural Networks

The neural networks were trained using a GTX 1060 TI 6 GB GPU for up to 10 h.
During training, the models were evaluated using the validation dataset, and training
continued until there were no further improvements in scores for at least 1000 consecutive
iterations. To ensure the models fit within the GPU memory, we followed the principle of
making minimal changes to the default values of the configuration parameters. However,
if necessary, we adjusted these accordingly.

For the U-Net model [22], the following parameter values were chosen for training: a
batch size of 3 and an image size of 512 × 512 × 3. For the YOLOv8 model, a batch size of 8
was used. The other parameters were set to their default values, according to the Ultralytics
repository [23]. For the Mask R-CNN model [24], we utilized the default configurations
and a batch size of 3. During training, the Adam optimizer, with an initial learning rate of
1.e−4, was employed to optimize the models and update the weights.

We used the package [25,26] for augmentation and applied the following sequence
of transformations: 1—random vertical and horizontal flips; 2—random rotation by
90 degrees; 3—ElasticTransform with parameters (alpha = 120, sigma = 6, alpha_affine = 3.6,
p = 0.5); and 4—random brightness, contrast, and gamma adjustments with a probability
of 0.8.

Variations in brightness and contrast throughout the augmentation process signifi-
cantly improved the overall accuracy of crown recognition. This effect is likely due to the
similarity in variability among the original images taken under various lighting conditions.
To illustrate the significance of brightness and contrast augmentation, we conducted neural
network training without employing this technique. Subsequently, we evaluated the per-
formance of the models trained with and without brightness and contrast augmentation
using a separate test image (2048 × 2048 pixels) that included the presence of minor fog as
atmospheric distortion.

Loss function graphs for the U-Net and the Mask R-CNN models are presented in
Figure A1. Graphs describing the learning process of YOLOv8 are presented in Figure A2.

To evaluate the accuracy of the models, we calculated several metrics. These included
the number of true positive (TP), false positive (FP), and false negative (FN) results of tree
crown detection. Additionally, we computed the following accuracy metrics: precision
(1), which represents the percentage of correctly detected crowns among all the objects
identified by the model; recall (2), also known as sensitivity or the true positive rate,
indicating the percentage of correctly detected trees among all the reference trees; F1-score
(3), combining both precision and recall, providing a comprehensive assessment of the
model’s performance; and overall accuracy (OA) (4), which provides a measure of the
overall performance of the trained neural networks.

PRECISION =
TP

TP + FP
(1)

RECALL =
TP

TP + FN
(2)

F1 = 2 × PRECISION × RECALL
PRECISION + RECALL

(3)

OA = 2 × TP
TP + FN + FP

(4)
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3. Results

Among the algorithms assessed for tree crown recognition, YOLOv8 demonstrated
the highest level of accuracy, achieving superior performance in accurately identifying
species and localizing tree crowns within the image dataset. U-Net closely followed,
attaining the second-highest accuracy. Mask R-CNN exhibited relatively lower accuracy
scores compared to the other methods, indicating its comparatively lower effectiveness in
accurately mapping tree crowns (Table 1).

Table 1. Achieved accuracy scores.

Object TP FP FN Precision Recall F1-Score OA

Object-detection by YOLOv8
Korean pine

Pinus koraiensis 174 0 2 1 0.989 0.994 0.989

Manchurian fir
Abies holophylla 134 3 1 0.98 0.993 0.985 0.971

Both species 308 3 3 0.99 0.990 0.990 0.981

Semantic segmentation by U-Net
Korean pine

Pinus koraiensis 174 5 1 0.97 0.994 0.983 0.967

Manchurian fir
Abies holophylla 134 5 1 0.96 0.993 0.978 0.957

Both species 308 10 2 0.97 0.994 0.981 0.963

Instance segmentation by Mask R-CNN
Korean pine

Pinus koraiensis 149 5 26 0.97 0.851 0.906 0.828

Manchurian fir
Abies holophylla 123 16 12 0.88 0.911 0.898 0.815

Both species 272 21 38 0.93 0.877 0.902 0.822

Abbreviations: TP—true positive, FP—false positive, FN—false negative, OA—overall accuracy.

Tree crown detection using the YOLOv8 model yielded promising results for Korean
pine, with no false positive identifications and only two false negative identifications
(Figure 4a). However, for Manchurian fir, there were three instances of false positive iden-
tifications. The flowering deciduous broadleaf trees of Korean poplar (Populus suaveolens
Fisch.) were misclassified as Manchurian fir, with probabilities ranging from 0.30 to 0.60
(Figure 4b). Additionally, there was one false negative case where a small fir tree located at
the edge of the image was not recognized. Despite these challenges, the YOLOv8 model
produced accurate results for most of the tree crowns, even in scenarios where the crowns
of different species overlapped (Figure 4c), the image quality was compromised due to
artifacts in the orthophoto generation process, or when the crowns at the image boundaries
were incomplete (Figure 4d).

Both the Mask R-CNN and the U-Net neural networks exhibited lower accuracy in
object identification compared to the YOLOv8 neural network. However, the U-Net showed
higher accuracy between the two segmentation methods. The occurrence of false positive
and false negative results can be attributed to the misclassification of Manchurian fir as
Korean pine and vice versa. It is worth noting that when YOLOv8 produced false positive
identifications for images of flowering broadleaf Korean poplar trees, neither the Mask
R-CNN nor the U-Net models generated such false positive results. However, false negative
results for Korean pine were also observed. The false negative result produced by the
YOLOv8 model for the small fir was also produced by the U-Net model, whereas the Mask
R-CNN model correctly identified the crown of this tree. Overall, the Mask R-CNN model
had a higher tendency for false negatives, whereas the U-Net had a higher incidence of
false positives.
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The omission of brightness, contrast, and gamma adjustment augmentation in the
training process for all three neural networks considerably reduced the recognition accuracy
for images with atmospheric interference, such as fog. The absence of augmentation had
a particularly severe impact on the YOLOv8 model. In the test image containing more
than 70 crowns of coniferous trees partially covered by fog, the YOLOv8 model was able
to detect only two trees of Manchurian fir and failed to identify any crowns of Korean
pine (Figure A3). Similarly, there was a noticeable decline in recognition quality when
brightness augmentation was not used for both the U-Net and the Mask R-CNN models
(Figures A4 and A5).

Our results demonstrate that drone-based optical imagery, collected from an approx-
imate height of 300 m and stitched into orthophoto images with a final resolution of
approximately 10 cm per pixel, is capable of accurately identifying and mapping two
coniferous species in dense mixedwood forests (Figure A6). However, the results obtained
from the neural network approach for semantic segmentation and instance segmentation,
which aim to map the two tree types onto orthophotos, exhibited lower accuracy compared
to the YOLOv8 model, which is designed for object detection.
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4. Discussion

In many practical forestry and forest vegetation monitoring tasks, the primary objective
is often to map the spatial distribution of tree species [6,14,27–29]. Neural networks for
object detection, such as the YOLOv8 model, are optimal tools for these tasks. Although
there has been significant research interest in using neural networks for semantic and
instance segmentation in tree canopy delineation, their practical application is not as
widespread as simple mapping. The semantic segmentation of tree crowns can indeed be
valuable for studying the dimensional characteristics of trees, determining height-to-crown
size ratios, or quantifying the specific leaf area of trees belonging to different species. These
tasks are crucial in the field of functional plant ecology and in the wood industry [13,29–32].

The segmentation algorithms used in our study had some limitations regarding false
positive and false negative crown detection. Although the U-Net model, which is used for
semantic segmentation, showed higher accuracy compared to the instance segmentation
model Mask R-CNN, it is important to note that the results obtained through semantic
segmentation do not apply to the detection of individual tree crowns. This limitation
arises from the inherent nature of semantic segmentation methods, which do not delineate
individual objects, making it challenging to accurately determine the number of trees in
a given area (Figure A7). However, semantic segmentation methods still hold value in
identifying and characterizing large-scale objects, such as windthrows or forested areas
affected by forest pests [33–36]. They can also be useful in cases where tree species or other
mapped plants are exclusively represented by single objects.

Instance segmentation methods, such as the Mask R-CNN model, allow for the recogni-
tion of individual tree crowns, enabling the mapping of individual trees and the calculation
of crown sizes. It is important to note that the Mask R-CNN model exhibited the lowest
recognition accuracy among the evaluated methods in our study. A common issue we
encountered was the occurrence of tree crowns that simultaneously belonged to both recog-
nized object classes (Figure A8). This ambiguity further complicated the precise delineation
of individual tree crowns, resulting in a decrease in recognition accuracy. This finding
highlights the challenge of accurately separating tree species with similar visual charac-
teristics, even when employing advanced segmentation techniques. Hence, although the
Mask R-CNN model serves as an instance segmentation method enabling the identification
of individual tree crowns, in our research, its relatively lower accuracy does not render
it suitable for fully automated tree crown detection tasks. Therefore, when utilizing the
results of the Mask R-CNN model, expert supervision is necessary to ensure reliability of
the findings.

Several studies have produced promising results for object detection and instance-
based segmentation methods in simpler tasks, such as identifying isolated tree crowns
of one species or without species identification [29,30,36,37]. Our research sheds light
on the challenges that arise when dealing with more complex scenarios. Specifically, the
intricate task of distinguishing between two or more similar tree species presents a more
complex challenge [12,14–16]. In this context, we observed a decrease in the accuracy of
segmentation methods. This highlights the need for further research and the development
of segmentation techniques that can handle complex scenarios involving visually similar
tree species.

Given the identified limitations and trade-offs, it is crucial to carefully choose the
appropriate segmentation method based on the specific objectives. Semantic segmentation
methods are valuable for characterizing large-scale objects, whereas instance segmentation
methods provide more detailed information about individual tree crowns. Selection of the
methodology should be guided by the desired outcome and the level of accuracy required
for the intended applications. It is important to consider the limitations and challenges
associated with each method and to weigh them against the specific goals of the study in
order to make an informed decision.

Tree species recognition in natural or semi-natural forests presents particular chal-
lenges [16,30] compared to forest plantations or other types of homogeneous forest
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stands [9–11,32,37]. Simply selecting and learning neural networks is not enough for
achieving successful tree crown recognition. The process of capturing images with drones
and creating a comprehensive training dataset with manually delineated trees is equally
important. Involving experts with the capability to differentiate similar tree species visu-
ally and conducting ground-based verification are crucial steps to ensure the creation of
high-quality training data [38].

We used drone images captured from a constant flight height of ~300 m above ground
level to generate an orthophoto with a resolution of ~10 cm pixel−1. This resolution proved
sufficient for distinguishing between two similar evergreen tree species. Altering the flight
altitude to achieve higher-resolution orthophotos could potentially improve recognition
accuracy, particularly for segmentation algorithms. However, this approach comes with
trade-offs. Lowering the flight altitude would necessitate capturing more photos of the same
area and additional resources for orthophoto generation. Furthermore, higher-resolution
orthophotos may introduce more artifacts due to minor changes in the tree crowns caused
by wind movement, leading to difficulties in proper stitching. Conversely, increasing the
flight altitude and obtaining lower-resolution orthophotos could result in lower recognition
accuracy. The spatial resolution of very-high-resolution satellite systems of ~50 cm pixel−1

is inadequate for distinguishing between two selected evergreen coniferous tree species, as
demonstrated earlier [33]. The choice of flight altitude and final image resolution should
be carefully considered and tailored to the specific study and recognition objects. Ideally,
researchers should have the opportunity to experimentally determine the optimal flight
parameters based on empirical experiences [39,40].

Furthermore, the use of multispectral or hyperspectral data [41–43] can enhance recog-
nition quality. Nevertheless, our study demonstrates that even with inexpensive drones
equipped with a default RGB camera, satisfactory recognition results can be achieved.

The augmentation process during neural network training is another crucial aspect
of achieving reliable recognition results [44]. For tree crown recognition using drone-
borne aerial orthophoto images, it is important to include lighting changing transforms
that emulate the variability of real atmospheric conditions. This includes variations in
brightness associated with the time of day and brightness changes caused by aerosols in
the atmosphere, such as dust, clouds, or fog (Figures A4–A6).

It is important to consider the influence of environmental conditions on the results
of tree species recognition. In our study, we intentionally conducted drone surveys on
cloudy days to avoid issues caused by uneven illumination from direct sunlight. This
approach was necessary to minimize the presence of bright spots and shadows in the
tree crowns, which could pose challenges in accurately distinguishing between the two
conifer species [45,46]. Based on our experience, we recommend capturing images only in
cloudy weather to increase the accuracy of species recognition. Taking this option helps to
mitigate the potential impact of lighting conditions and to improve the overall reliability of
the results.

Another factor that significantly contributed to the high recognition accuracy was the
careful selection of the phenological period for the drone survey [47,48]. When addressing
specific research objectives, it is crucial to consider the biological characteristics of the
study objects and to select the appropriate seasons when the objects of interest are most
distinguishable from other elements in the landscape. This requires a comprehensive
understanding of phenology, including the phenological stages of the target objects and
the overall appearance of the forest canopy [49]. By carefully choosing the right seasons,
researchers can ensure that the objects they are studying are visually distinct and easily
recognizable, thereby improving recognition accuracy.

For evergreen conifers in the boreal or temperate zones, the optimal seasons are early
spring or late autumn. Although winter conditions with snow cover may initially seem
suitable for the flight missions, there are several potential limitations to consider. Firstly,
the presence of snow on the tree crowns can significantly hinder recognition accuracy, and
the results obtained during this period may not be applicable to orthophotos captured
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during snowless periods. Secondly, negative air temperatures during winter can greatly
restrict the operational capabilities of many drones, as the performance of lithium batteries
decreases significantly in low-temperature environments.

5. Conclusions

For tasks involving tree crown recognition for counting or mapping multiple tree
species, dedicated neural networks designed for object detection and counting, such as the
YOLOv8 model, are more suitable and reliable. Although more complex image segmenta-
tion algorithms can also yield satisfactory results for mapping, their accuracy may be lower,
and the learning process may be longer and computationally intensive. Instance segmen-
tation neural networks are primarily recommended for tasks involving the assessment of
separate tree crowns, with results requiring careful expert validation.

We stress to carefully consider the specific research task and the complexity of object
classification when selecting segmentation methods. More complex tasks, such as differ-
entiating between visually similar tree species, may necessitate additional strategies or
modifications to existing segmentation algorithms to enhance accuracy. The continuous
development of robust and accurate segmentation methods for such intricate tasks is an
ongoing focus of research in the fields of remote sensing and computer vision.

Solving practical problems related to tree recognition requires a multi-step process that
involves collaboration among experts with different skills and experiences. It is essential to
adopt biology- and landscape-oriented approaches when applying remote sensing methods,
which requires proficiency not only in remote sensing and deep learning techniques but
also in understanding the biological aspects of forest ecosystems. This approach will not
only aid in collecting primary remote data but will also significantly enhance the quality of
the final recognition results.
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